
“Everything is everything” revisited: shapeshifting
data types with isomorphisms and hylomorphisms

Paul Tarau1

1Department of Computer Science and Engineering
Univ of North Texas

NKS’08

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Motivation: analogies

analogies everywhere: mathematical theories often borrow proof
patterns and reasoning techniques across close and sometime
not so close fields

if heterogeneous objects can be seen in some way as
isomorphic, then we can share them and compress the
underlying informational universe by collapsing isomorphic
encodings of data or programs whenever possible

unified internal representations make equivalence checking and
sharing possible

Haskell code can be generated with a proof assistant (Coq)

⇒ equivalences can be formally proven

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Motivation: code and data sharing

Kolmogorov-Chaitin algorithmic complexity is based on the
existence of various equivalent representations of data objects,
and in particular (minimal) programs that produce them in a given
language and encoding

one can interpret data structures like graphs and program
constructs like loops or recursion as compression mechanisms
focusing on sharing and reuse of equivalent blocks of information

maximal sharing acts as the dual of minimal program+input size

shapeshifting through a uniform set of encodings would extend
sharing opportunities across heterogeneous data and code types

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Shapeshifting between datatypes: “everything is everything”

magic made easy – but in a safe way: bijective mappings using a
strongly typed language as a watchdog (Haskell)

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Overview

an exploration in a functional programming framework of
isomorphisms between elementary data types

ranking/unranking operations (bijective Gödel numberings)

pairing/unpairing operations

generating new isomorphisms through hylomorphisms
(folding/unfolding into hereditarily finite universes)

applications

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

The Group of Isomorphisms

Assumption: f ◦g = ida and g ◦ f = idb

data Iso a b = Iso (a→b) (b→a)

from (Iso f _) = f
to (Iso _ g) = g

compose :: Iso a b → Iso b c → Iso a c
compose (Iso f g) (Iso f’ g’) = Iso (f’ . f) (g . g’)
itself = Iso id id
invert (Iso f g) = Iso g f

Proposition

Iso has a group structure: compose is associative, itself is an
identity element, invert computes the inverse of an isomorphism.

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Transporting Operations

borrow :: Iso t s → (t → t) → s → s
borrow (Iso f g) h x = f (h (g x))
borrow2 (Iso f g) h x y = f (h (g x) (g y))
borrowN (Iso f g) h xs = f (h (map g xs))

lend :: Iso s t → (t → t) → s → s
lend = borrow . invert
lend2 = borrow2 . invert
lendN = borrowN . invert

Examples will follow as we populate the universe.

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Choosing a Root

type Nat = Integer
type Root = [Nat]

We can now define an Encoder as an isomorphism connecting an
object to Root

type Encoder a = Iso a Root

the combinators with and as provide an embedded transformation
language for routing isomorphisms through two Encoders:

with :: Encoder a→Encoder b→Iso a b
with this that = compose this (invert that)

as :: Encoder a → Encoder b → b → a
as that this = to (with that this)

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

The combinator as

as :: Encoder a→Encoder b→b→a

as that this = to (with that this)

a2b x = as A B x

b2a x = as B A x

Root

A B

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
......................
............

b

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

.............................

a−1

...
..
............

b−1

...
...

a

..
a2b = as B A

..

b2a = as A B

as [Nat] has been chosen as the root, we
will define our finite function data type
fun simply as the identity isomorphism
on sequences in [Nat]:

fun :: Encoder [Nat]

fun = itself

Finite Functions to/from Sets

∗ISO> as set fun [0,1,0,0,4]
[0,2,3,4,9]
∗ISO> as fun set [0,2,3,4,9]
[0,1,0,0,4]

As the example shows, this encoding maps arbitrary lists of natural
numbers representing finite functions to strictly increasing sequences
of (distinct) natural numbers representing sets.

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Folding sets into natural numbers

We can fold a set, represented as a list of distinct natural numbers into
a single natural number, reversibly, by observing that it can be seen as
the list of exponents of 2 in the number’s base 2 representation.

∗ISO> as nat set [3,4,6,7,8,9,10]
2008
∗ISO> lend nat reverse 2008 -- order matters
1135
∗ISO> lend nat_set reverse 2008 -- order independent
2008
∗ISO> borrow nat_set succ [1,2,3]
[0,1,2,3]
∗ISO> as set nat 42
[1,3,5]

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Generic unranking and ranking hylomorphisms

The ranking problem for a family of combinatorial objects is
finding a unique natural number associated to it, called its rank.

The inverse unranking problem consists of generating a unique
combinatorial object associated to each natural number.

unranking anamorphism (unfold operation): generates an object
from a simpler representation - for instance the seed for a random
tree generator

ranking catamorphism (a fold operation): associates to an object
a simpler representation - for instance the sum of values of the
leaves in a tree

together they form a mixed transformation called hylomorphism

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Ranking/unranking hereditarily finite datatypes

data T = H Ts deriving (Eq,Ord,Read,Show)
type Ts = [T]

The two sides of our hylomorphism are parameterized by two
transformations f and g forming an isomorphism Iso f g:

unrank f n = H (unranks f (f n))
unranks f ns = map (unrank f) ns

rank g (H ts) = g (ranks g ts)
ranks g ts = map (rank g) ts

“structured recursion”: propagate a simpler operation guided by the
structure of the data type obtained as:

tsize = rank (λx→1 + (sum x))

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Extending isomorphisms with hylomorphisms

We can now combine an anamorphism+catamorphism pair into an
isomorphism hylo defined with rank and unrank on the
corresponding hereditarily finite data types:

hylo :: Iso b [b] → Iso T b
hylo (Iso f g) = Iso (rank g) (unrank f)

hylos :: Iso b [b] → Iso Ts [b]
hylos (Iso f g) = Iso (ranks g) (unranks f)

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Hereditarily finite sets

hfs :: Encoder T
hfs = compose (hylo nat_set) nat

∗ISO> as hfs nat 42
H [H [H []],H [H [],H [H []]],H [H [],H [H [H []]]]]
∗ISO> as nat hfs it
42

we have just derived as a “free algorithm” Ackermann’s encoding from
hereditarily finite sets to natural numbers and its inverse!

ackermann = as nat hfs
inverse_ackermann = as hfs nat

f (x) = if x = {} then 0 else ∑a∈x 2f (a)

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Hereditarily Finite Set associated to 42

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Hereditarily Finite Set associated to 2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Hereditarily finite functions

hff :: Encoder T
hff = compose (hylo nat) nat

this hff Encoder can be seen as another (new this time!) “free
algorithm”, providing data compression/succinct representation for
hereditarily finite sets (note the significantly smaller tree size):

∗ISO> as hfs nat 42
H [H [H []],H [H [],H [H []]],H [H [],H [H [H []]]]]
∗ISO> as hff nat 42
H [H [H []],H [H []],H [H []]]

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Pairing/Unpairing

pairing function: isomorphism f : Nat×Nat → Nat ; inverse: unpairing

type Nat2 = (Nat,Nat)
∗ISO> bitunpair 2008
(60,26)
∗ISO> bitpair (60,26)
2008

-- 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]
-- 60:[0, 0, 1, 1, 1, 1]
-- 26:[0, 1, 0, 1, 1]
∗ISO> as nat2 nat 2008
(60,26)
∗ISO> as nat nat2 (60,26)
2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Encodings of cons-lists

∗ISO> nat2cons 123456789
Cons
(Atom 2512)
(Cons
(Cons

(Cons
(Cons (Atom 0) (Atom 0))
(Cons (Atom 0) (Atom 0)))

(Atom 1)
)
(Atom 27)

)
∗ISO> cons2nat it
123456789

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Encoding directed graphs

digraph2set ps = map bitpair ps
set2digraph ns = map bitunpair ns

The resulting Encoder is:

digraph :: Encoder [Nat2]
digraph = compose (Iso digraph2set set2digraph) set

working as follows:

∗ISO> as digraph nat 2008
[(1,1),(2,0),(2,1),(3,1),(0,2),(1,2),(0,3)]
∗ISO> as nat digraph it
2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Encoding hypergraphs

set2hypergraph = map nat2set
hypergraph2set = map set2nat

The resulting Encoder is:

hypergraph :: Encoder [[Nat]]
hypergraph = compose (Iso hypergraph2set set2hypergraph) set

working as follows

∗ISO> as hypergraph nat 2008
[[0,1],[2],[1,2],[0,1,2],[3],[0,3],[1,3]]
∗ISO> as nat hypergraph it
2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

So many encodings so little time ...

hereditarily finite sets with (finite/infinite supply of) urelements

hereditarily finite functions with urelements

undirected graphs, multigraphs, multidigraphs

permutations, hereditarily finite permutations

BDDs, MTBDDs (multi-terminal BDDs)

dyadic rationals

functional binary numbers

strings, {0,1}∗-bitstrings

parenthesis languages

dyadic rationals

DNA strands

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Some Examples: BDDs

∗ISO> as rbdd nat 2008
BDD 4
(D 3

(D 2 B0
(D 1

(D 0 B0 B1)
(D 0 B1 B0)))

(D 2
(D 1 B1 B0)
(D 1 B0

(D 0 B1 B0))))
∗ISO> as nat rbdd it
2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

More Examples: MTBDDs

>to_mtbdd 3 3 2008
MTBDD 3 3
(M 2
(M 1

(M 0 (L 2) (L 1))
(M 0 (L 2) (L 1)))

(M 1
(M 0 (L 2) (L 0))
(M 0 (L 1) (L 1))))

>from_mtbdd it
2008

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Examples: permutations and HFPs

∗ISO> as perm nat 2008
[1,4,3,2,0,5,6]
∗ISO> as nat perm it
2008
∗ISO> as perm nat 1234567890
[1,6,11,2,0,3,10,7,8,5,9,4,12]
∗ISO> as nat perm it
1234567890

∗ISO> as hfp nat 42
H [H [],H [H [],H [H []]],H [H [H []],H []],

H [H []],H [H [],H [H []],H [H [],H [H []]]]]
∗ISO> as nat hfp it
42

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Examples: parenthesis languages

∗ISO> as pars nat 42
"((())(())(()))"
∗ISO> as hff pars it
H [H [H []],H [H []],H [H []]]
∗ISO> as nat hff it
42
∗ISO> as bitpars nat 2008
[0,0,0,1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1]
∗ISO> as nat bitpars it
2008
∗ISO> as nat bits (as bitpars nat 2008)
7690599
∗ISO> map ((as nat bits) . (as bitpars nat)) [0..7]
[5,27,119,115,495,483,471,467]

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

DNA encodings

∗ISO> as dna nat 2008
[Adenine,Guanine,Cytosine,Thymine,Thymine,Cytosine]
∗ISO> borrow (with dna nat) dna_reverse 42
42
∗ISO> borrow (with dna nat) dna_reverse 2008
637
∗ISO> borrow (with dna nat) dna_complement 2008
2087
∗ISO> borrow (with dna nat) dna_comprev 2008
3458
∗ISO> borrow (with dna bits)

dna_comprev [1,0,1,0,1,1,0,1,0,1]
[1,1,1,0,1,0,0,0,0,1,1]

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Applications: a surprising “free algorithm”: strange_sort

“free algorithm” – sorting a list of distinct elements without explicit use
of comparison operations:

strange_sort = (from nat_set) . (to nat_set)

∗ISO> strange_sort [2,9,3,1,5,0,7,4,8,6]
[0,1,2,3,4,5,6,7,8,9]

a consequence of the commutativity of addition and the unicity of the
decomposition of a natural number as a sum of powers of 2

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Applications: succinct representations

∗ISO> length_as set 123456789012345678901234567890
54
∗ISO> length_as perm 123456789012345678901234567890
28
∗ISO> length_as fun 123456789012345678901234567890
54
∗ISO> sum_as set 123456789012345678901234567890
2690
∗ISO> sum_as perm 123456789012345678901234567890
378
∗ISO> sum_as fun 123456789012345678901234567890
43

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Compressed representations: a measure of “structural”
complexity?

∗ISO> size_as hfs 123456789012345678901234567890
627
∗ISO> size_as hfp 123456789012345678901234567890
276
∗ISO> size_as hff 123456789012345678901234567890
91

∗ISO> bdd_size $ as bdd
nat 123456789012345678901234567890

256
∗ISO> robdd_size $ as rbdd

nat 123456789012345678901234567890
39

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Applications: Random Generation

Combining nth with a random generator for nat provides free
algorithms for random generation of complex objects of customizable
size:

∗ISO> random_gen set 11 999 3
[[0,2,5],[0,5,9],[0,1,5,6]]
∗ISO> head (random_gen hfs 7 30 1)
H [H [],H [H [],H [H []]],H [H [H [H []]]]]
∗ISO> head (random_gen dnaStrand 1 123456789 1)
DNAstrand P5x3 [Guanine,Thymine,Guanine,Cytosine,
Cytosine,Thymine,Thymine,Thymine,Thymine,
Adenine,Thymine,Cytosine,Cytosine]

This is useful for further automating test generators in tools like
QuickCheck.

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Other Applications

a promising phenotype-genotype connection in Genetic
Programming: isomorphisms between bitvectors/natural numbers
on one side, and trees/graphs representing HFSs, HFFs on the
other side

Software Transaction Memory: undo operations by applying
inverse transformations without the need to save the intermediate
chain of states

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

Conclusion

we have designed an embedded combinator language that
shapeshifts datatypes at will using a small group of isomorphisms

we have shown how to lift them with hylomorphisms to
hereditarily finite datatypes

a practical tool to experiment with various universal encoding
mechanisms

Literate Haskell program + (very) long version of the paper at
http://logic.csci.unt.edu/tarau/research/2008/
fISO.zip

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

http://logic.csci.unt.edu/tarau/research/2008/fISO.zip
http://logic.csci.unt.edu/tarau/research/2008/fISO.zip

Open problems

encodings are more difficult when transitivity is involved
encodings for finite posets, finite topologies?
encodings for finite categories?

towards a “Theory of Everything" in Computer Science?
is such a theory possible? is it useful?
it should be easier: CS is more of a “nature independent”
construct than physics!
our initial focus: isomorphisms between datatypes are the easy
part

can a Theory of Everything make Computer Science simple
again?

Paul Tarau University of North Texas

“Everything is everything” revisited: shapeshifting data types with isomorphisms and hylomorphisms

