
Relational Programming (PL/SQL)

Components of the language:

• Simple variables

• Relation variables

• Procedures and Functions

• Cursors

• Statements:

– Simple variable declaration (DECLARE, VAR)

– Relation variable declaration (CREATE)

– Procedures and Functions declarations (CREATE OR REPLACE)

– Cursor declaration

– Garbage collection for relation variables (DROP)

– Garbage collection for procedures and functions (DROP)

– Assignment statements to simple variables

– Assignment statements to relation variables (INSERT, DELETE,
UPDATE)

– Block statements

– Loop statements

– Conditional statements

– Procedure and function calls

– Cursor operations (OPEN, FETCH, CLOSE)

Look at

http://www.utexas.edu/its/unix/reference/oracledocs/v92/B10501_01/appdev.920/a96624/01_oview.htm

http://www.csee.umbc.edu/help/oracle8/server.815/a67842/toc.htm

}

1

/* Compute and store the transitive closure of GRAPH in a temporary*/

/* table, TC. In the algorithm, we will need an additional */

/* temporary table, TCNEW */

/* relation variables declaration */

create table TC (V1 INT, V2 INT);

create table TCNEW (V1 INT, V2 INT);

/* procedure TClosure computes the transitive closure of GRAPH and */

/* stores the result in TC */

/* TClosure does not have parameters */

/* procedure declaration */

create or replace procedure TClosure as

/* local simple variables declaration */

num_new_edges INT;

/* body of the procedure */

begin

/* relation variable assignment */

insert into TCNEW select * from GRAPH;

/* simple variable assignment using an SQL statement */

select COUNT(*) into num_new_edges from TCNEW;

/* loop statement */

while num_new_edges > 0

loop

insert into TC select * from TCNEW;

delete from TCNEW;

insert into TCNEW select T.V1, G.V2

from TC T, GRAPH G

where T.V2 = G.V1;

select COUNT(*) into num_new_edges from

(select * from TCNEW

EXCEPT

select * from TC);

end loop;

end;

2

/* Main program block statement */

begin

TClosure();

end;

/* Take input. */

variable vertex NUM;

accept vert prompt "Enter vertex: ";

select TC.V2 from TC where TC.V1 = &vertex;

drop table TCNEW;

drop table TC;

drop procedure TClosure;

3

Declaring a Cursor

CURSOR cursor_name [(parameter[, parameter]...)]

IS select_statement;

cursor_parameter_name datatype

DECLARE

CURSOR c1 IS SELECT empno, ename, job, sal FROM emp

WHERE sal > 2000;

A cursor can take parameters

DECLARE

CURSOR c1 (low INTEGER, high INTEGER) IS SELECT ...

4

Opening a Cursor

DECLARE

CURSOR c1 IS SELECT ename, job FROM emp WHERE sal < 3000;

...

BEGIN

OPEN c1;

...

END;

DECLARE

emp_name emp.ename%TYPE;

salary emp.sal%TYPE;

CURSOR c1 (name VARCHAR2, salary NUMBER) IS SELECT ...

OPEN c1(emp_name, 3000);

OPEN c1(’ATTLEY’, 1500);

OPEN c1(emp_name, salary);

5

Fetching with a Cursor

...

OPEN c1;

...

FETCH c1 INTO my_empno, my_ename, my_deptno;

Repeated fetching in a loop

...

OPEN c1;

...

LOOP

FETCH c1 INTO my_empno, my_ename, my_deptno;

EXIT WHEN c1%NOTFOUND;

-- process data record

END LOOP;

Closing a cursor

DECLARE

CURSOR c1 IS SELECT ename FROM emp;

name emp.ename%TYPE;

BEGIN

OPEN c1;

FETCH c1 INTO name;

...

CLOSE c1;

END;

6

Using Cursor FOR Loops

In most situations that require an explicit cursor, you can sim-

plify coding by using a cursor FOR loop instead of the OPEN,
FETCH, and CLOSE statements.

DECLARE

result temp.col1%TYPE;

CURSOR c1 IS

SELECT n1, n2, n3 FROM data_table WHERE exper_num = 1;

BEGIN

FOR c1_rec IN c1 LOOP

/* calculate and store the results */

result := c1_rec.n2 / (c1_rec.n1 + c1_rec.n3);

INSERT INTO temp VALUES (result, NULL, NULL);

END LOOP;

END;

7

Very simple example

DECLARE

/* Output variables to hold the result of the query: */

a T1.e%TYPE;

b T1.f%TYPE;

/* Cursor declaration: */

CURSOR T1Cursor IS

SELECT e, f

FROM T1

WHERE e < f

BEGIN

OPEN T1Cursor;

LOOP

/* Retrieve each row of the result of the above query

into PL/SQL variables: */

FETCH T1Cursor INTO a, b;

/* If there are no more rows to fetch, exit the loop: */

EXIT WHEN T1Cursor%NOTFOUND;

/* Insert the reverse tuple: */

INSERT INTO T2 VALUES(b, a);

END LOOP;

/* Free cursor used by the query. */

CLOSE T1Cursor;

END;

8

9

