
Towards a theory of search queries on dataspaces

Dirk Van Gucht
Indiana University

Joint work with George Fletcher,
Jan Van den Bussche, Stijn Vansummeren

Indiana University

November 18, 2009



Outline

1. Theory of database queries

2. Relational algebra

3. Semijoin algebra

4. Search queries

5. Dataspaces

6. Structured querying versus searching

7. Research problems



Computational problems

I Classically, any computational problems is a function
(mapping) from inputs to outputs

I E.g., route planning:
I Input: a map (graph), source, target
I Output: shortest route in graph from source to target



Database queries

I A query is a function from databases to databases

I E.g., Employee query
I Input: history of employee hirings
I Output: list of all employees who have been hired at least twice

I Also route planning!



Relational Algebra

I Language in which queries over relational databases can be
expressed

I Every expression denotes a query
I compare arithmetic: avg(x , y) expresses the function (x+y)

2

I Expression is a combination of operators
I union, intersection, difference
I cartesian product (join)
I selection
I projection
I renaming



Employee query

relation History(emp id, hire date)

ΠH1.emp idσH1.emp id=H2.emp id AND H1.hire date6=H2.hire date

(ρH1(History)× ρH2(History))

equivalently:

ΠH1.emp id(ρH1 (History) ./ ρH2 (History))
H1.emp id = H2.emp id

H1.hire date 6= H2.hire date



Expressibility

I Not all queries are expressible in relational algebra

I E.g., route planning

I Not surprising
I Ackermann function is not expressible as a primitive recursive

formula



The first-order queries

I Relational algebra forms an important core query language
I SQL select-statements = relational algebra + aggregates
I XPATH 2.0 = relational algebra
I SPARQL = relational algebra

I Queries expressible in relational algebra are called
first-order queries (relational calculus)



Semijoin

I Recall Employee query:

ΠH1.emp id(ρH1
(History) ./ ρH2

(History))

H1.emp id = H2.emp id

H1.hire date 6= H2.hire date

I We don’t need attributes of H2 after join

I Semijoin:
ΠH1.emp id(ρH1

(History) n ρH2
(History))

H1.emp id = H2.emp id

H1.hire date 6= H2.hire date



The semijoin algebra (SA)

I Same as relational algebra, except: × and ./
are replaced by n

I SA queries . . .
I always return subset of the relations (modulo Π)
I can be efficiently processed

I sorting
I one-pass query processing
I linear

I SA with only equalities in join conditions
= the linear fragment of relational algebra.



Searching versus (Structured) Querying

I Users of information systems do not use (full) SQL
I Library catalog
I Text search
I Google, Yahoo, Bing etc
I Amazon EC2 (searching data in the cloud)
I mapreduce (key-value pairs)

I They can search:
I title = OED AND author = Tompa
I Brussel AND NOT Bruxelles







Abstract Dataspaces

I An abstract dataspace is a set of objects

I Each object is a set of items

I E.g., set of webpages
I each webpage = set of strings

I E.g., classical relation is a set of tuples
I each tuple = set of attribute-value pairs



Attribute-value pairs

I Tuple

epm imp hire date job

1234 20091021 programmer

I Set of attribute-value pairs

att value

emp id 1234

hire date 20091021

job programmer



Attribute-value dataspaces

I Objects are arbitrary sets of AV-pairs

name Anne

paper p1

location Brussels

phone 022222785

name John

paper p1

paper p2

location Namur

likes voetbal

naam Ellen

artikel p2

artikel p3

plaats Brussel

plaats Namen

houdtvan rugby

drink type beer

name Orval

kind Trappist

paper id p1

title SQL

proceedings VLDB

paper id p3

title OED

author Tompa

journal unknown



“Database of everything”

I Alon Halevy (University of Washington, Google)

I Very similar to Semantic Web
I RDF
I Linked Data





A-V dataspace as RDF store

I RDF store: set of triples
I (subject, predicate, object)

I view A-V dataspace D as set of triples:
I {(oid, att, val) : oid ∈ D & (att, val) ∈ oid}

oid att val

1 name Anne

1 paper p1

1 location Brussels

1 phone 022222785

· · · · · · · · ·
· · · · · · · · ·
6 paper id p3

6 title OED

6 author Tompa

6 journal unknown



RDF triple store as A-V dataspace

I Use 3 special attributes
I subject
I predicate
I object

I RDF triple store is just a relation over the scheme
{subj, pred, obj}

I Already know that a relation is a dataspace!

I No RDFS



Searching Dataspaces

I Abstract Dataspace
I set of objects
I object: set of items

I Abstract keywords
I predicate on items

I E.g., when items are strings:
I string contains “Water”
I string contains “Univers”
I strings following “Waterloo” in OED
I synonyms of “data”







Boolean Search Language (BSL)

I Every keyword k is an expression

I Meaning:
I Retrieve all objects containing some item satisfying k

I If e1 and e2 are expressions then so are:
I e1 AND e2

I e1 OR e2

I e1 AND NOT e2

I Meaning: union, intersection, set difference

Waterloo AND NOT(Toronto OR Vancouver)





Dataspace search queries

I Database query:
I mapping from databases to databases

I Dataspace query:
I mapping q from dataspaces to dataspaces

I Dataspace search query:
I such that q(D) ⊂ D for each D

I Bit like semijoin queries . . .









What dataspace search queries are expressible in BSL?

I BSL queries are safe
I Only return objects containing some item satisfying

(matching) some keyword that we used

I BSL queries are additive

q(D) = union of all q({o} for all ∈ D



BSL queries are finitely distinguishing

I Only distinguish objects using some finite set K of keywords

I o1 and o2 are K -equivalent of for each k ∈ K ,

o1 matches k ⇔ o2 matches k

I when o1 and o2 from D are K -equivalent then

o1 ∈ q(D)⇔ o2 ∈ q(D)



Characterization of BSL

I A dataspace query q is expressible in BSL if (and only if) q is
additive, and for some finite set K of keywords,

I q is K -safe and
I q is K -distinguishing



Application to relational selection queries

I Recall: relation = set of tuples = set of objects

I Object = set of attribute-value pairs

I Keywords: A = c
I A: attribute from the given relation scheme
I c: arbitrary constant

I Also wildcard keyword: *

I Example BSL query:

* AND NOT(job=programmer OR emp id = 1234)

I Same as relational algebra using only ∪, −, σA=c





Not expressible in BSL

I Negated keywords (if you don’t have them)
I retrieve all objects containing an item not matching

“Waterloo”
I not finitely distinguishing over positive keywords

I Normally will use boolean-closed repertoire of keywords



Neither expressible in BSL

I Retrieve all objects sharing an item with an object matching
“Waterloo”

I Retrieve all co-authors of “Frank Tompa”

I Not additive

I We cannot do joins or even semijoins

I Want to do such “associate search”





Similarity relations (simrels)

I How to link (associate) two objects?
I hard wire links between objects in the dataspace
I not necessary
I not flexible

I Better: use simrels between items
I a simrel is a binary predicate on items







Examples of simrels

I Equality

I Translation on city names:
I Namur trans Namen
I Bruxelles trans Brussel
I Anvers trans Antwerpen

I Equal-value on A-V pairs:
I (likes, Tompa) eqval (name, Tompa)

I Equal-attribute on A-V pairs:
I (name, Tompa) eqval (name, Gonnet)



Simlinks

I If k and k ′ are keywords, and ≈ is a simrel, then k ≈ k ′ is a
simlink

I Meaning: binary predicate on items
I will be used to link (associate) objects

I i1[k ≈ k ′]i2 if
I i1 matches k
I i2 matches k ′

I i1 ≈ i2

I Example on string items, with sub-string and wildcard
keywords and translation simrel:

“Citadelle de Namur” [Namur trans *] “Citadel van Namen”



Linking objects using simlinks

I For objects o1 and o2, o1[k ≈ k ′]o2 if
I o1 contains some item i1
I o2 contains some item i2
I i1[k ≈ k ′]i2 if

I New associative search operator on dataspaces:

LINK [k ≈ k ′](S)

I retrieve all objects in the dataspace that are linked by [k ≈ k ′]
to some objects in S

LINK [Namur trans *] (Citadel)



Associate Search Language (ASL)

I BSL extended with link operator

I Parametrized by choice of:
I keywords (already as BSL)
I simrels (for link operator)

I What is the expressiveness of ASL?

I Link operators is like semijoin . . .
e1 AND LINK[θ](e2)

e1 nθ e2



ASL on A-V dataspaces

I Keywords:

I literals & wildcards
(name: Frank) (name: *) (*: Frank)

I negation on values
(likes: ¬(Heineken,Budweiser))

I negation on attributes
(¬(paper id, title):Kriek)

I negation on both values and attributes
(¬(paper id, title): ¬(Heineken,Budweiser))

I Simrels:
I eq, eq val, eq att



Example query

I Retrieve all people located in Waterloo who have published a
paper in CACM:

(location: Waterloo) AND
LINK[(paper: *) eq val (paper id: *)](journal: CACM)

I Which queries can we express?



A-V dataspace as relation

I We saw this already: set of (oid, att, val)

oid att val

1 name Anne

1 paper p1

1 location Brussels

1 phone 022222785

· · · · · · · · ·
· · · · · · · · ·
6 paper id p3

6 title OED

6 author Tompa

6 journal unknown

I How does ASL compare to querying this relation using
relational algebra?



ASL translated into semijoin algebra

(location: Waterloo) AND
LINK[(paper: *) eq val (paper id: *)] (journal: CACM)

Πoidσatt=location&val=Waterloo(T ) n Πoidσatt=paper(T )n
Πoidσatt=paper id(T n Πoidσatt=journal&val=CACM(T ))

I Only natural semijoins are used



SA queries not expressible in ASL

I Retrieve all people who have the same value for a boss and a
friend attribute

I Retrieve all people who like some professor that nobody else
likes

I Can prove that these are not expressible using invariance
under bisimulations



Bisimilarity of Dataspace

I Dataspace D and object o, also D ′ and o ′

I Natural number n

I We say that (D, o) �n (D ′, o ′) if
I o and o′ match precisely the same keywords
I moreover for n > 0:

I for each simrel ≈ and for each object p ∈ D such that o ≈ p,
there exists p′ ∈ D ′ such that o′ ≈ p′ and
(D, p) �n−1 (D ′, p′)

I vice versa (from D’ to D)



Invariance under bisimilarity

I Let q be an ASL query using at most n nested link operators

I Let (D, o) �n (D ′, o ′)

I Then o ∈ q(D) if and only if o ′ ∈ q(D ′)



SA queries not expressible in ASL (repeated)

I Retrieve all people who have the same value for a boss and a
friend attribute

I Retrieve all people who like some beer that nobody else likes

I Can prove that these are not expressible using invariance
under bisimulations



The “search” fragment of SA (semi-join algebra)

E ::= T
| σatt=c(E )
| σval=c(E )
| E ∪ E
| E − E
| Πα(E )
| E n Πoid(E )
| Πoid(E n Πβ(E ))

I c: constant

I α : {oid}, {oid, att}, or {oid, val}

I β : {att}, {val}, or {att, val}



What have we learned?

I Searching unstructured information motivates to investigate
new query languages

I but the classical theory is still very useful:
I relational databases
I relational algebra
I genericity
I semijoin algebra
I bisimilarity

I Querying RDF triple stores



Open research problems

I Algorithms, data structures for query processing

I Are BSL and ASL sufficient? Other primitives?

I User interface: search should be easier than full querying in
SQL

I How to represent relational databases as dataspaces (or RDF)
such that querying can be done by searching?


