
/* Include statements. */

#include

EXEC SQL INCLUDE SQLCA;

/* Function prototypes */

void cleanUp(void);

/* ------ MAIN ------ */

/* Top level function */

void main(void)

{

EXEC SQL BEGIN DECLARE SECTION;

char host_name[21];

int host_emp_number;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE empcsr CURSOR FOR

SELECT name, emp_number

FROM employees

WHERE emp_number = 10001;

/* An error when opening the frans database will cause

the error to be printed and the program to be aborted */

EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL CONNECT frans;

/* Errors from here on will cause the program to clean up */

EXEC SQL WHENEVER SQLERROR CALL cleanUp;

1

EXEC SQL OPEN empcsr;

printf("Some values from the /"employees/" table /n");

/* When ever no more rows are fetched, close the cursor */

EXEC SQL WHENEVER NOT FOUND GOTO close_empcsr;

/* The last executable SQL statement was OPEN so we know that

the value of "sqlcode" cannot be SQLERROR or NOT FOUND */

while(sqlca.sqlcode == 0) { /* Loop is broken by NOT FOUND */

EXEC SQL FETCH empcsr

INTO :host_name, :host_emp_number;

/* This "printf" does not execute after the previous FETCH returns the

NOT FOUND condition */

printf("%s %d/n",host_name,host_emp_number);

}

/* From this point onwards the program ignore all errors.

Also turn off the NOT FOUND condition for consistency */

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL WHENEVER NOT FOUND CONTINUE;

close_empcsr:

EXEC SQL CLOSE empcsr;

EXEC SQL DISCONNECT;

}

2

/* ------ CLEAN UP ------ */

/* Error handling procedure (print error and disconnect) */

void cleanUp(void)

{

EXEC SQL BEGIN DECLARE SECTION;

char errmsg[10];

EXEC SQL END DECLARE SECTION;

EXEC SQL INQUIRE_SQL (:errmsg = ERRORTEXT); /* Get error message. */

/* Alternatively to get only the error number

EXEC SQL COPY SQLERROR INTO :errmsg WITH 256; */

printf("Aborting because of error: /n%s/n",errmsg);

EXEC SQL DISCONNECT;

exit(-1);

}

3

Discussion

1. EXEC SQL INCLUDE: The INCLUDE statement provides a means of

including external SQL files in the source code. Here it is used

to include the SQLCA structure.

2. EXEC SQL BEGIN END DECLARE SECTION: Host variables must be

declared prior to their use. Host variables can be global or

local.

3. EXEC SQL DECLARE CURSOR: Names a cursor for use with a specified

set of retrieval criteria. Once declared the cursor can be

opened, using an OPEN statement, which causes the select

statement specified in DECLARE CURSOR to be executed. The run

time retrieval actually occurs when a FETCH is subsequently

performed. When all processing has been completed the cursor can

be closed with the CLOSE statement.

4. EXEC SQL WHENEVER SQLERROR STOP: The WHENEVER statement

stipulates that some action occurs when a given condition is

satisfied. In this case the action is STOP and the condition

SQLERROR. The SQLERROR condition is satisfied if sqlcode in the

SQCLA structure is negative (this indicates that an error has

occurred.) The STOP action simply terminates program execution

after printing an error message.

5. EXEC SQL CONNECT: Connects the program to the named

database. The statement must precede any statements using the

database.

6. EXEC SQL WHENEVER SQLERROR CALL: Similar to 4. The CALL action

is used to call a host language procedure (cleanUp in this

case). No arguments can be passed to the procedure.

4

7. EXEC SQL OPEN: Opens the cursor (empcsr) for processing. A

cursor must be opened before any data manipulation statements

can be performed e.g. a FETCH statement.

8. EXEC SQL WHENEVER NOT FOUND GOTO: Similar to 4 and 6. The NOT

FOUND condition becomes true when sqlcode in the SQLCA structure

is set to a value of 100 thus indicating that (say) a FETCH

statement affected no rows.

9. EXEC SQL FETCH: Used by the cursor (empcsr). It first advances

the open cursor one row. Next it loads the values indicated in

the SELECT clause of the DECLARE CURSOR statement into the host

variables listed in its INTO clause. Once loaded into the host

variables the values can be further processed.

10. EXEC SQL WHENEVER SQLERROR CONTINUE and EXEC SQL WHENEVER NOT

FOUND CONTINUE: Similar to 4, 6 and 8. The CONTINUE action

simply means that no action should be taken based on the

associated condition, the program proceeds to the next

statement.

11. EXEC SQL CLOSE: Close the open cursor (empcsr)

12. EXEC SQL DISCONNECT: Terminate access to the (frans) database.

13. EXEC SQL COPY SQLERROR: Allows access to text of error

messages. Thus when an error occurs, i.e. sqlcode is negative,

the text of the error message can be put into the name variable

errmsg) and printed.

5

