
Plale
Indiana University

1 of 12

Thread Scheduling and
Synchronization

• Thread models and issues in scheduling.

• After this lecture you will know enough to
understand the options and intricacies of most
thread APIs

Plale
Indiana University

2 of 12

Thread Models

• We can view the kernel as having its own
threads

- kernel threads or LWPs (lightweight
processes)

- a LWP can be viewed as “virtual CPUs” to
which the scheduler of a threads library
schedules user-level threads.

• Three dominant models for thread libraries,
each with its own trade-offs

- many threads on one LWP (many-to-one)
- one thread per LWP (one-to-one)
- many threads on many LWPs (many-to-

many)

Plale
Indiana University

3 of 12

Many-to-One Model

• In this model, the library maps all threads to a
single lightweight process

• Advantages:
- totally portable
- easy to do with few systems dependencies

• Disadvantages:
- cannot take advantage of parallelism
- may have to block for synchronous I/O

- there is a clever technique for avoiding it

• Mainly used in language systems, portable
libraries

Plale
Indiana University

4 of 12

One-to-One Model

• In this model, the library maps each thread to a
different lightweight process

• Advantages:
- can exploit parallelism, blocking system

calls

• Disadvantages:
- thread creation involves LWP creation
- each thread takes up kernel resources

- limiting the number of total threads

• Used in LinuxThreads and other systems
where LWP creation is not too expensive



Plale
Indiana University

5 of 12

Many-to-Many Model

• In this model, the library has two kinds of
threads:bound andunbound

- bound threads are mapped each to a single
lightweight process

- unbound threadsmay be mapped to the
same LWP

• Probably the best of both worlds

• Used in the Solaris implementation of Pthreads
(and several other Unix implementations)

Plale
Indiana University

6 of 12

Contention Scope

• Contention scope is the POSIX term for
describing bound and unbound threads

• Bound thread is said to havesystem contention
scope

- it contends with all threads in system

• Unbound thread hasprocess contention scope
- it contends with threads in same process

• In Pthreads, scope is set at thread creation by a
parameter in the attribute block:
PTHREAD_SCOPE_SYSTEM (system), and
PTHREAD_SCOPE_PROCESS (process)

Plale
Indiana University

7 of 12

Process Scope Context Switching

Four ways to cause a running thread to context
switch:

• Synchronization
- most common: thread goes to sleep on

mutex or condition variable

• Pre-emption
- running thread does something that causes

high-priority thread to become runnable
- cannot be implemented entirely in user-

space except in a one-to-one model

• Yielding
- thread may explicitly yield to another

thread of same priority

• Time-slicing
- threads of same priority may be context

switched periodically

Plale
Indiana University

8 of 12

Process Scope Context Switching

• Time slicing and pre-emption cannot be done
completely in user space

- at very least a signal needs to be sent and/or
handled

• Question: What happens when library context
switches threads?



Plale
Indiana University

9 of 12

In Practical Terms

• What should you do in your programs?
- ideally you can choose the number of

LWPs you need
- few actual libraries support this

- if need many thousands of threads, process
scope is the only option for the bulk of
them

- if program is CPU bound, need at least one
LWP per CPU on your machine

- if program performs blocking system calls,
need one LWP per simultaneous blocking
call

• Summary: for most practical purposes, use
bound threads

- it is more of a sure bet with current
implementations

- after all, Solaris has cheap LWP switching,
LinuxThreads are one-to-one, Windows NT
makes it hard to use unbound threads (fibers)

Plale
Indiana University

10 of 12

- you can set the initial thread stack size

Plale
Indiana University

11 of 12

Synchronization Building Blocks

• Most synchronization on symmetric
multiprocessors is based on an atomic
test and set instruction in hardware

- we need to do a load and store atomically

• Example:

try_again:
ldstub address -> register
compare register, 0
branch_equal got_it
call go_to_sleep
jump try_again

got_it:
return

• ldstub: load and store unsigned byte (SPARC)

• Other kinds of atomic primitives at the
hardware level may be even more powerful

- e.g.,Load LockedandStore Conditionalon
the Alpha

Plale
Indiana University

12 of 12

Cross-Process Synchronization Variables

• A synchronization variable can be used to
synchronize between multiple processes

• How it is done in Pthreads:
- the variable needs to be placed in shared

memory (can also be stored persistently in
a file!)

- both processes must know about the
variable

- exactly one of the processes must initialize
the variable to be cross-process

• Cross-process synchronization is slower (?)


