B561 Review Questions for Functional Dependencies, Normal Forms, Decompositions

Dirk Van Gucht & Mathias Niepert

October 25, 2007

- (1) Consider the relation schema R(A, B, C, D, E, F, G, H) with functional dependencies $\{BE \to GH, G \to FA, D \to C, F \to B\}$.
 - (a) Find a (minimal) key for R. Is there any key of R that does not contain the attribute D? Explain.
 - (b) Is the schema currently in BCNF? Explain.
 - (c) Use one step of the BCNF decomposition to decompose R into two subrelations. Are the subrelations in BCNF?
 - (d) Show that your decomposition from part (c) is lossless.
 - (e) Is your decomposition from part (c) dependency preserving?
 - (f) Continue the decomposition until you obtain a BCNF decomposition of R. Is your final decomposition dependency preserving?
- (2) Consider the relational schema $\mathbf{R} = (A, B, C, D, E, F)$ with set of FDs $\mathbf{F} = \{A \to CD, AC \to DF, F \to E, B \to A\}.$
 - (a) Is R in Boyce-Codd Normal Form (BCNF)? If not, produce a lossless decomposition of R into BCNF. Show your work. How can you be sure your decomposition is lossless?
 - (b) Is your decomposition from part (a) dependency preserving? Briefly justify your answer.

- (3) Consider a relation schema R(A, B, C, D, E, F, G, H), with functional dependencies $\{FH \rightarrow HGB, GA \rightarrow CD, C \rightarrow E, B \rightarrow D, FG \rightarrow D\}$.
 - (a) Find a minimal cover for the FDs.
 - (b) Is the dependency FHA GB implied by the FDs?
 - (c) Is the decomposition into FHGAB and GABCDE lossless?
 - (d) Is the above decomposition dependency preserving?
 - (e) Is there a lossless, dependency preserving decomposition of this schema into BCNF? If so, exhibit one. If not, explain.
- (4) Consider the relation schema R(A, B, C, D, E, F, G) and accompanying set of functional dependencies $F = \{A \to D, ADG \to F, ACE \to BD, B \to C, C \to A, D \to G, E \to B, EF \to AD, F \to E, G \to F\}.$
 - (a) Show that A is a key (i.e., minimal superkey) for R.
 - (b) Give a lossless-join, dependency preserving decomposition into BCNF for R.
 - (c) Argue that no 2-attribute subset of $\{A, B, C, D, E, F, G\}$ is a key for R.
- (5) Using only Armstrong's Axioms and the FDs $AB \to C, A \to BE, C \to D$, give a complete derivation of the FD $A \to D$.
- (6) Show that the following inference rules are derivable from Armstrong's axioms (i.e., are sound rules for functional dependencies):
 - (1) Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$.
 - (2) Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
 - (3) Strong Transitivity: If $X \to Y$ and $YW \to Z$, then $XW \to Z$.
- (7) Show that the following inference system is sound and complete for functional dependencies (i.e., equivalent to Armstrong's axioms):
 - Reflexivity: If $X \subseteq Y$, then $Y \to X$; and
 - Strong Transitivity: If $X \to Y$ and $YW \to Z$, then $XW \to Z$.