Untraceable electronic mail, return addresses, and digital pseudonyms

David Chaum Communications of the ACM, 1981

> Presented by Apu Kapadia Sep. 8, 2009

Motivation:

Secrecy of Message not enough

- Crypto provides secrecy for message content
- Also need to provide anonymity
 - hide "who talks to whom"
 - but should not rely on a central TTP
- Several applications
 - Untraceable email, anonymous elections, etc.

Contributions: First person to propose mixes

- Protocol to send anonymous email through a series of mixes
 - Provides sender anonymity
 - Mixes know only previous+next mixes in chain
 - A single honest mix provides anonymity
- Protocol supports anonymous return email

Basic Operations Context: DH 1976, RSA 1978

- Public and private keys K and K⁻¹
- Encrypt x and random R with key K
 - encryption, c = K(R, x)
 - decryption, $x = K^{-1}(c)$
- Sign message x and constant C
 - sign, sig = $K^{-1}(C, x)$
 - verify, given m and sig, check K(sig) = C, m

Protocol for sending email

Actually, mix shuffles batches of messages

Actually, mix shuffles batches of messages

Protocol for multiple mixes

- $K_n(R_n, K_{n-1}(R_{n-1}, ..., K_2(R_2, K_1(R_1, K_a(R_0, M), A)))))$
 - Each mix in the cascade "peels off" a layer of encryption
 - Final step as before

Return addresses supported

Protocol for multiple mixes

- $K_1(R_1, K_2(R_2, ..., K_{n-1}(R_{n-1}, K_n(R_n, A_x))..)), K_x(R_0, M)$
 - $K_2(R_2, K_3(R_3, ..., K_{n-1}(R_{n-1}, K_n(R_n, A_x))..)), R_1(K_x(R_0, M))$
 - Each mix in the cascade "peels off" a layer of encryption, and re-encrypts the message
- Alice receives $R_n (R_{n-1}...(R_2 (K_x(R_0, M))...))$
 - Alice peels off layers because she picked the R's herself

Additional protections

- Hide number of messages sent/received
 - senders output fixed batches
 - receivers search output of mixes to hide number of received messages
- Load balancing by picking a subset of mixes
 - hide the number of mixes
 - replies indistinguishable from regular email

Improved protocol

- Chop message into fixed size blocks
 - all messages have the same number of blocks
- Each mix
 - decrypt first block, obtain encryption key R
 - re-encrypt remaining blocks with R
 - add dummy block

Discussion Questions

- Why hide the number of mixes?
- Why hide distinction between forward and reverse email?
- Analysis and experimentation were missing. Did you find yourself skeptical of some of the claims?
- Sending a random number of messages for efficiency? What if you want to send more messages than the random value?