Acceptable Complexity Measures of Theorems

Bruno Grenet

Bruno.Grenet@ens-lyon.fr http://perso.ens-lyon.fr/bruno.grenet/

École Normale Supérieure de Lyon, France

Bloomington - October 31, 2008

Historical Overview

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

The theorems of a finitely-specified theory cannot be significantly more complex than the theory itself.

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

The theorems of a finitely-specified theory cannot be significantly more complex than the theory itself.

- 2005: Calude and Jürgensen prove the "heuristic principle"

Goal

- $\delta(x)=H(x)-|x|$ where H is the program-size complexity.
- $\delta(x)=H(x)-|x|$ where H is the program-size complexity.
- Is it the only measure satisfying the heuristic principle?

Outline

(1) A few definitions
(2) About δ
(3) Acceptable Complexity Measures
(4) Independence of the three conditions
(5) Other measures?

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 Independence of the three conditions
(5) Other measures?

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w
- Gödel numbering for the language L : computable one-to-one function $g: L \rightarrow X_{2}^{*}$

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w
- Gödel numbering for the language L : computable one-to-one function $g: L \rightarrow X_{2}^{*}$
- G : set of all the Gödel numberings

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$
- PROG $_{T}=\left\{x \in X_{i}^{*}: T(x) \downarrow\right\}$

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$
- PROG $_{T}=\left\{x \in X_{i}^{*}: T(x) \downarrow\right\}$

Self-delimiting Turing Machine: $P R O G_{T}$ is prefix-free

Program-size complexity

Definition
 $H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Program-size complexity

Definition

$H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Invariance Theorem

There exists a universal machine U_{i} such that for every T, there exists c such that

$$
H_{i, U_{i}}(x) \leq H_{i, T}(x)+c
$$

Program-size complexity

Definition

$H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Invariance Theorem

There exists a universal machine U_{i} such that for every T, there exists c such that

$$
H_{i, U_{i}}(x) \leq H_{i, T}(x)+c
$$

$$
H_{i} \triangleq H_{i, U_{i}}
$$

Outline

(1) A few definitions

(2) About δ

(3) Acceptable Complexity Measures

4 Independence of the three conditions
(5) Other measures?

Definitions

Definition

$$
\delta_{i}(x)=H_{i}(x)-|x|_{i}, i \geq 2
$$

Definitions

Definition

$$
\delta_{i}(x)=H_{i}(x)-|x|_{i}, i \geq 2
$$

Definition

$$
\delta_{g}(u)=H_{2}(g(u))-\left\lceil\log _{2}(i) \cdot|x|_{i}\right\rceil \text {, }
$$

where g is a Gödel numbering.

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c .
$$

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c .
$$

Corollary

- With the same constant c as in the theorem, it holds that

$$
\left|\delta_{g}(u)-\log _{2}(i) \cdot \delta_{i}(u)\right| \leq c+1
$$

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c
$$

Corollary

- With the same constant c as in the theorem, it holds that

$$
\left|\delta_{g}(u)-\log _{2}(i) \cdot \delta_{i}(u)\right| \leq c+1
$$

- For every g and g^{\prime}, there exists a constant d such that

$$
\left|H_{2}(g(u))-H_{2}\left(g^{\prime}(u)\right)\right| \leq d \text { and }\left|\delta_{g}(u)-\delta_{g^{\prime}}(u)\right| \leq d+1 .
$$

Main results about δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.

Main results about δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Main results about δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

Main results about δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

$$
\begin{aligned}
& \text { Proposition } \\
& \forall N>0, \lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n, \delta_{g}(x) \leq N\right\}=0
\end{aligned}
$$

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

(4) Independence of the three conditions

(5) Other measures?

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

- $\hat{\rho}_{i}$: witness of the builder

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

- $\hat{\rho}_{i}$: witness of the builder
- ρ_{g} : complexity measure

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Proposition

The function δ_{g} is an acceptable complexity measure.

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Proposition

The function δ_{g} is an acceptable complexity measure.

Proposition

The program-size complexity is not an acceptable complexity measure.

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 Independence of the three conditions
(5) Other measures?

Definitions

Definition

$$
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0 \\ 0, & \text { else }\end{cases}
$$

Definitions

Definition

$$
\begin{aligned}
& \hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0, \\
0, & \text { else. }\end{cases} \\
& \rho_{g}^{1}(x)= \begin{cases}\frac{H_{2}(g(x))}{\left.|x|\right|_{i}}, & \text { if } x \neq \lambda, \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

Definitions

Definition

$$
\begin{gathered}
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0, \\
0, & \text { else. }\end{cases} \\
\rho_{g}^{1}(x)= \begin{cases}\frac{H_{2}(g(x))}{|x|_{i}}, & \text { if } x \neq \lambda, \\
0, & \text { else. }\end{cases} \\
\hat{\rho}_{i}^{2}(x, y)= \begin{cases}x /\left\lceil\log _{i} y\right\rceil, & \text { if } y>1, \\
0, & \text { else. }\end{cases}
\end{gathered}
$$

Definitions

Definition

$$
\begin{gathered}
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0, \\
0, & \text { else. }\end{cases} \\
\rho_{g}^{1}(x)= \begin{cases}\frac{H_{2}(g(x))}{|x|_{i}}, & \text { if } x \neq \lambda, \\
0, & \text { else. }\end{cases} \\
\hat{\rho}_{i}^{2}(x, y)= \begin{cases}x /\left[\log _{i} y\right\rceil, & \text { if } y>1, \\
0, & \text { else. }\end{cases} \\
\rho_{g}^{2}(x)= \begin{cases}\frac{H_{2}(g(x))}{\left.\left|\log _{i}\right| x| |_{i}\right]}, & \text { if }|x|_{i}>1, \\
0, & \text { else. }\end{cases}
\end{gathered}
$$

ρ_{g}^{1} is not acceptable

Lemma

ρ_{g}^{1} is bounded.
ρ_{g}^{1} is not acceptable

Lemma
ρ_{g}^{1} is bounded.

Proposition

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}^{1}(x)<N_{\mathcal{F}}$.

ρ_{g}^{1} is not acceptable

Lemma

ρ_{g}^{1} is bounded.

Proposition

(i)

The bound is always valid.

ρ_{g}^{1} is not acceptable

Lemma
ρ_{g}^{1} is bounded.

Proposition

The bound is always valid.
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}^{1}(x) \leq N\right\}=0$

ρ_{g}^{1} is not acceptable

Lemma

ρ_{g}^{1} is bounded.

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.

ρ_{g}^{1} is not acceptable

Lemma

ρ_{g}^{1} is bounded.

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.
(iii) $\left|\rho_{g}^{1}(x)-\rho_{g^{\prime}}^{1}(x)\right| \leq c$

ρ_{g}^{1} is not acceptable

Lemma

ρ_{g}^{1} is bounded.

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.
(iii) $\sqrt{ }$ As for δ.

ρ_{g}^{2} is not acceptable either

Proposition

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}^{2}(x)<N_{\mathcal{F}}$.

ρ_{g}^{2} is not acceptable either

Proposition

(i) X Cardinality argument.

ρ_{g}^{2} is not acceptable either

Proposition

(i) X Cardinality argument.
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}^{2}(x) \leq N\right\}=0$

ρ_{g}^{2} is not acceptable either

Proposition

(i) X Cardinality argument.
(ii) $\sqrt{ }$ Long proof...

ρ_{g}^{2} is not acceptable either

Proposition

(i) X Cardinality argument.
(ii) $\sqrt{ }$ Long proof...
(iii) $\left|\rho_{g}^{2}(x)-\rho_{g^{\prime}}^{2}(x)\right| \leq c$

ρ_{g}^{2} is not acceptable either

Proposition

(i) x

Cardinality argument.
(ii) $\sqrt{ }$ Long proof...
(iii) $\checkmark \quad C f$ previous slide.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.
(iii) Independence from the chosen language.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.
(iii) Independence from the chosen language.

Theorem

The three conditions are independent from each other.

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 Independence of the three conditions

(5) Other measures?

Introduction

Can we find other acceptable measures of complexity?

Introduction

Can we find other acceptable measures of complexity?

Proposition

Suppose that ρ_{g} is acceptable. Then so is $\alpha \cdot \rho_{g}+\beta, \alpha, \beta \in \mathbb{Q}, \alpha>0$.

Results

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=a \cdot\left(x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil\right)+b,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

Results

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil
$$

where $1 / 2 \leq \varepsilon \leq 1$.

Results

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil
$$

where $1 / 2 \leq \varepsilon \leq 1$.

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

Summary of the work

- Studying the results about δ_{g}

Summary of the work

- Studying the results about δ_{g}
- Some corrections

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs
- Proposition of a general definition of acceptable complexity measure of theorems

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs
- Proposition of a general definition of acceptable complexity measure of theorems
- Studying those acceptable measures to find other ones (in progress)

Thank you for your attention!

École Normale Supérieure de Lyon

