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Abstract. Programming in a reversible language remains “different” than pro-
gramming in conventional irreversible languages, requiring specialized abstrac-
tions and unique modes of thinking. We present a high level language for re-
versible programming, called Theseus, that meshes naturally with conventional
programming language abstractions. Theseus has the look and feel of a conven-
tional functional language while maintaining a close correspondence with the
low-level family of languages Π based on type isomorphisms [9]. In contrast to
the point-free combinators of Π , Theseus has variables and binding forms, al-
gebraic data types, function definitions by pattern matching, and is Turing com-
plete. The language is strongly typed and all well-typed programs are reversible.
We explain the semantics of Theseus via a collection of progressively expressive
examples and outline its correspondence to Π .
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1 Introduction

The main contribution of this paper is a new language design for reversible computing
called Theseus. Theseus is a high-level language inspired by our previously-developed
information-preserving family of languages called Π (with various subscripts) [2, 10,
9, 8]. This family of languages is itself inspired by the physical principle of conserva-
tion of information which was formally captured by requiring every computation in a Π
language to be a combinator witnessing a type isomorphism. Programming with combi-
nators, i.e., in a point-free style with no variables, is generally an awkward task that is
compounded by the reversibility invariant. Furthermore, naı̈vely introducing variables
immediately destroys the tight control over information flow required for reversibility.
Furthermore, our experience with conventional linear type disciplines showed that these
are not sufficient to track information flow across choices (i.e., across conditional ex-
pressions) [16]. Our solution, exhibited in the design of Theseus, is to restrict variable
introduction to pattern matching clauses and to augment conventional pattern matching
rules with a few additional restrictions that guarantee information preservation with a
familiar look and feel for programmers. 1

Since the design of reversible programming languages is now a relatively mature
subject, we start with a short overview of approaches to reversible computing to pro-
vide a wider context for Theseus. There are a few major themes that dominate the design

1 An implementation of Theseus is available from: https://bitbucket.org/roshanjames/theseus.



of reversible computational models. Several approaches to reversible computation fall
under the broad category of circuit models. The very first reversible models to be stud-
ied widely led to the design of the Toffoli gate [17], the Fredkin gate, and what was
dubbed “conservative logic” [4]. More recent approaches include Morita’s Rotary ele-
ments [14] and circuit models born from the study of the Geometry of Interaction [12].
The work by Abramsky, Coecke and others introduced a class of circuit models based
on categorical string diagrams as a mathematical basis for quantum physics and quan-
tum computation [1]. The common theme among the circuit models is that the setting
in which computation takes place is that of a circuit wherein the process of computation
either traces the flow of values in the circuit or is expressed as rewrites of circuits un-
til some normal form is achieved. Programming with circuit models feels very different
from conventional programming because most circuit models deal directly with a graph-
ical representation and few have term languages. Quipper [6] is an embedded domain-
specific language in Haskell aimed as making it easy to specify quantum circuits. In its
current design however, Quipper lacks a linear type system which means that it lacks
static guarantees of reversibility. Another class of reversible languages come from the
notion of program inversion. These include compiling source programs adding enough
state (possibly including execution traces) such the resulting program’s execution can
be inverted [3, 7, 15, 13].

Janus. Probably the most well-developed high-level language for reversible computing
is Janus, which was originally designed by Lutz and Derby in 1982 [11] and developed
significantly in recent years by Yokoyama and Glück [20, 5]. Janus is an imperative
language wherein every primitive statement is reversible. Procedures can be called or
uncalled, corresponding to executing them forwards or backwards. Janus allows for
integers and array values, as well as stacks for dynamic allocation of memory. Values
are passed by reference to functions and the same value may not be referenced twice to
avoid aliasing issues. Integers have fixed precision and overflows/underflows allow for
typical arithmetic operations to always be well-defined.

The main difficulty with writing large Janus programs arises from the treatment of
local variables and control flow. Local variables can be allocated by specifying their
initial values and deallocated by specifying the value they must hold at deallocation
time. Further, Janus contains a structured control flow mechanism where predicates are
attached to join points of the program. These predicates must be chosen such that the
backwards execution flow of the program is deterministic and chooses the execution
path that traces back the path that forward execution would have taken. While Janus
maintains the look and feel of a conventional imperative language for forward execu-
tion, it requires considerable effort from the programmer to get reverse execution right.
Both the choice of deallocation-time values and predicates for inverse control flow are
application specific choices that the programmer must determine on a case-by-case ba-
sis. These are hard to determine in general and can result in programs that will not
correctly execute in reverse.

Theseus. Theseus makes a fundamentally different choice from Janus. In Theseus all
well-typed programs are reversible and programmers can reason about the reversibility
of the programs by following straightforward syntactic and type correctness require-
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ments. We have chosen to name this high-level language Theseus in the spirit of the
paradox of equality called the Ship of Theseus and, like in the Greek legend, compu-
tation in Theseus proceeds by replacing values by apparently equal values. The design
of Theseus has similar high-level goals to other functional reversible languages such as
the language proposed by Yokoyama, Axelsen, and Glück [19] but differs significantly
in the details. In Theseus all functions are partial isomorphisms and patterns cannot
overlap which makes every computational step evidently and directly reversible. In the
proposed language of Yokoyama et. al, functions are injective, duplication is allowed in
controlled ways, and patterns may overlap. These features make the language closer to
conventional irreversible languages, and hence amenable to more familiar programming
techniques but at the cost of complicating the language.

Structure. The remainder of the paper is structured as follows. We first review the
language Πo which Theseus generalizes and compiles to. In Sec. 3, we introduce the
basic ingredients of Theseus relating to types and pattern matching which allow the
definitions of many standalone reversible functions. Sec. 4 extends the basic definitions
with the ability to parametrize functions by other functions giving the programmer the
expressiveness to compose computations. The next section extends the language further
with “iteration labels” which allows recursive definitions to be written in a direct style.
Sec. 6 concludes and puts our work in perspective.

2 A Quick Review of Π o

Theseus aims to be a high level language for Π , Πo, and their variants. For comparison
purposes, we briefly review the reversible language Πo in this section. As we illustrate,
programming in Πo requires considerable effort in tracking and manipulating values in
a point-free style as the main programming abstraction is that of a “diagram.”

The set of types includes the empty type 0, the unit type 1, sum types b1+b2, product
types b1 ∗ b2, and recursive types µx.b. The set of values v includes () which is the only
value of type 1, left v and right v which inject v into a sum type, (v1, v2) which builds
a value of a product type, and 〈v〉 which builds recursive values. There are no values of
type 0. The expressions of Πo are witnesses of type isomorphisms:

value types, b ::= 0 | 1 | b + b | b ∗ b | x | µx.b
values, v ::= () | left v | right v | (v, v) | 〈v〉

zeroe : 0 + b↔ b : zeroi
swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3)↔ (b1 + b2) + b3 : assocr+

unite : 1 ∗ b↔ b : uniti
swap∗ : b1 ∗ b2 ↔ b2 ∗ b1 : swap∗

assocl∗ : b1 ∗ (b2 ∗ b3)↔ (b1 ∗ b2) ∗ b3 : assocr∗

distrib0 : 0 ∗ b↔ 0 : factor0
distrib : (b1 + b2) ∗ b3 ↔ (b1 ∗ b3) + (b2 ∗ b3) : factor

fold : b[µx.b/x]↔ µx.b : unfold

Each line of the above table introduces one or two combinators that witness the isomor-
phism in the middle. Collectively the isomorphisms state that the structure (b,+, 0, ∗, 1)
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is a commutative semiring, i.e., that each of (b,+, 0) and (b, ∗, 1) is a commutative
monoid and that multiplication distributes over addition. The last isomorphism wit-
nesses the equivalence of a value of a recursive type with all its “unrollings.” The iso-
morphisms are extended to form a congruence relation by adding the following con-
structors that witness equivalence and compatible closure. In addition, the language
includes a trace operator to express looping:

id : b↔ b
c : b1 ↔ b2

sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3

c1 # c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4

c1 + c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4

c1 ∗ c2 : b1 ∗ b2 ↔ b3 ∗ b4

c : b1 + b2 ↔ b1 + b3

trace c : b2 ↔ b3

Following the tradition for computations in monoidal categories, Πo has a graphical
notation that conveys its semantics. The general idea of the graphical notation is that
combinators are modeled by “wiring diagrams” or “circuits” and that values are mod-
eled as “particles” or “waves” that may appear on the wires. Evaluation therefore is
modeled by the flow of waves and particles along the wires as detailed in previous
work [10, 8]. Symbolically, a complete program consists of a circuit c and a value v and
the process of evaluation c(v) consists of the flow of the value v through the circuit.

Definition 1 (Logical reversibility [21]). A map c1 : b1 → b2 is logically reversible if
there exists an inverse map c2 : b2 → b1 such that for all values v1 : b1 and v2 : b2, we
have: c1(v1) = v2 iff c2(v2) = v1.

Adjoint. An important property of the language is that every combinator c has an ad-
joint c† that reverses the action of c. This is evident by construction for the primitive
isomorphisms. For the closure combinators, the adjoint is homomorphic except for the
case of sequencing in which the order is reversed, i.e., (c1 # c2)† = (c2

†) # (c1
†). All Πo

computations are logically reversible [9] where the inverse of c is given by c†.

3 Theseus: Types and Simple Isomorphisms

We begin by presenting the core of Theseus which consists of evidently reversible func-
tions on user-defined datatypes. In subsequent discourse we will use the word ‘map’ to
refer to these logically reversible functions. Theseus has the same built-in types as Πo

and as conventional functional programming languages: the empty type, the unit type,
and sum and product types. All other types, including recursive types, are user-defined
using a general mechanism for type declarations:

type Bool = True | False
type Nat = 0 | Succ Nat
type Tree = Leaf Nat | Node Tree Tree

The declarations above witness isomorphisms between the set Bool and the set con-
structed by the constants True and False, between the set Nat and the set inductively con-
structed using 0 and Succ, and between the set Tree and the set inductively constructed
using Leaf and Node. Thus, Theseus type definitions are similar to, say, Haskell, type defi-
nitions. Such definitions translate directly to the underlying Πo using iso-recursive type
definitions. For example, the above types translate as follows:
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Bool = µ x.1 + 1
Nat = µ x.1 + x
Tree = µ x.Nat + x ∗ x

unfoldBool : Bool↔ 1 + 1 : foldBool
unfoldNat : Nat↔ 1 + Nat : foldNat

unfoldTree : Tree↔ Nat + (Tree ∗ Tree) : foldTree

3.1 Simple Isomorphisms

A Theseus program has a type of the form a↔ b; one runs such a program forward by
supplying a value of type a. If the program terminates, we get back a value of type b.
Alternately we can run the program in reverse by supplying a value of type b. Given the
built-in types and the facility to introduce user-defined ones, one can already write a few
small but interesting programs. Maps that are evidently isomorphisms can be written in
the familiar pattern matching style popularized by the family of functional languages.
For example:

id : : Bool ↔ Bool
| False ↔ False
| True ↔ True

expandBool : : Bool ∗ a ↔ a + a
| True , a ↔ Left a
| False , a ↔ Right a

expandNat : : Nat ↔ Nat + 1
| 0 ↔ Right ( )
| Succ n ↔ Left n

not : : Bool ↔ Bool
| True ↔ False
| False ↔ True

foldBool : : a + a ↔ Bool ∗ a
| Left a ↔ True , a
| Right a ↔ False , a

foldNat : : Nat + 1 ↔ Nat
| Right ( ) ↔ 0
| Left n ↔ Succ n

treeUnwind : : Tree ↔ Tree ∗ Tree + ( Bool + Nat )
| Node t1 t2 ↔ Left (t1 , t2 )
| Leaf 0 ↔ Right (Left True )
| Leaf ( Succ 0) ↔ Right (Left False )
| Leaf ( Succ ( Succ n ) ) ↔ Right (Right n )

Unlike the situation in a conventional functional language, the intuition here is that
the two sides of each pattern clause can be swapped to produce the inverse of the func-
tion, i.e. as we will see repeatedly in the paper, patterns and expressions are the same
thing. Compare for example the definitions of expandBool and foldBool. This is the only
constraint that a programmer needs to maintain. This constraint can be ensured using
the following two rules:

1. Non-overlapping and exhaustive coverage in pattern clauses. The collections of
patterns in the left-hand side (LHS) of each clause must be a complete non-overlapping
covering of the input type. Similarly, the collections of patterns in the right-hand
side (RHS) of each clause must also be a complete non-overlapping covering of the
return type. In other words, no cases should be omitted or duplicated.

2. Preserve typed variables across ↔. Each variable that occurs on one side of a
pattern matching clause can only appear once on that side and must appear exactly
once on the other side and with the same type.

When restricted to one side of each pattern matching clause, the rules should be
familiar and intuitive. Note that, in general, the two sides of a pattern matching clause
may have different types. Other than the requirement of non-overlapping and exhaustive
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coverage, there are no rules that constrain the types and names of constants nor of
constructors. So for example, in foldBool, the pattern ‘Left a’ maps to a pair constructor
with the first component being the constant True.

Examples of expressions that violate the constraints follow:

-- Invalid: Missing LHS cases
missing_node : : Tree ↔ Nat
| Leaf n ↔ n

-- Invalid: Overlapping RHS cases
overlapping_cases : : Nat ↔ Nat
| 0 ↔ 0
| Succ n ↔ n

-- Invalid: n is dropped
drop_var : : Tree ↔ Tree ∗ Tree + Nat
| Node t1 t2 ↔ Left (t1 , t2 )
| Leaf n ↔ Right 0

-- Invalid: t is used twice
dup_var : : Tree ↔ Tree ∗ Tree + Nat
| Node t t ↔ Left (t , t )
| Leaf n ↔ Right n

It is easy to see that every primitive isomorphism of Πo can be expressed in Theseus.
Here are a few examples.
assocL : : a+(b+c ) ↔ (a+b )+c : : assocR
| Left a ↔ Left (Left a )
| Right (Left b ) ↔ Left (Right b )
| Right (Right c ) ↔ Right c

zeroe : : b + 0 ↔ b : : zeroi
| Left v ↔ v

swapTimes : : a ∗ b ↔ b ∗ a
| (a , b ) ↔ (b , a )

Every simple isomorphism of Theseus can be translated to Πo as follows:

1. For every Theseus map c : a ↔ b, we can define an intermediate type ti which is
the sum of pairs of all the variables that occur in the LHS patterns. Since the LHS
and RHS patterns contain the same type variables, ti is unique for a given c (up
to ordering). For example, in treeUnwind the first clause has variables t1 : Tree and
t2 : Tree, the second and third clauses have no variables and the fourth clause has
the variable n : Nat. The expected type ti is therefore Tree ∗ Tree + (1 + (1 + Nat)), where
we insert the type 1 as a placeholder for the clauses that did not have type variables.

2. By construction ti is isomorphic to a and b. Hence, maps c1 : a ↔ ti and c2 : ti
↔ b must be expressible in Πo. (Both the above isomorphisms can be constructed
by systematically unfolding and distributing a and b until ti is obtained. The exact
details of such an expansion can be found in Sec. 3 of our previous paper [10] and
are skipped in this paper.) Once values of type a and b can be mapped to values of
type ti, the required translation of c is given by c1 # c2.

3.2 Dealing with Numbers

If we try to do arithmetic using the previously defined Peano-style Nat, we have to
address an issue of what to do when we encounter sub1 0. There are two obvious choices:

1. We can define add1 and sub1 of type Nat↔ Nat, such that sub1 of 0 diverges. We show
how these maps can be defined in Sec. 5.

2. An error mechanism can be added to the language such that when an error is raised
program execution is undefined and there is no meaningful inverse definition.
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Another choice, similar to that made by Janus, is to use bounded integers such that
every operation is always well defined through underflows and overflows. Here is a
simple 4-bit Nat4 datatype with its corresponding add1 and sub1 operations:

type Nat4 = Bool ∗ Bool ∗ Bool ∗ Bool

add1 : : Nat4 ↔ Nat4 : : sub1
| (a , b , c , False ) ↔ (a , b , c , True )
| (a , b , False , True ) ↔ (a , b , True , False )
| (a , False , True , True ) ↔ (a , True , False , False )
| (False , True , True , True ) ↔ (True , False , False , False )
| (True , True , True , True ) ↔ (False , False , False , False )

It is easy to see how a math library may be defined in this way. Once an operator can be
defined in Theseus it is always possible to replace its implementation by an equivalent
one that is expressible efficiently in the underlying hardware. In this case one could
compile down to the CPU’s native integer representation and operators.

4 Parametrized Maps

Now that we can express simple standalone isomorphisms, we explain how to com-
pose such isomorphisms to model more complex behavior. In Πo, there are three ways
of composing isomorphisms: sequential composition, parallel composition, and choice
composition. The common idiom underlying these composition combinators is that a
reversible map can be parametrized by another reversible map. This idea is related to
“higher-order functions” but is more limited as we explain below.

4.1 Definition and Examples

A Theseus map f can be parametrized by another map g by adding a labeled argument g
of the appropriate type to f. In the example below treeUnwindf is parametrized over some
map f which it applies to n, if the supplied tree is Leaf n:

treeUnwindf : : f : ( Nat ↔ a ) → Tree ↔ Tree ∗ Tree + a
| Node t1 t2 ↔ Left (t1 , t2 )
| Leaf n ↔ Right (f n )

This parametrization should be thought of as a macro or a meta-language construction.
Theseus does not have high-order maps in the formal sense. In other words, the final
type of a Theseus program must be of the form a↔ b and every occurrence of an arrow
type → must be instantiated at compile time. The notation for instantiating the label
parameter f in the map fun by the map g is fun ˜f:g. For example, treeUnwindf ˜f:expandNat
should be thought of as shorthand for the map:

_ : : Tree ↔ Tree ∗ Tree + (1 + Nat )
| Node t1 t2 ↔ Left (t1 , t2 )
| Leaf 0 ↔ Right (Right ( ) )
| Leaf ( Succ n ) ↔ Right (Left n )

which inlines expandNat within the definition of treeUnwindf.
We discuss the reversibility of parametrized maps in the next section. We first point

out that the Πo closure primitives can be expressed as parametrized maps:
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_ . _ : : f : ( a ↔ b ) → g : ( b ↔ c ) → a ↔ c
| a ↔ g (f a )

_∗_ : : f : ( a ↔ b ) → g : ( c ↔ d ) → a ∗ c ↔ b ∗ d
| (a , c ) ↔ (f a , g c )

_+_ : : f : ( a ↔ b ) → g : ( c ↔ d ) → a + c ↔ b + d
| Left a ↔ Left (f a )
| Right c ↔ Right (g c )

As an additional example, parametrized maps allow us to define controlled opera-
tions in the tradition of reversible circuits. In the definition below, the boolean input is a
control bit that determines which of the maps th or el is applied to the second component
of the pair. This conditional is then used to define the “controlled-not” gate:

if : : th : ( a ↔ b ) → el : ( a ↔ b ) → Bool ∗ a ↔ Bool ∗ b
| True , a ↔ Left (th a )
| False , a ↔ Right (el a )

cnot : : Bool ∗ Bool ↔ Bool ∗ Bool
| control , bit ↔ if ˜th :not ˜el :id ( control , bit )

4.2 Reversing Parametrized Maps

Reversing a map of type a ↔ b results in a map of type b ↔ a which is its adjoint. As
discussed before, simple maps can be reversed by simply switching the LHS and RHS
for both the type and the pattern matching clauses comprising the body. Interestingly,
one can think about the reverse of parametrized maps in the same way – i.e. one simply
needs to switch LHS and RHS of the ‘↔’.

treeUnfold : : f : ( Nat ↔ a ) → Tree ↔ Tree ∗ Tree + a
| Node t1 t2 ↔ Left (t1 , t2 )
| Leaf n ↔ Right (f n )

-- the adjoint of treeUnfold
rev_treeUnfold : : f : ( Nat ↔ a ) → Tree ∗ Tree + a ↔ Tree
| Left (t1 , t2 ) ↔ Node t1 t2
| Right (f n ) ↔ Leaf n

Note that the application f n happens on the left of the↔, which is something that one
does not see in conventional functional languages. These applications in the LHS have
the dual meaning of applications in the RHS and should be understood as follows: the
value that is the actual argument of the Right constructor is the result of applying f n.
In the forward execution of rev_treeUnfold, when the actual value of the constructor ar-
gument is encountered, it is passed through the reverse of f to get the value n. In other
words, the above program is exactly the same as rev_treeUnfold’ below where rev_f is the
adjoint of f:

rev_treeUnfold ’ : : rev_f : ( a ↔ Nat ) → Tree ↔ Tree ∗ Tree + a
| Left (t1 , t2 ) ↔ Node t1 t2
| Right a ↔ Leaf ( rev_f a )

It follows that the following programs are equivalent:
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g : : f : ( a ↔ b ) → a ↔ b
| a ↔ f a

g : : rev_f : ( b ↔ a ) → a ↔ b
| rev_f b ↔ b

Based on the above observation, it is easy to define the sym map that constructs the
adjoint of any given map:

sym : : f : ( a ↔ b ) → b ↔ a
| (f a ) ↔ a

While parametrized maps add tremendous programming convenience to Theseus, they
don’t change the expressive power of the language. All programs expressible with
parametrized maps, can be expressed without them by fully inlining the actual parame-
ters. Thus compiling Theseus programs with parametrized maps to Πo simply requires
first inlining the maps and then doing the translation described in Sec. 3.1.

5 Iteration Labels

The fragment of Theseus discussed up to now, modulo full recursive types, can be
expressed in pure Π without trace. Introducing recursive definitions in a reversible lan-
guage is subtle because every iteration must be reversible which requires, at least, that
the number of iterations be recoverable from the output. The insight we use in Theseus
is that this can be achieved elegantly by adding typed labels as explained below. We
start with a small example:

parity : : Nat ∗ Bool ↔ Nat ∗ Bool
| n , b ↔ iter $ n , 0 , b
| iter $ Succ n , m , b ↔ iter $ n , Succ m , not b
| iter $ 0 , m , b ↔ m , b
where iter : : Nat ∗ Nat ∗ Bool

The map parity calculates whether the given natural number is even or odd by counting
to 0 and flipping the second boolean input each time. In the definition above, the label
appears twice on the LHS and twice on the RHS. The correctness (i.e., reversibility) of
the map is guaranteed as labels obey the same restrictions as the one for simple patterns.
In particular the occurrences of the label in the LHS must constitute a non-overlapping
coverage of the label type, and similarly for the occurrences of the label in the RHS.

The important thing to note about labels is that they may have a different type from
the LHS or RHS types of their containing map. In this case for example, the parity
map has Nat ∗ Bool as its LHS and RHS type while the type of the label iter has the type
Nat ∗ Nat ∗ Bool. Labels temporarily give us a different view [18] of a value, by changing it
type. Labels act as goto statements from one side to the other – when a label is encoun-
tered on the RHS of a map, the argument to the label is matched by some definition of
the label pattern on the LHS of the map, and vice versa. Here is a trace of the execution
of parity as it transforms input Succ (Succ (Succ 0)), False to the output Succ (Succ (Succ
0)), True. It takes five pattern match and rewrite steps to complete.

Succ ( Succ ( Succ 0 ) ) , False 7−→ iter $ Succ ( Succ ( Succ 0 ) ) , 0 , False
iter $ Succ ( Succ ( Succ 0 ) ) , 0 , False 7−→ iter $ Succ ( Succ 0) , Succ 0 , True
iter $ Succ ( Succ 0) , Succ 0 , True 7−→ iter $ Succ 0 , Succ ( Succ 0) , False
iter $ Succ 0 , Succ ( Succ 0) , False 7−→ iter $ 0 , Succ ( Succ ( Succ 0 ) ) , True
iter $ 0 , Succ ( Succ ( Succ 0 ) ) , True 7−→ Succ ( Succ ( Succ 0 ) ) , True

9



A trace operator can be expressed using labels and the definition closely follows
the expected iteration semantics of trace in our previous work [9]. Using trace one can
define add1 on Nat such that sub1 of 0 diverges.

trace : : f : ( a + b ↔ a + c ) → b ↔ c
| b ↔ enter $ Right b
| enter $ a ↔ leave $ (f a )
| leave $ Left a ↔ enter $ Left a
| leave $ Right c ↔ c
where enter : : a + b

leave : : a + c

addSub : : Nat + Nat ↔ Nat + Nat
| Left ( Succ n ) ↔ Left n
| Left 0 ↔ Right 0
| Right n ↔ Right ( Succ n )

add1 : : Nat ↔ Nat : : sub1
| n ↔ trace ˜f : addSub n

Here are a few more examples that use labels. Combinators iterN and add are ones
you would expect to find in a standard library. The combinator iterN loops any given
map n times and add adds the second argument to the first:
-- runs f some n-times
iterN : : f : ( a↔a ) → Nat∗a ↔ Nat∗a
| n , a ↔ iter $ n , 0 , a
| iter $ 0 , n , a ↔ n , a
| iter $ Succ n , m , a ↔

iter $ n , Succ m , f a
where iter : : Nat ∗ Nat ∗ a

-- add (x, y) = (x+y, x)
add : Nat ∗ Nat ↔ Nat ∗ Nat
| x , y ↔ iter $ y , 0 , x
| iter $ a , b , 0 ↔ a , b
| iter $ a , b , Succ n ↔

iter $ add1 a , add1 b , n
where iter : : Nat ∗ Nat ∗ Nat

As another example, here is definition of the Fibonacci function where fibonacci
applied to (n, (1, 0)) returns (n, (x, y)) where x is the (n + 1)-st Fibonacci number and y is
the previous one:

swapAndAdd : : Nat ∗ Nat ↔ Nat ∗ Nat
| x , y ↔ add (y , x )

fibonacci : : Nat ∗ ( Nat ∗ Nat ) ↔ Nat ∗ ( Nat ∗ Nat )
| n , (x , y ) ↔ iterN ˜f : swapAndAdd (n , (x , y ) )

We conclude this section with a somewhat richer example of tree traversal that
shows how we can work with general recursive types. Here we use two labels walk
and reconst and one can verify that each label independently covers its type on both the
LHS and the RHS. The combinator treeWalk walks down a tree and applies a given f to
every leaf:

type Ctxt = Empty | L Ctxt Tree | R Tree Ctxt

treeWalk : : ˜f : ( Nat ↔ Nat ) → Tree ↔ Tree
| tr ↔ walk $ tr , Empty
| walk $ Leaf b , ctxt ↔ reconst $ ctxt , Leaf (f b )
| walk $ Node b1 b2 , ctxt ↔ walk $ b1 , L ctxt b2
| reconst $ Empty , tr ↔ tr
| reconst $ L ctxt b2 , b1 ↔ walk $ b2 , R b1 ctxt
| reconst $ R b1 ctxt , b2 ↔ reconst $ ctxt , Node b1 b2
where walk : : Tree ∗ Ctxt

reconst : : Ctxt ∗ Tree

Compiling programs with labels toΠo is a straightforward extension of compiling label-
free programs. For any Theseus map c : a↔ b that uses an iteration label label : lab we
construct an intermediate type ti corresponding to the pattern clauses as before. We
can then construct the isomorphisms c1 : lab + a↔ ti and c2 : ti↔ lab + b since every
LHS pattern clause corresponds to either a (the input) or lab (the label) and every RHS

10



clause corresponds to either b (the output) or lab (the label). The resulting c1 # c2 has
type lab+a↔ lab+b and the required compilation of c is given by trace( c1 # c2 ) : a↔ b.
This extends to multiple by labels by constructing c1 : (lab1 + lab2 + ...) + a↔ ti and c2 : ti

↔ (lab1 + lab2 + ...) + b to include the types of the additional labels.

6 Conclusion

Theseus is as expressible as Πo and preserves its properties. All Πo programs are ex-
pressible as Theseus programs and vice-versa. In other words, Πo, or dagger symmetric
traced bimonoidal categories serve as a fully abstract model for Theseus. Despite being
closely related to Πo, programmers can use Theseus without needing to understand Πo,
strings diagrams or category theory.

Theseus admits non-terminating computations. Just the way that partial functions
refer to maps that may not be defined on all inputs, the set of computations expressible
in Theseus are referred to as partial isomorphisms. As with Πo, Theseus programs
satisfy logical reversibility (see Def. 1).

Many of the trimmings of more mainstream languages can be added to Theseus.
Theseus could use an error reporting mechanism for programs to exit to without resort-
ing to divergence. Theseus needs an FFI mechanism to take advantage of third-party
libraries. We imagine that in such cases the programmer would write out an explicit ex-
tern declaration asserting the type that Theseus should assume the external library has.
More generally, Theseus can adopt Agda’s approach of piggy backing on top of Haskell.
We can have an FFI that lets us drop into Haskell and use Haskell API. We could also
import user-certified pairs of Haskell functions as isomorphisms into Theseus.

There are few natural extensions to Theseus that require additional research, though
preliminary investigation seems promising. Theseus currently treats all values the same
and does not classify values as heap and garbage. Theseus can be extended with a
framework for encapsulating effects. In other words, add the effectful arrow type {
in a principled way such that information effects, and possibly other effects, may be
expressed [9]. It is also desirable to add other programming features such as polymor-
phism, higher-order maps and inductive definitions over recursive datatypes without
explicitly managing Ctxt values as we did in the treeWalk program.

There are many ways to look at what has been achieved here. When working with
categories, one typically has a few standard representation tools at their disposal. First,
one can write out objects and composition in a category and reason algebraically. Sec-
ond, one can draw commuting diagrams and reason about these diagrams. Third, one
can draw string diagrams and reason about them either by tracing the flow of values or
by graph rewriting. Here we suggest another approach: design a programming language
corresponding to the category and reason about programs in the language as a means
of reasoning about constructions in the category. With Theseus, we answer the question
‘What is a programming language corresponding to a category?’, rather than the oppo-
site question which is asked more commonly. Namely, ‘What, if any, is the categorical
model underlying a programming language?’. Even though Theseus presents one such
instance, we suspect the approach can be extended to other monoidal categories.
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