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Recall the recursive definition of factorial

(define fun
(lambda (n)

(if (zero? n)
1

(* n (fun (sub1 n))))))

One way to make this recursive procedure anonymous is by making it aware of
itself (and introducing a keyword, this)

(define nuf
(lambda (n)

(if (zero? n)
1
(* n (this (sub1 n))))))) ; but what’s this?

Such a keyword can be easily introduced with the help of a letrec

(define fact
(letrec ((this (lambda (n)

(if (zero? n)
1
(* n (this (sub1 n)))))))

this))

But this takes us back to where we started, except that all lambda-expressions
would now be called this and could refer to themselves as such.

Remember the basic method of cps-ing our friend the factorial function

(define fun-cps
(lambda (n k)

(if (zero? n)
(k 1)
(fun-cps (sub1 n) (lambda (v) (k (* n v)))))))

This new definition requires a specific testing strategy



(define test-fun-cps
(lambda ()

(fun-cps 3 (lambda (v) v))))

(define fact-cps
(lambda (n)

(fun-cps n (lambda (v) v))))

Two points are now worth bringing up:

1. How does one prove that fun, fact and fact-cps are equivalent?

2. If we can pack the future and pass it along as an action to be performed
later, what other kind of information can we carry around during our
computations and what usefulness could this ability entail?

Let me first answer the second question with a version of the factorial which
passes itself as an argument:

(let ((nuf (lambda (n fun)
(if (zero? n)

1
(* n (fun (sub1 n) fun))))))

(nuf n nuf)) ; won’t work because this n is not bound

Let’s clean up this code so it can actually be used:

(define turing
(lambda (fun)

(lambda (n)
(fun n fun))))

(define fact-dag (turing
(lambda (n fun)

(if (zero? n)
1

(* n (fun (sub1 n) fun))))))

We again bring two points up:

1. No more circularities are present in the definition of fact hence the suffix
dag (that usually stands for direct acyclic graph—which is what we can
use now to describe the structure of our computations). Can this result
be made more general?

2. How does one prove that fact-dag is equivalent to fact (and fact-cps)?

The answer to the first question is affirmative: it appears that every letrec
can indeed be expressed as a let by following a strategy as described below:
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Transformation Strategy:

1. Let fun0, fun1, . . . , funn be n mutually recursive procedures defined
through the same letrec, and let <formalsi> be the list of formal pa-
rameters of funi, ∀i ∈ {1, . . . , n}

2. Then the original letrec can be rewritten as a let if all invocations of
funi are replaced with (funi <formalsi> fun0 fun1 ...funn)

I include an example:

(letrec ((odd? (lambda (n)
(if (zero? n) #f

(even? (sub1 n)))))
(even? (lambda (n)

(if (zero? n) #t
(odd? (sub1 n))))))

(list (odd? 5)
(even? 6)
(odd? 8)
(even? 7)))

The transformation described above yields in this case:

(let ((odd? (lambda (n odd? even?)
(if (zero? n)

#f
(even? (sub1 n) odd? even?))))

(even? (lambda (n odd? even?)
(if (zero? n)

#t
(odd? (sub1 n) odd? even?)))))

(list (odd? 5 odd? even?)
(even? 6 odd? even?)
(odd? 8 odd? even?)
(even? 7 odd? even?)))

One should notice that the transformation removes all circularities, for the
names in the body of the let don’t have anything in common with the names
used inside the lambda-expressions.

In other words this is exactly the same thing:

(let ((alpha (lambda (n odd? even?)
(if (zero? n) #f (even? (sub1 n) odd? even?))))

(beta (lambda (n odd? even?)
(if (zero? n) #t (odd? (sub1 n) odd? even?)))))

(list (alpha 5 alpha beta)
(beta 6 alpha beta)
(alpha 8 alpha beta)
(beta 7 alpha beta)))
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Two more points could be brought up:

1. How can one prove that the transformation is correct in general?

2. Does it cover circular structures not encoded as lambda-expressions?

The second point could be given an immediate answer:

(letrec ((a (cons 1 a))) a)

becomes (by turning data into thunks and then applying the same rules):

(let ((a (lambda (a) (cons 1 (a a))))) (a a))

which is reminiscent of lazy evaluation and infinite streams.

As for the question of correctness (or proof of equivalence) same derivation trees
or a notion of bisimilarity as in π-calculus would probably offer a uniform answer
to questions 1, 4, and 5 (my choice was to use diagrams).

Replication is used a lot in π-calculus. It is replication that provides a replace-
ment for circularity in the recursive definitions above in our transformation.
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