
by Cynthia Dwork
presented by Shaun Deaton



Perfect semantic privacy
• Impossible if require utility > 0.

Differential privacy: minimize the 
increased risk incurred by joining or 
leaving a database



K gives ε-differntial privacy if For All data 
sets D1 & D2 differing on at most one 
element, & For All S ⊆ Range(K ), 

Pr[K (D1) ∈ S] ≤ exp(ε) Pr[K (D2) ∈ S] ,

where …
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Pr[K (D1) ∈ S] ≤ exp(ε) Pr[K (D2) ∈ S]

A, B, and C are all possible “transcripts”. 



 Sensitivity  of a query determines the spread in the 
noise required to normalize it over all databases 
differing by one.

 Global sensitivity  &  local insensitivity.
• Global is between databases; overall what is the largest 

difference in outputs
• Local is about a database; does changing an entry change the 

output ( No → insensitive)



Questions/Discussion
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