Untraceable electronic mail, return addresses, and digital pseudonyms
 David Chaum
 Communications of the ACM, I98I

Presented by Apu Kapadia
Sep. 8, 2009

Motivation:

Secrecy of Message not enough

- Crypto provides secrecy for message content
- Also need to provide anonymity
- hide "who talks to whom"
- but should not rely on a central TTP
- Several applications
- Untraceable email, anonymous elections, etc.

Contributions:

First person to propose mixes

- Protocol to send anonymous email through a series of mixes
- Provides sender anonymity
- Mixes know only previous+next mixes in chain
- A single honest mix provides anonymity
- Protocol supports anonymous return email

Basic Operations Context:DH I976, RSA 1978

- Public and private keys K and K^{-1}
- Encrypt x and random R with key K
- encryption, $c=K(R, x)$
- decryption, $x=K^{-1}(c)$
- Sign message x and constant C
- sign, sig $=K^{-1}(C, x)$
- verify, given m and sig, check $K(s i g)=C, m$

Protocol for sending email

Actually, mix shuffles batches of messages

Actually, mix shuffles batches of messages

Protocol for multiple mixes

- $K_{n}\left(R_{n}, K_{n-1}\left(R_{n-1}, \ldots, K_{2}\left(R_{2}, K_{l}\left(R_{1}, K_{a}\left(R_{0}, M\right), A\right)\right) . ..\right)\right)$
- Each mix in the cascade "peels off" a layer of encryption
- Final step as before

Return addresses supported

Protocol for multiple mixes

- $K_{1}\left(R_{1}, K_{2}\left(R_{2}, \ldots, K_{n-1}\left(R_{n-1}, K_{n}\left(R_{n}, A_{x}\right)\right) ..\right)\right), K_{x}\left(R_{0}, M\right)$
- $K_{2}\left(R_{2}, K_{3}\left(R_{3}, \ldots, K_{n-1}\left(R_{n-1}, K_{n}\left(R_{n}, A_{x}\right)\right) ..\right)\right), R_{l}\left(K_{x}\left(R_{0}, M\right)\right)$
- Each mix in the cascade "peels off" a layer of encryption, and re-encrypts the message
- Alice receives $R_{n}\left(R_{n-1} \ldots\left(R_{2}\left(K_{x}\left(R_{0}, M\right)\right) \ldots\right)\right.$
- Alice peels off layers because she picked the R's

Additional protections

- Hide number of messages sent/received
- senders output fixed batches
- receivers search output of mixes to hide number of received messages
- Load balancing by picking a subset of mixes
- hide the number of mixes
- replies indistinguishable from regular email

Improved protocol

- Chop message into fixed size blocks
- all messages have the same number of blocks
- Each mix
- decrypt first block, obtain encryption key R
- re-encrypt remaining blocks with R
- add dummy block

Discussion Questions

- Why hide the number of mixes?
- Why hide distinction between forward and reverse email?
- Analysis and experimentation were missing. Did you find yourself skeptical of some of the claims?
- Sending a random number of messages for efficiency? What if you want to send more messages than the random value?

