
MATRIX ALGEBRA AND APPLICATIVE PROGRAMMING*

David S. Wise*

Computer Science Department, Indiana University

101 Lindley Hall, Bloomington, IN 47405-4101

dswise@iuvax.cs.indiana.edu

CR categories and Subject Descriptors:

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: Array and vector proces-

sors, Parallel processors; D.1.1 [Applicative (Functional) Programming Techniques]; G.1.3

[Numerical Linear Algebra]: Sparse and very large systems; E.1 [Data Structures]: Trees;

F.2.1 [Numerical Algorithms and Problems]: Computation of fast Fourier transform.

General Term: Algorithms.

Abstract

The broad problem of matrix algebra is taken up from the perspective of functional program-

ming. A key question is how arrays should be represented in order to admit good implementations

of well-known e�cient algorithms, and whether functional architecture sheds any new light on

these or other solutions. It relates directly to disarming the \aggregate update" problem.

The major thesis is that 2d-ary trees should be used to represent d-dimensional arrays; ex-

amples are matrix operations (d = 2), and a particularly interesting vector (d = 1) algorithm.

Sparse and dense matrices are represented homogeneously, but at some overhead that appears

tolerable; encouraging results are reviewed and extended. A Pivot Step algorithm is described

which o�ers optimal stability at no extra cost for searching. The new results include proposed

sparseness measures for matrices, improved performance of stable matrix inversion through re-

peated pivoting while deep within a matrix-tree (extendible to solving linear systems), and a

clean matrix derivation of the vector algorithm for the fast Fourier transform. Running code is

o�ered in the appendices.

* c
1987 by Springer-Verlag. Gilles Kahn (ed.) Functional Programming Languages and Com-

puter Architecture, Lecture Notes in Computer Science 274, Berlin: Springer (1987) 134{153.
* Research reported herein was sponsored, in part, by the National Science Foundation under

Grant Number DCR 84-05241.

This work is particularly important because of the importance of this family of problems.

Progress would be of simultaneous use in decomposing algorithms over traditional vector multi-

processors, as well as motivate practical interest in highly parallel functional architectures.

Section 1. Introduction

Various functional programming languages and architectures have been explored through

recent years, and we are close to implementations that will join them to deliver the parallelism

long foreseen by many researchers.

Before we reach this goal, however, another component of functional programming productiv-

ity must be developed: a style for algorithms|or, rather, versions of known algorithms|suitable

to the anticipated parallel environment. In recognition of this need and as a test of the \ap-

plicative thesis" (that functional languages and architectures are necessary to accomplish highly

parallel performance), a familiar class of problems, matrix algebra, is under study [18, 20, 21],

with the goal of developing pure, functional algorithms to mimic the parallel performance of this

class of well-studied programs [22]. The salient feature of this work is the use of recursive block

decomposition to represent all arrays, forcing a rigorously recursive (functional) decomposition

of the usual algorithms along the boundaries of naturally arising subtrees.

This paper brie
y reviews some results from that e�ort that have already appeared elsewhere,

and newly presents related ones. This class of problems was originally selected for study because

it was thought to be \understood," in the sense that much study had already been invested into

hardware and software for it.

While the applicative thesis, as well as most computer science, is aimed at general problems,

matrix algebra has always been a problem important enough to demand special-purpose languages

and hardware. It is, therefore, doubly worthy of study in this context, because progress over

existing matrix techniques, alone, would be motivation for support of applicative systems. Results

here will better justify the investment needed to construct \special-purpose functional machines"

under the disguise of \special-purpose vector/matrix machines."

The remainder of this paper is in six parts. Section 2 de�nes the proposed representation of

arrays (of any dimension) with particular emphasis on matrices (two dimensional arrays). The

next reviews costs for representing sparse/dense matrices under this convention; a notable fea-

ture of this representation is that only one homogeneous representation (and program) handles

both sparse and dense matrices. The fourth section reviews algorithms for elementary arithmetic,

including optimally-stable matrix inversion through pivoting (Gaussian elimination.). That al-

gorithm is new, an unforeseen dividend from this e�ort. The next section newly describes how

pivotings may be localized in one subtree (processor), so that more progress toward the result

is made for each process creation/rendezvous. The sixth section reviews Pease's derivation of

the fast Fourier transform, which uses quadtree matrices to develop a vector (as binary tree)

algorithm, factoring the usual bit-reversal permutation. The last section o�ers conclusions and

open problems raised by these results, which indicate need for continuing work on Functional

Programming and Architectures.

Section 2. Quadtree Representation

Dimension refers to the number of subscripts on an array. Order of a square matrix means

the number of its rows or columns when written as the conventional tableau. Similarly, the size

of a vector is the number of elements when it is expressed in the conventional tuple formulation.

Let any d-dimensional array be represented as a 2d-ary tree. Here only matrices and vectors

are considered, where d = 2 suggests quadtrees, and d = 1 suggests binary trees.

Matrix algorithms will be arranged so that we may (without loss) perceive any nonzero

scalar, x, as a diagonal matrix of arbitrary order, entirely of zeroes except for x's on the main

diagonal; that is, x = [x�i;j]. Thus, a domain is postulated that coalesces scalars and matrices,

with every scalar-like object conforming also as a matrix of any order. Of particular interest is

the scalar 1, which is at once the unique multiplicative identity for scalar/matrix arithmetic. The

additive identity, 0, is represented by the null pointer, NIL (using PASCAL notation), which is

particularly helpful in reducing resources used for sparse matrices.

A matrix (of otherwise-known order) is either a `scalar' or it is a quadruple of four equally-

ordered submatrices. So that this recursive cleaving works smoothly, we embed a matrix of size

n�n in a 2dlg ne�2dlg ne matrix, justi�ed at the lower, right (southeast) corner with zero padding

to the north and west. Padding with NIL minimizes the space consumed in padding. The matrix

is justi�ed to the southeast, rather than the northwest, so to help with computation of eliminants

[1].

This prescribes a normal form for quadtrees: no scalar entry is ever 0, four quadrants cannot

all be NIL, and if the southwest and northeast are NIL then the northwest and southeast cannot

be the same scalar. Similarly, NIL as a vector refers to the zero vector, and any non-zero scalar

x is interpreted as a vector of arbitrary size, each of whose elements is x; this normal form for

vectors precludes any entry from being 0 and any brothers from both being NIL or the same

scalar.

Inferring the conventional meaning from such a matrix now requires additional information

(viz. its order), but we can proceed quite far without size information; it only becomes critical

upon Input or Output. One must acknowledge that the I/O conversions are non-trivial algorithms

[20], but because they consume little processor resource|and are restrained, also, by communi-

cation bandwidth|we eschew them here. Like
oating-point number conversions, they are an

irritating impediment to one who would experiment with the algorithms discussed below.

A \header" above each matrix quadtree should contain its size, necessary for output trans-

lation and needed for better control of certain algorithms, like pivoting on singular matrices.

Here, particularly, size is the proper length of the main diagonal|exclusive of any padding and

normalization. This value also might be used for run-time conformability checking.

Another useful annotation is to include a bit within each pointer, indicating that the refer-

enced tree structure is to be interpreted as transposed, recursively interchanging southwestnnorth-

east quadrants upon any access. Call this the transposed
ag. With it, not only does quadtree

representation allow us to transpose an entire matrix in constant time|building a new root with

that
ag inverted|but also it allows row and column traversal at equally high e�ciency, at the

cost of symmetric-order traversal of the appropriately projected binary tree.

This enforced block-decomposition representation of matrices recalls several results from the

literature. Binary decomposition of vectors is implicit in the fast Fourier transform, and shows

up explicitly in Pease's development [15] of a quadtree decomposition of the discrete Fourier

transform matrix.

The second originates with McKellar and Co�man [11], who study the storage of submatrices

in a demand-paging environment in order to reduce page faults. They arrive at the square-block

decomposition, extended to block-speci�c algorithms by Fischer and Probert [4].

The third is George's nested dissection method [3] for matrix problems. A description is

given by George and Liu [6].

The last, a recent problem impacted by this representation, is that of updating an aggregate

structure in a functional language. Hudak [7] proposes speci�c primitives for sequentially stored

aggregates, which are avoided by O'Donnell in his tree-like machine [13]. Block decomposition

moots sequential storage, by providing access and reconstruction (recopying using shared refer-

ences) in time and space logarithmic, rather than linear, in the order of the structure. The cost

in space becomes irrelevant, however, when storage management on acyclic structures is free [19].

Moreover, as we shall see, many of the necessary algorithms distribute naturally across the tree

so that any reconstruction is local to a substructure, rather than global over the aggregate.

Section 3. Measures of Sparsity and Density

Du� states in his authoritative survey, \In quantitative terms, the density of a matrix is

de�ned as the percentage of the number of nonzeros to the total number of entries in the matrix.

The term sparsity for the complement of this quantity is rarely used. [3, p. 500]" Rather, he

suggests that sparsity of a matrix has as much to do with the distribution of zero elements as

with their relative population.

His perspective is re
ected in analysis of the total space and access-time for familiar kinds of

\sparse" matrices, represented as quadtrees [21]. Signi�cant overhead is caused by the nonterminal

nodes of a quadtree, a cost that does not appear in conventional, sequential storage of matrices as

vectors at contiguous memory addresses. Closed-form results have been computed for total-space

and for expected-depth for dense, symmetric, triangular, banded, and permutation matrices.

These results are summarized below in Table 1.

Based on Du�'s caveat and these numbers, I here propose measures of both density and

sparsity that are motivated by results on quadtrees, but are expressed independently of any

particular representation. Examples appear in Table 1, also.

Density of a particular matrix is the ratio between the space it occupies, and the space

occupied by a dense matrix of the same order. Non-sparsity of a particular matrix is the ratio

between the expected time to access a random element (path length if considering quadtrees [20]),

and the expected access time within a dense matrix of the same order. Sparsity is the di�erence

between one and this non-sparsity measure.

Both density and sparsity are measured on a scale from zero to one. For the conventional

row-major, sequential representation of matrices, the density measure corresponds precisely with

Du�'s. The sparsity measure is uniformly near zero there, consistent with the observation that

this representation o�ers no special advantage for sparse matrix manipulation.

Let us consider n�n matrices. Table 1 presents closed-form and asymptotic results for space,

density, expected path length (root to terminal node), and sparsity for some familiar patterns of

matrices. In all cases, a matrix is presumed to be completely dense, except where the indicated

pattern requires zeros (or shared storage in the case of symmetry). The only strange ones are the

shu�e permutation and the \FFT permutation" matrix, both of which occur when considering

fast Fourier transform (FFT) algorithms; the latter is the so-called \bit-reversal" permutation

that arises as the �rst or last step in the usual FFT. (Both are discussed in Section 6. If, as was

done with symmetric matrices, sharing is allowed, the space needed to represent an n� n shu�e

permutation shrinks to 4lgn� 2.)

Space Density* Expected Path Sparsity*

Dense 4
3 (n

2 � 1
4) 1 lgn+ 1 0

Symmetric 2
3 (n+ 2)(n� 1

2)
1
2 lgn+ 1 0

Triangular 2
3 (n+ 2)(n� 1

2)
1
2

lg n
2 + 3

2 �
1
2n

1
2 �

1
lg n

FFT permutation n lg n
2 + 4n

3 � 1
3

3
8
lg n
n

lg n
2 + 4

3 �
1
3n

1
2 �

5
6lgn

Tridiagonal 6n� 2lgn� 5 0 10
3 � 3

n
+ 2

3n2 1� 10
3lg n

Pentadiagonal 8n� 2lgn� 9 0 10
3 � 1

n
� 10

3n2 1� 10
3lg n

Heptadiagonal 11n� 2lgn� 19 0 10
3 � 5

n
� 76

3n2 1� 10
3lg n

Enneadiagonal 13n� 2lgn� 27 0 10
3 � 7

n
� 100

3n2 1� 10
3lg n

Shu�e permutation 3(n� 1) 0 3(1� 1
n
) 1� 3

lg n

Identity 1 0 1 1� 1
lg n

Table 1. Measures of patterned and unpatterned matrices as quadtrees.

*Density is accurate within a term of �(n�1). Sparsity is accurate within a term of �((lgn)�2).

The remarkable entry in the table is for the FFT permutation, which measures out to be

neither dense nor sparse, in spite of the fact that it only contains n non-zeroes of n2 entries. This

is remarkably consistent with Du�'s observation that patterning is essential to sparseness; the

bit-reversal permutation is characterized by its lack of local patterning! Permutation matrices,

in general, measure out this badly [21] as quadtrees, so it is fortunate that we already prefer an

alternative representation that is not dense: as vectors of integers.

This measure of sparsity has not been well studied; it is being de�ned here for the �rst time.

Moreover, the utility of these measures must yet be demonstrated in analytical or in experimental

analyses of the behavior of algorithms on arguments of various measures. For instance, it is left

as an analytic exercise to show that matrix addition of two n�n matrices, respectively of density

d1 and d2 and of sparsity s1 and s2, yields an answer with space, processor�time, density, and

sparsity within the bounds indicated below:

n2jd1 � d2j � space � n2 �min(1; d1 + d2);

max(1; n2 lgn(1� (s1 + s2))) � uniprocessor time � n2 lgn(1�max(s1; s2));

jd1 � d2j � density � min(1; d1 + d2);

max(0; s1 + s2 � 1) � sparsity � 1� js1 � s2j:

In general, however, analytical results are di�cult and so the utility of these measures ultimately

must be established or denied by experimentation on real data.

Although nontrivial in comparison with constant-time access into conventional matrices,

path length is an arti�cial measure in a couple of ways. First of all, it may be irrelevant in

the algorithms described below, which typically involve recursive descent. That is, rather than

accessing elements of a matrix from the root of the tree (analogously to indexing through a

conventional array based from a single memory address), these algorithms recurse to nested and

successively shallower subtrees, so that an entire path from the root is rarely traversed just to

manipulate a single element.

Secondly, even if the complete path were traversed upon every probe of an array, the time

spent to traverse that path might be recovered in other ways. More speci�cally, if a heap were

spread across very many memory banks and several processors were performing similar algorithms

on one globally accessible quadtree-matrix (whose nodes mapped across those banks in a random

order), then the aggregate performance of those processors might actually improve over corre-

spondingly similar algorithms on matrices stored sequentially. The improvement arises from the

random pattern mitigating the problem of two, or more, processors falling into the same access

pattern and addressing the same banks simultaneously and repeatedly. The coincidence of regular

access patterns to regularly allocated arrays, even from regular o�sets within di�erent matrices,

is likely to become an ever increasing problem with more processors. Randomization available

from this kind of heap [8] would not prevent the �rst contention between two algorithms, but

it would certainly help prevent a �rst from being immediately followed by more. Thus, the tree

structure would allow many coprocessors to run with less memory contention, and to absorb the

cost of repeated path traversals.

Both e�ciency of access and sparse matrices are of high interest in parallel processing. Many

caching strategies fail under parallelism, and bus or switch contention compounds the problem

of wait states. Many problems su�ciently large and important enough to justify parallel compu-

tation also exhibit sparseness. Therefore, these results are of great interest in designing parallel

algorithms and parallel computers [2, 16].

Section 4. Arithmetic Algorithms

The recursive de�nition of quaternary trees molds the recursive structure of programs that

manipulate them. Moreover, the bifurcation of tree composition leads naturally to more stable

algorithms. For instance, each addend in the sum of a vector of size 2p (as a binary tree of depth

p) naturally participates in no more than p binary additions; if the vector were instead stored

in consecutive memory locations, the \natural" algorithm has each addend participating in up

to 2p � 1 additions. This is important in
oating-point algorithms which, though stable over

multiplicative operations, become unstable with addition and subtraction.

The algorithm for matrix addition [18] and subtraction decomposes naturally into four quad-

rant additions, separate and independent processes. Because of their mutual independence, these

four are naturally computed in parallel within a shared memory, or distributed to independent

processors with private memory. In the latter case, the tree structure of a matrix guides its map-

ping onto a tree within private memories. And the division extends naturally to 16, 64, 256, etc.

processors, or|by splitting the sums in half, rather than in quarters|to 2, 8, 128 etc. as well.

Whenever either addend is NIL, then their sum is e�ciently represented as a shared reference to

the root of the other addend, without need for any further traversal.

Matrix multiplication decomposes two ways (again treating the product as two halves), four

ways (the four quadrants of the answer), and eight ways (the eight quadrant products in Strassen's

decomposition [17] of Gaussian matrix multiplication.) Whenever a factor is either NIL or 1,

the product is directly available, either as NIL, or as a shared reference to the other factor. The

former case occurs particularly often with sparse factors, and annihilates the recursion not only

of quadrant multiplication, but also of the addition of quadrant-products that follows.

Solutions to linear systems and matrix inversion have been reduced to a Pivot Step algorithm

[10], where the \independent" problem of a stable choice for the pivot element folds naturally onto

the tree [20]. Each nonterminal node in the quadtree is decorated with a nonnegative number

and two bits: the absolute value of the largest uneliminated value in the tree, and an indicator

toward the quadrant in which it resides. Initially all elements are uneliminated, and the tree is

decorated bottom-up with four-way, local maxima.

These tree decorations are su�cient to identify the path from the root to the largest une-

liminated element, which is the next pivot. During pivoting, every entry in the pivot row and in

the pivot column will be visited, and the tree is then reconstructed with that row and column

eliminated from the maxima|by treating their contents as zero for the purposes of recomputing

all local decorations. By redecorating during each pivoting, the conventional search-for-pivot is

distributed back into the previous pivoting without need for any additional traversal (and the

interprocessor communication required for parallel searching.)

Knuth describes the Pivot Step as the transformation of the matrix

0
BBBBBB@

...
...

� � � a � � � b � � �
...

...
� � � c � � � d � � �

...
...

1
CCCCCCA
; (1)

where a is the selected pivot element, into the matrix

0
BBBBBBB@

...
...

� � � 1
a

� � � b
a

� � �
...

...
� � � � c

a
� � � d� cb

a
� � �

...
...

1
CCCCCCCA
: (2)

This sketch is necessarily di�erent from Knuth's; where he uses the numerator bc, I use cb to

provide for multiplication when c and b are matrices. This detail arises whenever multiplication

does not commute [1].

In this description, the o�-pivot entry d is typical of most of the matrix. Particularly in sparse

matrices where either b or c is likely to be zero, whole quadrants of values, d, will not change over

a Pivot Step; the decorations in those quadrants do not change either. In this way, full (total,

complete [3]) pivoting may be achieved without the cost of an O(n2) search for selecting every

pivot.

The Pivot Step algorithm is described elsewhere [20]; the code treats each quadrant of each

nontrivial, decorated matrix in one of four ways, two of which are presented in Appendix B.

That Daisy [5, 9] program speci�es data dependencies, which implies some order of evaluation,

not entirely apparent at coding time. Because Daisy is entirely lazy, it is di�cult to foresee the

order of creation for recursively dependent data structures. On the other hand, uncertainty of

the algorithm's author on such unimportant details later becomes an advantage for automatic

scheduling of processes, or during reimplementation in a strict (manually scheduled) language.

This is an example of how programming in a lazy language relaxes mandatory scheduling, leaving

more freedom for subsequent site-speci�c implementation/scheduling.

Just as a is preselected, the four quadrants sort themselves into one of four types: PIV

wherein a lies, ROW alongside PIV, COL above/beneath PIV, and OFF diagonal from PIV .

PIV either is the scalar a, or decomposes again into four quadrants of these types. If ROW

decomposes, it is made up of two ROW s and two OFF s; COL decomposes to two COLs and two

OFF s. OFF decomposes into four OFF s.

The code provides four functions, for extending the pivot transformation on a quadrant of

each of these types. When a decomposition is necessary, the four recurrences are speci�ed to

proceed in parallel, and in the case of OFF decomposition|the most frequent|it actually can

run in parallel. Appendix B gives the complete, running Daisy code for PIVOT, the most intricate

of the four, and OFF which is the simplest.

However, pivoting an OFF quadrant requires the contents of the pivot row which is a re-

sult from pivoting the adjacent ROW quadrant, as well as the pivot column from pivoting the

neighboring COL. Similarly, ROW (and COL) depends on the portion of the pivot column (re-

spectively, pivot row) that is extracted from pivoting its sibling PIV . The dependence suggests

that (recursively) PIV must be processed �rst, followed by ROW and COL simultaneously, with

components of OFF computable as soon as coordinating pieces of ROW and COL are avail-

able. The operational e�ect is that pivoting descends the tree as a uniprocessor algorithm until

a is encountered, whereupon the recurrence backs out, spreading the transformation to sibling

quadrants. (The exact behavior, however, depends on the scheduler. For lazy languages|like

Daisy|the precise order of evaluation is most obscure.)

It is this same dependence of the transformation of OFF on the pivot row and column vectors

that reveals an advantage of the normal form for binary trees. When either is entirely zeros it is

represented as NIL, easily tested so that the function OFF quickly returns its argument matrix

unchanged.

Section 5. Repeating Pivots Locally

A severe cost in multiprocessing is process allocation and deallocation. The previous section

shows how quadrants may be transformed in parallel under Pivot Step, but there is little explicit

e�ort to minimize the number of process dispatches. A very good way to minimize process

dispatch is to perform repeated pivots within a single PIV quadrant, and then to dispatch the

sibling transformations in a single clump.

There are two ways that repeated pivots may be dispatched within PIV without sacri�cing

any stability. One is implicit in the normalized representation of matrices, and one requires a

modi�cation on the Pivot Step as described [20].

Consider the case where PIV = a, a nonzero scalar, but some of ROW , COL, OFF are not

trivial. That is, a turns up to be a scalar at a level above its siblings. In this case, PIV is a

normalized form of �
a 0
0 a

�

or perhaps even a 4� 4 or larger matrix. Here, the conformable multiplier of ROW is�
1=a 0
0 1=a

�
;

rather than the scalar, 1
a
, the multiplier for COL is�

�1=a 0
0 �1=a

�
;

and the postimage of OFF will be

OFF � COL �

�
1=a 0
0 1=a

�
�ROW:

Interpreting the implicit scalar multiplication as explicit matrix multiplication does yield the

correct transformations, e�ecting two pivots in this case; if one expands the four sums implicit in

this matrix multiplication he will have the e�ect of both Pivot Steps (subtractions) implied by

the 2 � 2 conformable form of PIV . In fact, if we merely implement matrix product/di�erence

wherever scalar product/di�erence is speci�ed, recognizing that a scalar may be conformable

with any non-trivial matrix, then we get the e�ect of pivoting on larger blocks. The normal form

works!

Yet another improvement is possible, but it is not accomplished so easily. Suppose that

PIV with pivot value a has been passed through Pivot Step to become PIV 0, whose largest

uneliminated element is now a0. Under what circumstances can we, without loss of stability,

perform an immediate local pivot on a0 to get PIV 00 without �rst propagating the �rst onto

ROW , COL, and OFF? In that case we later propagate two (or even more) pivots through

sibling quadrants for the cost of only one rendezvous, interprocessor communication, or process

dispatch.

We can, indeed, anticipate and make this determination, based only on one extra numeric

parameter to Pivot Step; at the outermost level this argument will have value zero. Let the

parameter be called threshold . At each level, let b̂ be the integer decorating the root of ROW ,

let ĉ be the decoration on COL, and let d̂ decorate OFF . As we invoke Pivot Step on PIV , pass

in the new argument,

max(2b̂; 2ĉ; d̂+ ĉb̂
a
; threshold):

In this way, when the scalar a is encountered deep in the tree, the current value of threshold is

the maximum of 2b̂; 2ĉ; d̂+ ĉb̂
a
; for all coordinating b̂; ĉ; d̂ labeled according to (1).

Theorem: If a0 � threshold then a0 is the next pivot element.

Proof: Recall that a � b̂; ĉ; d̂ by de�nition of the decoration. For all b; d 2 ROW and all c 2 PIV .

a0 � 2b̂ � b̂+ ab̂
a
� jdj+ j cb

a
j � jd� cb

a
j

Thus, a0 exceeds any candidate for the next pivot element that may arise from ROW . Similarly,

for all c; d 2 COL and b 2 PIV

a0 � 2ĉ � ĉ+ ĉa
a
� jdj+ j cb

a
j � jd� cb

a
j;

for all b 2 ROW; c 2 COL and d 2 OFF

a0 � d̂+ ĉb̂
a
� jdj+ j cb

a
j � jd� cb

a
j:

Thus, a0 also exceeds any other candidate for pivot, and so it must be the next one.

Therefore, it is correct to repeat Pivot Step on PIV 0, returning multiple tuples of results

(pivot rows, pivot columns, etc.) to be processed through the sibling quadrants (ROW, COL,

and OFF) in sequence. In fact, the test can be made repeatedly for 2 � threshold , 4 � threshold ,

etc. With favorable results from purely local testing of decorations, it is possible to repeat local

pivots with con�dence of maintaining stability.

The suggestions in this section are similar to those of Peters [14], who is concerned with

identifying multiple pivotings that do not generate mutual processing con
icts. His method is

not necessarily stable. This section, rather, locally reveals multiple, stable pivotings within a

quadrant, which are then propagated together to synchronize their interdependence.

Section 6. Fast Fourier Transform

This section deals explicitly with a vector algorithm, although it derives the algorithm

through matrix manipulation|again using quadrant decomposition. Pease [15] derives the Fast

Fourier Transform (FFT) in this way from the ordinary Discrete Fourier Transform. His deriva-

tion, as well as the ordinary \butter
y" explication [12] of this important algorithm, however, is

characterized by separation of necessary permutations from the FFT, itself. After the derivation

is presented, the signi�cance of retaining the permutations in the derivation will be discussed.

Let n = 2p for integer p, and let ! be a principal nth root of unity. The vector ~y is de�ned

in terms of the vector ~x according to the component-wise formula

yk =
n�1X
m=0

xm!
mk:

We can express this as a matrix multiplication:

0
BBBB@

y0
y1
y2
...

yn�1

1
CCCCA =

0
BBBB@
!0 !0 !0 !0 � � � !0

!0 !1 !2 !3 � � � !n�1

!0 !2 !4 !6 � � � !2n�2

...
...

...
...

. . .
...

!0 !n�1 !2n�2 !3n�3 � � � !n
2�2n+1

1
CCCCA

0
BBBB@

x0
x1
x2
...

xn�1

1
CCCCA

Pease names this matrix T; we subscript it Tp;! and rewrite it in quadrants using the fact

that !n = 1.

Tp;! =

0
BBBBBBBBBBBB@

!0 !0 !0 � � � !0 !0 � � � !0

!0 !1 !2 � � � !
n

2
�1 !

n

2 � � � !n�1

!0 !2 !4 � � � !n�2 !0 � � � !n�2

...
...

...
. . .

...
...

. . .
...

!0 !
n

2
�1 !n�2 � � � !1 !

n

2 � � � !
n

2
+1

!0 !
n

2 !0 � � � !
n

2 !0 � � � !
n

2

...
...

...
. . .

...
...

. . .
...

!0 !n�1 !n�2 � � � !
n

2
+1 !

n

2 � � � !1

1
CCCCCCCCCCCCA

(3)

Now let us introduce two permutation matrices, Dp and Sp, which are here called deal and shu�e,

respectively. Multiplying a vector of size n by Dp on the left will have the e�ect of reordering

its elements as if the vector were a deck of cards, which was dealt into two full hands of n=2

cards which were then stacked. A typical layout of Dp appears below. It is characterized by ones

appearing in \knight's moves," �rst descending from the far northwest entry to central-east, and

also ascending from the far southeast entry to central-west.

Dp =

0
BBBBBBBBBBBBBB@

1 0 0 0 0 � � � 0 � � � 0 0
0 0 1 0 0 � � � 0 � � � 0 0
0 0 0 0 1 � � � 0 � � � 0 0
...

...
...

...
...

. . .
...

. . .
...

...
0 0 0 0 0 � � � 0 � � � 1 0

0 1 0 0 0 � � � 0 � � � 0 0
0 0 0 1 0 � � � 0 � � � 0 0
...

...
...

...
...

. . .
...

. . .
...

...
0 0 0 0 0 � � � 0 � � � 0 1

1
CCCCCCCCCCCCCCA

Sp is the inverse of Dp; Pease names Sp as P, again without specifying its order. Multiplying a

vector on the left by Sp has the e�ect of performing a perfect ri�e-shu�e on the elements of the

vector. Multiplying on the right by these permutations reorders the columns similarly.

Consider what happens when we multiply Tp;! on the left by Dp:

Up;! = DpTp;! =

0
BBBBBBBBBBBBBBBBBBBBB@

!0 !0 !0 � � � !0 !0 � � � !0

!0 !2 !4 � � � !n�2 !0 � � � !n�2

...
...

...
...

...
. . .

...

!0 !
n

2 !0 . . . !
n

2 !0 � � � !
n

2

...
...

...
...

...
. . .

...
!0 !n�2 !n�4 � � � !2 !0 � � � !2

!0 !1 !2 � � � !
n

2
�1 !

n

2 � � � !n�1

...
...

...
...

...
. . .

...

!0 !
n

2
�1 !n�2 . . . !1 !

n

2 � � � !
n

2
+1

...
...

...
...

...
. . .

...
!0 !n�1 !n�2 � � � !

n

2
+1 !

n

2 � � � !1

1
CCCCCCCCCCCCCCCCCCCCCA

: (4)

Up;! has familiar patterns, notably T(p�1);!2 as both upper quadrants! Pease develops this
observation in terms of T0, to be introduced at (11) below. He then presents the essence of the
following recurrence for p > 0:

T0;! = 1;

Tp;! = 1Tp;! = Sp(DpTp;!) = SpUp;!

= Sp

Tp�1;!2 Tp�1;!2

(Tp�1;!2)Kp�1;! �(Tp�1;!2)Kp�1;!

!
(5)

where

Kp�1;! =

0
BBBB@

!0 0 0 � � � 0
0 !1 0 � � � 0
0 0 !2 � � � 0
...

...
...

. . .
...

0 0 0 � � � !
n

2
�1

1
CCCCA = �

0
BBBB@

!
n

2 0 0 � � � 0
0 !

n

2
+1 0 � � � 0

0 0 !
n

2
+2 � � � 0

...
...

...
. . .

...
0 0 0 � � � !n�1

1
CCCCA

is Pease's K, and 1 is Pease's I.

Factoring,

Tp;! = Sp

Tp�1;!2 0

0 Tp�1;!2

!
1 0

0 Kp�1;!

!
1 1

1 �1

!
: (6)

This recurrence is the conventional FFT using \decimation in frequency."

With ~x represented as a binary tree and its two halves readily accessible, an e�cient recursive

algorithm can be easily characterized. Running Daisy code is o�ered in Appendix A. One inter-

pretation associates the above products to the right, and begins with addition and subtraction of

the two halves of ~x (probably in parallel). Then the di�erence is multiplied, elementwise (again

in parallel) by the powers of ! from the appropriate K, while the sum is unaltered. Finally, the

algorithm is applied recursively (in parallel?) to each of the two resulting vectors, and the entire

result is shu�ed. (Once again, lazy evaluation on a uniprocessor confounds the serial order of

evaluation|as described|but that same confoundedness admits lots of parallelism.)

The inverse of the FFT can be read right to left from Equation (6) when p > 0:

T�1
p;! =

1 1

1 �1

!
1

2

1 0

0 Kp�1;!n�1

!
T�1
p�1;!2 0

0 T�1
p�1;!2

!
Dp: (7)

The decimation in time recurrence of the FFT, as well as its inverse, follows from transposing

both sides of Equations (6) and (7), because Tp;! is symmetric; see Equation (3):

Tp;! = TT
p;! =

=

1 1

1 �1

!
1 0

0 Kp�1;!1

!
Tp�1;!2 0

0 Tp�1;!2

!
Dp: (8)

Equation (8) can also be obtained from expanding (Tp;!Sp)Dp similarly to Equations (5) and (6).

The FFT permutation (p-bit-reversal), here called Fp, arises as a consequence of the re-

cursions in Equations (6), (7), or (8). If the product of nested permutations implied by those

recurrences is expanded, then the permutation Fp; described below, results. It is listed as the

\FFT permutation" in Table 1, and is called \bit-reversal" permutation because it exchanges xi

and xb(i) in permuting ~x; where b is a function on natural numbers less than 2p that reverses

the p-bit strings that represent them. Since b is its own inverse, Fp is a symmetric permutation

matrix.

Fp = Sp

Sp�1 0

0 Sp�1

!
0
BBBBBB@

Sp�2 0

0 Sp�2

!
0

0

Sp�2 0

0 Sp�2

!

1
CCCCCCA
� � �1; (9)

= 1 � � �

0
BBBBBB@

Dp�2 0

0 Dp�2

!
0

0

Dp�2 0

0 Dp�2

!

1
CCCCCCA

Dp�1 0

0 Dp�1

!
Dp; (10)

Tp;! = FpT
0
p;!: (11)

Equation (11) reveals Pease's T0, the factor of Tp;! exclusive of all permutations. Nothing

here improves on him [15], except perhaps the facility of coding when language primitives provide

vector bifurcation. He addresses radices other than two and, indeed, much can also be said in

favor of ternary and quinary trees when confronted with an FFT of order 360. However, whereas

the permutations are here included as Tp;! is factored, he excludes them as he factors T0.

It is easy to overlook the important role of the permutations when using the FFT in a cyclic

convolution, because they cancel. If ~x and ~y are both of size 2p; then their cyclic convolution

(decimation in frequency) is given by

T�1
p;!(Tp;!~x � Tp;!~y) = U�1

p;!Dp((SpUp;!~x) � (SpUp;!~y)) (12)

= U�1
p;!(DpSp)(Up;!~x � Up;!~y) (13)

= U�1
p;!(Up;!~x � Up;!~y):

= T 0�1
p;! (T

0
p;!~x � T

0
p;!~y): (14)

The dot in Equations (12){(14) indicates component-wise product, across which any permutation

distributes in (13), so that (14) looks much like the left side of (12) in form, except without

permutations. Other reasons that permutations get overlooked are that the correct \plugboard"

circuit|if available|can e�ect any vector permutation in constant time, or that a uniprocessor

can elide the permutation with (repeated) clever indexing into sequentially-stored vectors, each

access still proceeding at full memory speed.

However, we would do well to take some permutations more seriously when the vector is

distributed across shared memory of a multiprocessor. In the case of the FFT permutation, an

attempt to do the clever indexing in parallel will likely saturate shared paths from processors

to memory, as if the memory switch were suddenly forced to behave like the the appropriate

\plugboard." The result is that each processor must endure memory delays dependent on the

problem size, contrary to past intuition and unlike experience on uniprocessors.

Table 1 indicates that Fp measures surprisingly bad with respect to both density and sparsity.

If those measures accurately re
ect the resource required for actually permuting in parallel, then

Table 1 also suggests a viable alternative to Fp. The two factorizations of Fp, (9) and (10),

indicate that nested Shu�es (or Deals) su�ce where we are accustomed to using the bit-reversal

FFT permutation, Fp. Each factorization of Fp has factors nested along diagonal subtrees. Table

1 shows that Sp (and similarly Dp) has sparsity of nearly 1 � 3=p and, therefore, it may be

cheaper to perform nested shu�es/deals on localized subproblems, building up to one simple,

global Sp permutation, rather than to use the complicated global Fp permutation. Results on the

resources needed for sparse matrix multiplication would establish which is better. In any event, it

is certainly easy to code the fast Fourier transform using nested Shu�es; see Appendix A. (Direct

coding of an applicative FFT permutation is left as a challenge to the reader.)

Section 7. Conclusions

This paper presents a case for array representation as trees. Not only does the logarithmic

access path relax most of the di�culties from the aggregate-update problem, but also the tree

structure leads to a natural decomposition of matrix problems and, thereby, to natural parallelism

in their implementation. Not surprisingly, the expressiveness of functional languages helps to

reveal both.

The space overhead that arises from the nonterminal nodes of a tree (compared to sequential

representation that requires space only for terminal nodes) is not too burdensome. While they

do take space, that cost is reasonable for reasonably sparse matrices, and it provides a natural

decomposition of data space across local memories where it is necessary. Moreover, it uni�es

algorithms for both sparse and dense matrix techniques. Therefore, it seems to be an ideal strategy

for multiprocessor matrix algebra|even if each processor is a high-powered vector processor for

sequentially allocated submatrices under a certain order. It remains to be seen whether such a

hybrid scheme, already tractable on existing architectures, will be adopted.

It is particularly surprising to uncover new variants of old, well-studied algorithms, like the

folding of full-matrix search into the Pivot Step algorithm. While the decomposition of the FFT

is not new, exposing both the shu�e and the deal decompositions of the bit-reversal permutation,

each precisely following the nesting of the FFT recurrence pattern, is a useful insight on their

interactions. Are other such \improvements" available from arrays-as-trees?

Issues of architecture follow immediately upon the idea that an array is actually a tree. It

suggests|as some have long accepted|that much data is better organized if linked within a heap

memory, than if allocated sequentially. Many of the advantages and of the problems (e.g. \hot

spots" in memory space) of sequential addressing are mooted by the kind of algorithms described

here. As this idea gains acceptance, the e�cient implementation of a multiprocessor heap will

become an ever more signi�cant goal [19].

The fast Fourier transform, itself, is an artifact of hardware for many. Yet, Pease's derivation

is done without schematics. Is this just another example of synthesizing complicated hardware

[9] through applicative languages?

One challenge to this work is that I have only considered examples that are \naturally

recursive," or whose block-decomposition proceeds gracefully. While the FFT was chosen for

this reason, I assert that the choice of matrix problems is general, although as yet covering only

elementary matrix algebra. However, the choice of solutions was, indeed, restricted to those

suitable to tree decomposition. Lots of row-decomposition algorithms for solving linear systems

were put aside; the ones presented here are survivors. A better response to this challenge is to ask

whether there are any highly parallel algorithms admitting graceful scheduling (decomposition)

that are not \naturally recursive."

As stated early on, this class of problems was selected to test the \applicative thesis" because

(as was thought) its parallelism was already well understood. This brief exploration has been far

more successful than was originally expected and, therefore, the restrictions imposed by tree-

representation of arrays can hardly be judged to be arti�cial! That any of these algorithms is

really \a natural," however, will only be established if these algorithms improve performance of

large multiprocessors.

Acknowledgement:

John Franco contributed the results on sparseness of random permutation matrices. Conver-

sations with Dorothy Bollman led to our factoring the FFT, and Morven Gentleman pointed out

its signi�cant precedent. I thank John Williams for encouraging me toward further exploration

of functionals over binary trees, and the students in a graduate seminar at Indiana University for

grappling with some algorithms that turned out to be poorly suited to quadtree decomposition.

References

1. S. K. Abdali. & D. D. Saunders. Transitive closure and related semiring properties via elimi-
nants. Theoretical Computer Science 40, 2,3 (1985), 257-274.

2. P. J. Denning Parallel computing and its evolution. Comm. ACM 29, 12 (December, 1986),
1163-1167.

3. I. S. Du�. A survey of sparse matrix research. Proc. IEEE 65, 4 (April, 1977), 500-535.

4. P. C. Fischer & R. L. Probert. Storage reorganization techniques for matrix computation in a
paging environment. Comm. ACM 22, 7 (July, 1979), 405-415.

5. D. P. Friedman & D. S. Wise. Aspects of applicative programming for parallel processing. IEEE
Trans. Comput. C-27, 4 (April, 1978), 289-296.

6. A. George & J. W-H Liu. Computer Solution of Large Sparse Positive De�nite Systems, En-
glewood Cli�s, NJ, Prentice-Hall (1981), Chapter 8.

7. P. Hudak. Arrays, non-determinism, side-e�ects, and parallelism: a functional perspective (Ex-
tended Abstract). Proc. LANL/MCC Graph Reduction Workshop Sante Fe, September,
1986, Lecture Notes in Computer Science, New York, Springer (to appear).

8. S. D. Johnson. \Storage Allocation for List Multiprocessing", Indiana University Computer
Science Dept. Technical Report No. 168, (March, 1985).

9. S. D. Johnson. Synthesis of Digital Designs from Recursion Equations, Cambridge, MA, M.I.T.
Press (1984).

10. D. E. Knuth. The Art of Computer Programming, I, Fundamental Algorithms, 2nd Ed., Read-
ing, MA, Addison-Wesley (1975), 299-318 + 401, 556.

11. A. C. McKellar & E. G. Co�man, Jr. Organizing matrices and matrix operations for paged
memory systems. Comm. ACM 12, 3 (March, 1969), 153-165.

12. H. J. Nussbaumber. Fast Fourier Transforms and Convolution Algorithms, Berlin, Springer
(1982).

13. J. T. O'Donnell. An architecture that e�ciently updates associative aggregates in applica-
tive programming languages. In Jean-Pierre Jouannaud (ed.), Functional Programming
Languages and Computer Architecture, Lecture Notes in Computer Science 201, Berlin,
Springer (1985), 164-189.

14. F. J. Peters. Parallel pivoting algorithms for sparse symmetric matrices. Parallel Computing
1, 1 (August, 1984), 99-110.

15. M. C. Pease. An adaptation of the fast Fourier transform for parallel processing. J. ACM 15,
2 (April, 1968), 252-264.

16. R. Rettberg & R. Thomas. Contention is no obstacle to shared-memory multiprocessing.
Comm. ACM 29, 12 (December, 1986), 1202-1212.

17. V. Strassen. Gaussian elimination is not optimal.Numer. Math. 13, 4 (August, 1969), 354-356.

18. D. S. Wise. Representing matrices as quadtrees for parallel processors. Information Processing
Letters 20 (May, 1985), 195-199.

19. D. S. Wise. Design for a Multiprocessing Heap with On-Board Reference Counting. In Jean-
Pierre Jouannaud (ed.), Functional Programming Languages and Computer Architecture,
Lecture Notes in Computer Science 201, Berlin, Springer (1985), 289-304.

20. D. S. Wise. Parallel decomposition of matrix inversion using quadtrees. Proc. 1986 Interna-
tional Conference on Parallel Processing (IEEE Cat. No. 86CH2355-6), 92-99.

21. D. S. Wise & J. Franco. Costs of quadtree representation of sparsely patterned matrices (in
preparation.)

22. M. F. Young. A functional language and modular arithmetic for scienti�c computing. In Jean-
Pierre Jouannaud (ed.), Functional Programming Languages and Computer Architecture,
Lecture Notes in Computer Science 201, Berlin, Springer (1985), 305-318.

