# B561 - Solutions for Assignment 3 

Dirk Van Gucht \& Mathias Niepert

October 5, 2007

## List of Queries

Given are the following queries in natural language:

1. Get all shipments where the quantity is between 400 and 850 inclusive.
2. Get all pairs of city names such that a supplier in the first city supplies a project in the second city with quantity at least 200 .
3. Get project numbers for projects suplied by at least one supplier not in the same city.
4. Get project names for projects supplied by supplier S3.
5. Get part numbers for parts supplied to any project in London.
6. Get supplier numbers for suppliers supplying at least one part supplied by at least one supplier who supplies at least one red part.
7. Get supplier numbers for suppliers with a status lower than that of supplier S1.
8. Get part numbers for parts supplied to all projects in London.
9. Get project numbers and cities where the city has an "l" as the first or an "a" as the second letter of its name.
10. Get project numbers for projects supplied with part P1 in an average quantity greater than the greatest quantity in which any part is supplied to project J1.
11. Get project numbers for projects supplied with at least all parts available from supplier S1.
12. Get project numbers for projects that are supplied by every supplier who supplies some red part.

## Solutions

(a) Formulate the queries (1) to (12) in SQL.
(1) SELECT SID, PID, JID, QTY

FROM SPJ
WHERE QTY>=400 AND QTY<=850;
(2) SELECT DISTINCT SUPPLIER.CITY, PROJECT.CITY

FROM S as SUPPLIER, SPJ as SHIPMENT, J as PROJECT
WHERE SUPPLIER.SID=SHIPMENT.SID
AND SHIPMENT.JID=PROJECT.JID
AND SHIPMENT.QTY>=200;
(3) SELECT DISTINCT PROJECT.JID

FROM SPJ as SHIPMENT, $S$ as SUPPLIER, J as PROJECT
WHERE SUPPLIER.SID=SHIPMENT.SID
AND SHIPMENT.JID=PROJECT.JID
AND SUPPLIER.CITY<>PROJECT.CITY;
(4) SELECT PROJECT. JNAME

FROM J as PROJECT
WHERE PROJECT.JID IN
(SELECT PROJECT.JID
FROM SPJ as SHIPMENT
WHERE SHIPMENT.SID='S3');
(5) SELECT DISTINCT SHIPMENT.PID

FROM SPJ as SHIPMENT
WHERE SHIPMENT.JID IN
(SELECT SHIPMENT.JID
FROM J as PROJECT
WHERE PROJECT.CITY='London');
(6) SELECT DISTINCT SHIPMENT.SID

FROM SPJ as SHIPMENT
WHERE SHIPMENT.PID IN
(SELECT SHIPMENT2.SID
FROM SPJ as SHIPMENT2
WHERE SHIPMENT2.SID IN
(SELECT SHIPMENT3.SID

FROM SPJ as SHIPMENT3
WHERE SHIPMENT3.PID IN
(SELECT PROJECT.PID
FROM P as PROJECT
WHERE PROJECT.COLOR='Red'))) ;
(7) SELECT SUPPLIER.SID

FROM $S$ as SUPPLIER
WHERE STATUS <
(SELECT SUPPLIER2.STATUS
FROM S as SUPPLIER2
WHERE SUPPLIER2.SID='S1');
(8) SELECT DISTINCT SHIPMENT.PID

FROM SPJ as SHIPMENT, SPJ as SHIPMENT2
WHERE NOT EXISTS
(SELECT *
FROM J as PROJECT
WHERE PROJECT.CITY='London'
AND NOT EXISTS

```
(SELECT *
FROM SPJ as SHIPMENT3, SPJ as SHIPMENT4
WHERE SHIPMENT4.PID = SHIPMENT2.PID
AND SHIPMENT4.JID = PROJECT.JID) );
```

(9) SELECT PROJECT.JID, PROJECT.CITY

FROM J as PROJECT
WHERE PROJECT. CITY LIKE ' $1 \%$ ' OR PROJECT.CITY LIKE '_a\%';
(10) SELECT SHIPMENT.JID

FROM SPJ as SHIPMENT
WHERE SHIPMENT.PID='P1'
GROUP BY SHIPMENT.JID
HAVING AVG (QTY) >
(SELECT MAX (QTY)
FROM SPJ as SHIPMENT2
WHERE SHIPMENT2.JID='J1');
(11) SELECT DISTINCT SHIPMENT.JID

FROM SPJ as SHIPMENT, SPJ as SHIPMENT2
WHERE NOT EXISTS
(SELECT SHIPMENT3.PID
FROM SPJ as SHIPMENT3, SPJ as SHIPMENT4
WHERE SHIPMENT3.SID='S1'

AND NOT EXISTS
(SELECT *
FROM SPJ, SPJ as SHIPMENT5
WHERE SHIPMENT5.PID=SHIPMENT4.PID
AND SHIPMENT5.JID = SHIPMENT2.JID));
(12) SELECT DISTINCT SHIPMENT.JID

FROM SPJ as SHIPMENT, SPJ as SHIPMENT2
WHERE NOT EXISTS
(SELECT *
FROM SPJ, SPJ as SHIPMENT3
WHERE EXISTS
(SELECT *
FROM SPJ, SPJ as SHIPMENT4
WHERE SHIPMENT4.SID=SHIPMENT3.SID
AND SHIPMENT4.PID IN
(SELECT PROJECT.PID
FROM P as PROJECT
WHERE PROJECT.COLOR='Red')
AND NOT EXISTS
(SELECT *
FROM SPJ, SPJ as SHIPMENT5
WHERE SHIPMENT5.SID=SHIPMENT3.SID
AND SHIPMENT5.JID=SHIPMENT2.JID)));
(b) Formulate the queries (1), (5), (6), and (8) in the relational algebra.
(1) $\sigma_{[Q T Y>=400 \text { AND } Q T Y<=850]}(S P J)$
(5) $\pi_{[P I D]}\left(S P J \bowtie\left(\sigma_{[C I T Y=‘}\right.\right.$ London $\left.\left.^{\wedge}\right](J)\right)$
(6) $\pi_{S P I D I D}\left(\pi_{[P I D]}\left(\pi_{[S I D]}\left(S P J \bowtie \pi_{[P I D]}\left(\sigma_{\left.\left[C o l o r==^{\prime} \text { Red }\right]^{\prime}\right]}(P)\right)\right) \bowtie S P J\right) \bowtie\right.$ $S P J)$
(8) $\pi_{[P I D, J I D]}(S P J) \div \pi_{[J I D]}\left(\sigma_{\left[C I T Y=^{\prime} \text { London }^{\prime}\right]}(J)\right)$
(c) Formulate the queries (1), (2), (7), and (8) in the tuple relational calculus.
(1) $\{P \mid \exists X \in S P J(X . Q T Y>=400 \wedge X . Q T Y<=850 \wedge X . S I D=$ $P . S I D \wedge X . P I D=P . S I D \wedge X . J I D=P . J I D \wedge X . Q T Y=$ $P . Q T Y)\}$
(2) $\{P \mid \exists X \in S \exists Y \in J \exists Z \in S P J(Z . S I D=X . S I D \wedge Z . J I D=$ $Y . J I D \wedge Z . Q T Y>=200 \wedge X . C I T Y=P . C I T Y 1 \wedge Y . C I T Y=$ P.CITY2) \}
(7) $\left\{P \mid \exists X \in S \exists Y \in S\left(Y . S I D=' S 1^{\prime} \wedge X . S T A T U S<Y . S T A T U S \wedge\right.\right.$ $X . S I D=P . S I D)\}$
(8) $\{P \mid \exists X \in S P J \forall Y \in J(X . C I T Y='$ London' $\Rightarrow(\exists Z \in$ $S P J(Z . P I D=X . P I D \wedge Z . J I D=Y . J I D \wedge X . P I D=P . P I D))\}$
(d) Formulate the queries (1), (3), (4), and (8) in the domain relational calculus.
(1) $\{\langle S X, P X, J X, Q T Y X\rangle \mid\langle S X, P X, J X, Q T Y X\rangle \in S P J \wedge$ $Q T Y X>=400 \wedge Q T Y X<=850\}$
(3) $\{\langle J X\rangle \mid \exists J N X, J C X(\langle J X, J N X, J C X\rangle \in J \wedge$ $\exists S Y, S N Y, S S Y, S C Y \quad(\langle S Y, S N Y, S S Y, S C Y\rangle \in S \wedge$ $\exists P Z, Q T Y Z(\langle S Y, P Z, J X, Q T Y Z\rangle \in S P J \wedge$ $J C X \neq S C Y))$ )
(4) $\{\langle J N X\rangle \mid \exists J X, J C X(\langle J X, J N X, J C X\rangle \in J \wedge$ $\exists S Y, P Y, J Y, Q T Y Y(\langle S Y, P Y, J Y, Q T Y Y\rangle \in S P J \wedge$ $\left.\left.\left.J X=J Y \wedge S Y=' S 1^{\prime}\right)\right)\right\}$
(8) $\left\{\langle P X\rangle \mid \forall J Y, J N Y, J C Y\left(\left(\langle J Y, J N Y, J C Y\rangle \in J \wedge J C Y={ }^{\prime}\right.\right.\right.$ London' $) \Rightarrow$ $\exists S Z(\langle S Z, P X, J Y\rangle \in S P J))\}$

