B561 Assignment 2
 Due date: Monday, September 242007

Dirk Van Gucht \& Mathias Niepert

September 17, 2007

Relational Algebra

The following conventions are used in the problems:

- We write $r(A B C)$ for a relation instance with relation name r and attributes (or fields) A, B, and C. In other words, the relation r "is a relation on scheme" $R=\{A, B, C\}$. We will just write "relation" for relation instance if not otherwise noted.
- For any attribute $A, \operatorname{dom}(A)$ denotes the domain of A.
- If not noted otherwise, it is assumed that $\operatorname{dom}(X) \neq \operatorname{dom}(Y)$ for all $X, Y \in\{A, B, \ldots, Y, Z\}$.
- $\bowtie($ in LaTex: \backslash bowtie) is the symbol for the natural join.

1. Let $r(A B C)$ and $s(B C D)$ be two relations, with $a \in \operatorname{dom}(A)$ and $b \in \operatorname{dom}(B)$. Which of the following expressions are properly formed? If an expression is not properly formed, explain briefly why.
(a) $r \cup s$
(b) $\pi_{B}(r)-\pi_{B}(s)$
(c) $\sigma_{B=b}(r)$
(d) $\sigma_{A=a, B=b}(s)$
(e) $r \bowtie s$
(f) $\pi_{A}(r) \bowtie \pi_{D}(s)$
2. Let the relation instances for r and s be given as follows:

A	B	C
a	b	c
a	b	c^{\prime}
a	$\mathrm{b} "$	c^{\prime}
a^{\prime}	b	c

B	C	D
b'	c^{\prime}	d
b"	c'	c^{\prime}
b"	c	d

Compute the values of the following expressions.
(a) $\sigma_{A=a}(r)$
(b) all the properly formed expressions from the previous exercise.
3. Let r and s be two instances of the same relation schema with key K. Which of the following relation instances must necessarily have key K ? Explain briefly why.
(a) $r \cup s$
(a) $r \cap s$
(a) $r-s$
(a) $\pi_{K}(r)$
(a) $r \bowtie s$
4. Let $r(R)$ be a relation (note: here R is a set of attributes) with $A \in R$ and let $a, a^{\prime} \in \operatorname{dom}(A)$. Prove

$$
\left[\sigma_{A=a, A=a^{\prime}}(r)=\emptyset \text { or } \sigma_{A=a, A=a^{\prime}}(r)=\sigma_{A=a}(r)\right] .
$$

5. Let $r(\underline{A} B C)$ be a relation (i.e., A is a key). What can be said about the size of $\sigma_{A=a}(r)$.
6. Let X be a subset of R (both are sets of attributes), $A \in R, A \notin X$, and let r be a relation on R (i.e., r is the relation $r(R)$). Find a counterexample to

$$
\pi_{X}\left(\sigma_{A=a}(r)\right)=\sigma_{A=a}\left(\pi_{X}(r)\right) .
$$

7. Let X be a subset of R and let r and s be relations on R (i.e., r is the relation $r(R)$ and s is the relation $s(R)$). Prove or disprove the following equalities.
(a) $\pi_{X}(r \cap s)=\pi_{X}(r) \cap \pi_{X}(s)$
(b) $\pi_{X}(r \cup s)=\pi_{X}(r) \cup \pi_{X}(s)$
(c) $\pi_{X}(r-s)=\pi_{X}(r)-\pi_{X}(s)$
8. Let r and r^{\prime} be relations on R, and let s be a relation on S. Prove or disprove:
(a) $\left(r \cap r^{\prime}\right) \bowtie s=(r \bowtie s) \cap\left(r^{\prime} \bowtie s\right)$
(b) $\left(r-r^{\prime}\right) \bowtie s=(r \bowtie s)-\left(r^{\prime} \bowtie s\right)$
9. Given relations $r(R), s(S)$ and $q=r \bowtie s$, define $r^{\prime}=\pi_{R}(q)$ and $s^{\prime}=\pi_{S}(q)$. Prove

$$
q=r^{\prime} \bowtie s^{\prime}
$$

10. Given a relation $q(R S)$, find a sufficient condition for

$$
q=\pi_{R}(q) \bowtie \pi_{S}(q)
$$

Is your condition necessary?
11. Let $r(R)$ and $s(S)$ be relations where $R \cap S=\emptyset$. Prove

$$
(r \bowtie s) \div s=r
$$

Here \div denotes the division operator.
12. Let r be a relation on scheme R and let s and s^{\prime} be relations on scheme S, where $R \supseteq S$. Show that if $s \subseteq s^{\prime}$, then

$$
r \div s \supseteq r \div s^{\prime}
$$

Show the converse is false.
13. Let $r(R)$ and $s(S)$ be relations with $R \supseteq S$ and let $R^{\prime}=R-S$. Note that $t \in s$ denotes a tuple t in s and the expression $\sigma_{S=t}(s)$ denotes the selection of exactly the tuple t on s. Prove the identities
(a) $r \div s=\pi_{R^{\prime}}(r)-\pi_{R^{\prime}}\left(\left(\pi_{R^{\prime}}(r) \bowtie s\right)-r\right)$
(b) $r \div s=\bigcap_{t \in s} \pi_{R^{\prime}}\left(\sigma_{S=t}(r)\right)$
14. Show that any equijoin can be specified in terms of natural join and renaming, given sufficient extra attributes with the correct domains.

