B561 - Selected Solutions for Assignment 5

Dirk Van Gucht \& Mathias Niepert

November 24, 2007

Figure 1: B+-tree

1. Consider the partially specified B+ tree in Figure 1.
(a) See Figure 2.
(b) See Figure 3.
(c) See Figure 4.
2. See Figure 5 .
3. (1) (a) Match, Sailors.sid <50000.
(a) Match, Sailors.sid $=50000$.
(2) (a) No Match.
(b) Match, Sailors.sid $=50000$.
(3) (a) Match, Sailors.sid $<50000 \wedge$ Sailors.age $=21$.
(b) Match, Sailors.sid $=50000 \wedge$ Sailors.age >21.
(c) Match, Sailors.sid $=50000$.
(d) No match.

Figure 2: Solution to problem 1(a)

Figure 3: Solution to problem 1(b)
(4) This question can be understood in two ways:
(i) The textbook has a typo and there is only a hash-index on \langle Sailors.id, Sailors.age〉:
(a) Match, Sailors.sid $=50000 \wedge$ Sailors.age $=21$
(b) No match.

Figure 4: Solution to problem 1(c)

Figure 5: Possible solution to problem 2. Insertion of 128* causes recursive split of order 4.
(c) No match.
(d) No match.
(ii) There is a hash and a B+-tree index on \langle Sailors.id, Sailors.age \rangle :
(a) Match, Sailors.sid $=50000 \wedge$ Sailors.age $=21$ (Hash and B+-tree)
(b) Match, Sailors.sid $=50000 \wedge$ Sailors.age >21 (B+-tree)
(c) Match. Sailors.sid $=50000$ (B+-tree)
(d) No match.
4. Consider the following SQL query

SELECT ROADID

FROM ROADS R, ZONES Z1, ZONES Z2
WHERE R.SRCZONE = Z1.ZONEID AND R.ENDZONE = Z2.ZONEID AND Z1.TYPE $=$ ' R ' AND Z2.TYPE = 'C' AND R.DIST < 10
(a) Please note the linebreak after ... $(Z O N E S) \times$!
$\Pi_{R O A D I D}\left(\sigma \quad \begin{array}{c}S R C Z O N E=Z O N E I D_{1} \wedge \\ E N D Z O N E=Z O N E I D_{2}\end{array} \quad\left(R O A D S \times \rho_{X \rightarrow X_{1}}(Z O N E S) \times\right.\right.$
$T Y P E_{1}={ }^{\prime} R^{\prime} \wedge T Y P E_{2}={ }^{\prime} C^{\prime} \wedge D I S T<10$

$$
\left.\left.\rho_{X \rightarrow X_{2}}(\text { ZONES })\right)\right)
$$

(b) Our assumption is that the ZONE table is much smaller than the ROADS table. The query tree of the naive evaluation is depicted in Figure 6. In Figure 7 one can see the tree after the selections have been pushed down, and in Figure 8 after the Cartesian products have been rewritten as joins.

Figure 6: Query tree of naive evaluation.

Figure 7: Query tree after the selections have been pushed down.

Figure 8: Query tree after making Cartesian products into joins.

