CCA-PIO & CCA-LSI:

On Design Common Component Architecture Interface for High Performance
Scientific Computing Libraries
Fang Liu, Yongquan Yuan, and Randy Bramley

{fangliu, yyuang, bramley}@indiana.edu

Extreme Computing Lab, Indiana University, Bloomington, Indiana

Project Overview

This work targets the emerging use of software component
technology for high-performance scientific parallel and
distributed computing. The use of Common Component
Architecture (CCA) framework provides opportunity to
encapsulate the complex scientific software and to reuse them
easily. BABEL compiler from LLNL provides language
interoperability among scientific packages.

This poster presents an effort on designing minimal set of
interfaces for HPC parallel file I/O libraries and HPC linear
solver libraries. Preliminary experiments show that overhead
introduced by adding the CCA layer on original software
package is very small.

Motivating Simulations

The large-scale scientific simulation often combines
use multiple software packages developed by
different groups in different computer languages. For
example, computational astrophysics, chemistry and
fusion, each has challenging resolution and
complexity requirements that demand massively
parallel computing resources and a range of
sophisticated software. CCA provides an application
composition model based on reusable components.
Common interface needs to be defined to facilitate
the interaction between components.

This diagram presents
computational phases
in typical
multidisciplinary
scientific applications.

CCA-PIO Design
What CCA-PIO stands for?
A CCA Common Parallel File I/O Interface.

Design Architecture

Why CCA-PIO is needed?

*High-level, easily used parallel I/O interfaces to
manipulate structured data such as arrays to
facilitate transferring objects between
components that might even be running on
different numbers of processes

* Interface, programming language, and amount
and type of metadata required by different I/O
libraries differ widely

+Files written by one data library interface are not
directly accessible by another

SIDL Interface

CCA-PIO uses SIDL to provide a universal, minimalist set of
parallel I/O interfaces for data and metadata, spanning multiple
data libraries.
package ccaPio version 0.1 { q

interface dataStore{ s el eiace

int createArrayTemplate...))|
int openfFile(...); * Setup array template

int closeFile| * Operate files

int writeArray(. « Manipulate data
int readArray(...);

interface metaStore { maESICl R
int getArrayTemplate...); . ,
m BN |, Get information about data.

CCA Parallel I/0 Component

= Provides interface compatibility between components

= Provides language interoperability (Fortran, C, C++, Java, Python)
= Enables parallel I/O data coupling across components

= Maintains data portability over platform

= Allows re-use of existing data libraries

CCA-LSI Design

What CCA-LSI stands for?

A CCA General Sparse Linear Solver Interface.

Design Architecture

Sparse linear solver is the most essential and
computational intensive part of HPC
applications. Our design tries to decouple the
HPC applications from the solver libraries they
use by adding Sparse-Solver interface between
the application and solver libraries. Application
user don'’t have to learn individual undemeath
solver libraries, but simply use our interface and
implementation.

Currently, the implementation is done for the
Trilinos, Petsc and SuperLu.

SIDL interface

CCA-LSI uses SIDL to provide a minimal set of interface for parallel
sparse linear solver libraries.

Package ccaLsi version 0.1 { i .
interface SparseSolver{ SparseSolver interface:

«Setup linear system
«Setup solve parameters
«Solve

}
iterface Iterative extends SparseSolver { Iterative and direct
subinterfaces:

}
interface Direct extends SparseSolver {

) =Specializations for algorithm,
) parameter settings.

CCA Parallel Linear Solver Component

Implementation of the CCA-LSI provides a reusable CCA linear solver
component which relieves the application developer from changing
application code when changing the solver libraries. Along with Babel
generated client stub, It provides language interoperability.

This work is supported by DOE grant

e




