Design for a Multiprocessing Heap

with On-board Reference Counting

by
David S. Wise

Computer Science Department

Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 163 — Revised

Design for a Multiprocessing Heap
with On-board Reference Counting

by
David S. Wise

July, 1985

This material is based on work supported by the National Science Foundation under grant rumber
DCR 84-05241.

To appear in The Proceedings of the IFIP Int’l. Conference on Functional Programming
Languages and Computer Archstecture in Nancy, France, September 16-19, 1985.

Design for a Multiprocessing Heap with On-board Reference Counting

David S. Wise

Computer Science Department
Indiana University
Bloomington, IN 47405-4101 / USA

Section 0. Introduction

A project to design a pair of memory chips with a modicum of intelligence on board is
described. Together, the two allow simple fabrication of a small memory bank, a heap of binary
(LISP-like) nodes that offers the following features:

e64-bit nodes;

etwo pointer fields per node of up to 29 bits each;

ereference counts implicitly maintained on writes;

o2 bits per node for marking (uncounted) circular references [9);
o4 bits per node for conditional-store testing at the memory;

eprovision for processor-driven, recounting garbage collection.

Many banks like this can be assembled to provide a large heap, which may share the same
address space with conventional memory. This distinguished portion of memory responds quickly
to additional commands, like “Give me the address of an available node (in your bank),” which
are ignored by others. I

Such memories may be used in uniprocessors or, more importantly, in multiprocessors where
the locality of reference counting avoids the inter-processor synchronization necessary for garbage
collection. This kind of architecture is envisioned by the Daisy project at Indiana University.

The remainder of this paper is organized in seven parts. The first discusses a particular
multiprocessor environment that motivates this design. The second deals with the history of
storage management, with emphasis on the relationship between garbage collection and reference
counting. The third questions the course of that history, with its current emphasis on garbage
collection. Then the major features and modes of operation of this memory are described. The
fifth and sixth sections describe details of the Control Chip and of the Memory Chip. The last

section reviews the design progress and offers some conclusions.

Section 1. Motivation

The work reported here is motivated by an architecture designed for multiprogramming [8,10],
specifically the Daisy applicative programming language [18, 28]. The advantages of applicative
programming and heap memories for multiprocessing have been discussed elsewhere [7, 28], but

difficulties of heap management have not been confronted.

In order to enjoy the benefits of multiprocessing it will be necessary to keep more than,
say, ten processors uniformly busy. Otherwise, the (usually logarithmic) overhead of process
dispatch/recovery would consume any local acceleration in computation speed, nullifying the
effort, as compared to uniprocessing which incurs no such costs. And ten processors can consume

the available heap very quickly, indeed!

One requirement of heap multiprocessing is that available space necessarily must be dis-
tributed so that processors can obtain new nodes from many sources [17]. Otherwise they will
queue at the single source of available nodes, and this multiprocessor will run only as fast as that

uniprocessor allocator.

-

Synchronization-avoidance suggests that conventional garbage collection be eschewed as much
as possible. Operating on the philosophy of determining garbage “by the process of elimination,”
it requires some synchronization among all heap processors in order to work. It would be far
more desirable o determine that a node has become available without communication among

processors—without lots of processor/processor interlocks.

Reference counting, in contrast, involves inherently local operations and message passing
(which need not involve the processes that manipulate the heap, as we shall see.) Even if it
cannot recover certain circular structures, it still can postpone synchronization-intensive garbage

collection when a hybrid storage manager is used.

Section 2. History

A consequence of the separation of the memory from the processor in a Von Neumann machine
(Babbage’s store from his mill) has been that memory conceptually contains no intel]iéence; all
it does is fetch and store. With this perspective, hardware engineers have been very successful
over the years in squeezing more and more memory into less and less volume. While there have
been proposals for unifying mill and store to form pieces of larger systems (dating from Von
Neumann’s cellular automata [25]), few multiprocessors have become gerious products because of

the increasingly efficient designs of fast monolithic memories.

A few efforts to build intelligence into the store have been quite successful. Associative
memory is an example. The most familiar example is hierarchical memory, wherein information
migrates away from the processor according to the infrequency of its use. In various designs this
shows up as cache, paging, virtual memory, or backing store which are commonly implemented
by interposing address-logic (that causes surreptitious migration of data among storage media)

between the processor and a conventional memory.

Another is the concept of a self-managing heap memory, most familiar in LISP and data-base-
management systems, where unused nodes automatically migrate to Available Space. We study
this concept here. Heap oriented languages like LISP, SNOBOL, Scheme [22] and Daisy [18],
must include some sort of storage manager or collector, commonly a garbage collector. Garbage
collection identifies available nodes by elimination; it identifies those nodes that are being used and
condemns the others. Originally, such inference required a quiet heap (off-line storage recovery)
unsuitable for real-time applications. More recently algorithms that work with a notsy heap have
been developed for on-line [1] or dual-processor [e.g. 11] collection; some ha\'re been implemented

in commercial hardware (e.g. by Symbolics [20] or Texas Instruments).

Both quiet and noisy heap algorithms, however, require strong interaction between the col-
lector and the user of the heap—commonly called the mutator—lest heap dynamics interfere with
the logic of elimination. In the quiet case, off-line collection is alternated with on-line mutation on
a uniprocessor, and in the noisy case a mutator process is strongly choreographed (i.e. delicately
programmed to synchronize) with a collector process using sensitive inter-process communication

(e.g. ‘coloring’) on each node in the heap. Neither generalizes to larger-scale multiprocessing.

There have been constrained proposals for multiprocessing collectors. Hewitt and Lieberman
[19] propose one that depends on a genetic address ordering remarkably absent in my experience
with lazily constructed lists. Hudak and Keller [13] suggest one based on task queues with high
message traffic.

State-of-the-art storage managers, as used in Smalltalk systems [15, 6, 24] are hybrids of
garbage collection and reference counting. Due to Collins [4], reference counting requires that
each node in the heap maintain a count of active references to it; when this count falls to sero,
the node becomes available, It is able to reveal and to recover the plethc;ra of nodes that are
lightly shared [3] and that have short lifetimes. Contrary to apocryphal tenets repeated by Baker
1], interesting circular structures can be handled by a referencing-counting collector [9, 2, 14],
and neither extra address space nor extra processor cycles need be required to maintain accurate

counts. The point is argued below.

In a hybrid system, moreover, garbage collection and reference counting work together sym-
biotically. Reference counts cheaply recover the vast amounts (3] of ephemeral [20], lightly or
uniquely [23] used space, thus postponing the next garbage collection. Bits already dedicated to
counts at each node obviate the need for special ‘mark’ or “forward’ bits there, to be used exclu-
sively during garbage collection. The certainty of eventual garbage collection allows smaller, but
equally effective, reference count fields. Even if an intermediate count had ascended to some arti-
ficial, non-decrementable “infinity,” eventually it might be accurately recounted to a lower value
during traversal by garbage collection [29, 5, 27]. Any accumulation of dereferenced circular
structures would be recycled then, too.

Section 8. Why not reference counting?
From the perspective of uniprocessing, it is hard to argue about the virtues of software

implementations of storage collectors. Garbage collection has the advantage of accomplishing a
lot for the memory cycles invested, because it occurs relatively rarely and each node in use is
visited only a few times then. In contrast, reference counting (in software) can require a sixfold
increase in the time for a simple memory write instruction, while increasing the address space
required [1]. The cost-per-node of software garbage collection, thus, compares with the cost of
onc pointer assignment under software reference counting,

With software reference counting, a memory write requires that the count of the newly written
pointer first be incremented (2 memory cycles when the arithmetic is done in the processor), the
obsolete pointer fetched and its count decremented (3 memory cycles), and finally the new contents
stored (1 memory cycle). More work remains when a decremented count reaches gero! Also, each

memory cell must be expanded to include a reference count, consuming precious address space.

The software situation has given rise to the following reasoning: “Reference counting in
software is slow; software garbage collection is fast; algorithms can be accelerated by hardware

implementations; therefore, the fastest storage manager is 2 hardware garbage collector.”

But why couldn’t reference counts, like garbage collection, be implemented in hardware? Two
ideas occur immediately: first, place the count field in separate memory af the same address as
the node counted. Second, move the simple increment/decrement oper#tions from the processor
to the memory. There, 2 write instruction requires the dispatch of an increment, fetch of the
former contents, dispatch of the decrement, and finally the write. No additional address space is

congumed!

Borrowing an idea from virtual memory, let us arrange a processor/memory interface so

that these four steps are dispatched not from the processor, but from dedicated circuitry at

or beyond the memory gateway. The processor need only dispatch a pointer write (as before)
and no processor cycles are lost. The increment and fetch can proceed in parallel, as can the
decrement and store. Therefore, the pointer write instruction need take time that is the larger
of one processor or two memory cycles (really one read-modify-write), instead of six processor

cycles!

What happens when a count is decremented to zero? In the case of software reference count-
ing, the processor is responsible for updating the available space list, consuming more processor
cycles. But now memory becomes responsible for maintaining that list, and updating may be
postponed to occur in parallel with the next memory cycle. Available space may be linked using
the same field which was (until the decrement) the reference count associated with that node.
With memory maintaining that list however, we introduce a new processor/memory instruction:

“Give me the address of an available node.”

(The contents of any released node remain unchanged while it is on an “available space
list.® An idea due to Weizenbaum [26] is implicit here in the eventual reinitialization of an avail-
able node’s contents—after its reallocation. As the stale contents are overwritten, the archaicly

counted references are destroyed. Reference-count decrements, though deferred, remain effective.)

Finally, we observe that reference counts decentralize memory management for a multipro-
cessor heap. In contrast to garbage collection, which requires implicit communication among all
nodes in use, maintenance of reference counts is a thoroughly local exercise, only the nodes di-
rectly involved in a pointer transaction are affected. Moreover, these collector transactions may be
reduced to operations so simple (5.e. two-cycle write) that the mutators need not be significantly
slowed. A heap-oriented system containing many memory banks and many processors may run
at full capacity for longer periods without using the synchronization, and (perhaps) uniprocessing

required for garbage collection.

Section 4. Features

The design provides the following features:
e64-bit (8-byte) nodes;
otwo pointer fields per node of up to 29 bits each;
el bits per pointer for marking (uncounted) circular references [9];
2 bits per pointer for conditional-store testing at the memory [8, 10]
edouble cycle 32-bit write with automatic reference-counting;
egingle cycle allocation of a ®*new™ cell from available space;

equery on census of local Available Space;

(&3]

equery whether a particular node is uniquely referenced;
eenter/exit garbage-collection mode which enables/disables .
single cycle 32-bit read and unconditional write;
= single cycle increment of reference counts (in lieu of marking);
2 pointer reversal write-instructions for in-place traversal [21].
oZeroing of all counts on entry to garbage collection mode.

eReconstruction of available space list from zero counts on exit.

Present design in CMOS provides for a bank of 2048 32-bit words residing on one chip; two
such chips, plus a control chip, make up a bank of 2047 nodes in the heap, and can be packaged
in a single 64-pin DIP carrier. (See Figure 1.)

The control chip contains a hidden 12-bit field at each address that is used for storage
management. One bit is reserved for use only in garbage collection [19, 24]. The other eleven
have either of two uses: to maintain a linked list of available nodes or, in allocated nodes, to
sustain an 11-bit reference count. Invisible to the processor, this field rgsponds implicitly to
pointer writes, incrementing (the new referent) once and decrementing (the displaced referent)
once with each write instruction; thus, the need for two-cycle writes. (Eleven bits are necessary
to provide a chain of 2047 available nodes, but not quite sufficient to sustain accurate local counts
when complex sfructures are forced into a single bank [2].) It also maintains the available space

list consistently with zeroed counts and requests for “new® nodes.

Several such memory banks may be ganged on an address bus (with different prefix addresses
selecting only one at a time) or they may be distributed at one end of a processors/memories
switch that allows simultaneous paths from several processors o several banks. The former
possibility makes this design attractive for the existing uniprocessor market, but it is the latter

arrangement, well suited to multiprocessing, that motivates this design.

Johnson [17] argues two virtues of separation of processors from memory-managing storage
on either sides of a store/forward (e.g. a banyan) switch. First, a processor which is rapidly
building some data structure may be supplied in real time with nodes uniformly distributed from
from all memory banks; the switch is configured as a new sink, each node of which sustains the
address of one available node in anticipation of a “New” request. Thus, locality of reference—so
desirable in virtual memories—is intentionally destroyed. Second, a data structure so distributed
is far less likely {o cause interprocessor contention for paths to memory. Without locality of
reference all memory access patterns are randomized; two processors would be most unlikely to

clash in temporary contention when traversing different parts of the same structure.

"Back

i Door”
= 11 bits |
address
] ~
Incr/Decr]
' | setect

Memory

Figure 1. Memory Bank

In either bus or switch configuration, each bank requires a *back door® path to the athers
(respectively, a bus or a switch) for propagating increment/decrement requests across banks.
Such requests occur at twice the rate of writes—an increment and a decrement for each pointer
assignment, though not all need be propagated off-bank if references are local. Indicated by a
port at the right of Figure 1, this “back door® port is one-way and contains only address lines,
select, and one control line (increment/decrement; it might be replaced by eynchronising selection
on a two-phase clock.) Thus, a path independent of that for data transfer is necessary among all
memory banks and from processors to memories (e.g. for issuing decrements releasing pointers

from registers.)

If used in a multiprocessor system, this memory provides a simple synchronization primitive
[7], that acts like a localized “test-and-set® instruction, but without the originating processor’s
waiting. Nicely interfacing with reference-counting, the double-cycle write instruction is used
first to read the previous contents of the destination word; if the selected bit is already set, the

overwrite is canceled. Otherwise, the new data is stored on the second cycle.

A garbage collection mode is provided to accelerate write instructions and to inhibit im-
plicit reference count operations. During garbage collection reference counts are incremented
(from gero), without decrementing. If left in this mode permanently, the package can act like a
conventional memory of 4096 32-bit words for traditional (e.g. FORTRAN) use.

The choice of 2047 nodes is dictated by current technology. Current design requires nine
control pins (described below), 32 data pins, and 2n + 1 address lines for a memory of 2™ 64-bit
nodes. Of these, n address lines are used to receive increments/decrements from other memories
(or processors), and n + 1 address lines are necessary to communicate an order from a processor

to either half of a binary node.

Moreover, memory requires two chips with 25+" bits stored on each, one for each half of the
64-bit node. This constraint suggests that n be odd, o that these chips be squarish. Current
technology provides 64-pin DIPs and RAM bits of area 400-600 pm?, so both constraints indicate
that n = 11. Thus, an ordinary memory chip is similar to a 64K RAM.

This memory requires more control lines than conventional read-write/select control. There
are four ordinary lines for power, ground, clock, and select. Instead of a single line to determine
read /write, three lines provide for eight instructions. Of these, two provide for fail-safe switching
between heap mode and collection mode. In either mode the remaining six operations may be

gpecialized.

In heap mode, there will be three flavors of write instructions, a read instruction, a NEW
instruction, that requests the address of an available node, a test whether a particular address is
uniquely referenced, and a query for the census of local Available Space. Of these, only the first
four use all address and data pins, so that the last three may be overloaded as a single instruction,

leaving one code to spare.

Three bits in either half of the node are distinguished. Let us perceive these as low-order,
g0 that they would be masked off pointers to 8-byte nodes in a byte addressed memory. Two of
these are used to implement the sting conditional store instruction [7, 16] on separate bits. One

is used to indicate an uncounted circular reference [9].

The three write instructions are, then, the unconditional write, and the conditional write on
either of the two distinguished bits. The third bit does not affect direct (*front door®) control;
if set during a write instruction, it inhibits the ordinary reference counting mechanism [9], as

described in Section 6.

-

Collection mode is intended to provide for a mark/sweep collector. All the 12-bit fields are
initialized on entry into garbage collection. During collection eleven of these bits are used as
a glorified mark to recount references to each node, while the twelfth is used to guide the in-
place traversal [19]. Additional write instructions are tailored to count accesses and to perform

pointer-reversals (free inversions), conditional on those eleven marks or the twelfth tag.

The sweep phase of garbage collection may be handled in either of two ways. Current design
has the command to leave collection mode initiate a hardwired sweep phase, rebuilding the linked
available space list from all nodes unmarked (with zero counts) before returning o heap mode.

Thus, the exit from collection mode will be quite slow.

Alternatively, configuring the counts as an associative memory would obviate the need for
linking available epace. Collection mode could be terminated in one cycle, with “New” requests
handled by an associative memory search for zeroed counts. In this case the count fields could
be much smaller than the eleven bits suggested above [3, 5). |

Two additional control lines are associated with the “back door® (See Figure 1), the extra n
address lines that receive increments/decrements from other memory banks. These are a bank-

select and the increment/decrement indicator.

Thus, the 4+3+2 = 9 control pins have been accounted for. Of these, the lcast conventional
are the middle three, because a processor must be able to transmit 3 bits of command along with
12 bits of address and 32 of data at each bank of memory.

How can these extra two control bits be transmitted from conventional processors? If the
conditional-write instructions are not to be used in a particular application, then the extra two
bits may coincide with the aforementioned low-order sting bits of the data, those bits that address
bytes within a node. Alternatively (and less desirably) two high-order address or data bits could
be sacrificed to control, reducing effective address space to 23° bytes.

Section 5. Control Chip

The control chip is one of three elements forming the bank of 2047 nodes or 16,384 bytes,
and it contains none of this visible memory. It has three parts: a memory of 2048 twelve-bit
“fields,” and control circuitry for both heap mode and collection mode. Since most $asks are
done simultaneously with others, it is difficult to describe it completely; details of its design are

not yet firm.

In “heap mode,” these twelve-bit fields serve either of two purposes, depending upon whether
that node is available or not. If it is available, then it is linked onto an Available Space List, which
is terminated by the 0000s link. (If associative memory is implemented, it might have content of
40005 indicating that it should be on that list.) If it is in use then it will have there a reference
count of co or between 1 and 2046, respectively denoted by 40015 to 77765. Denoted by 77773,
co is a “sticky” reference count that can be neither incremented nor decremented.

The zero terminator for the Available Space List precludes the use of all 2048 addresses 2s
heap cells; Word 0 of each bank is not ucésible in the heap because its address cannot be linked
within the Available Space List, and because ‘allocation’ of that address indicates exhaustion
of available space. Thus, there are only 2047 nodes in each bank. When used as conventional
memory (in collection mode) this constraint need not be observed, because there is indeed memory
at address 0; there are then 16,384 bytes in a bank.

Only the address and control lines reach this chip; it need not “see” all of the data lines
between memory and processor. In terms of the pin counts of the previous section, 9 control lines
and 11 + 12 address lines reach this chip. In addition, four lines, not- connected to the external
world, run from this chip to either of the two memory chips in the DIP. The only connections
necessary to the data bus are for responding to special processor queries like that for the address
of a new node, for the census of available space, or testing whether a node is uniquely referenced.
The responses to all these queries might be offered on the eleven address lines (on the twelfth
address line in the last case), but that arrangement would require that a processor be able to read

address lines. To avoid this unconventional protocol, the twelve data lines must be tied to twelve

10

address lines during these instructions; the tie might occur either at the processor or, more likely,
here in the memory which requires this splice.

In both operating modes, the control chip receives the commands from outside the DIP,
interprets and forwards them to either memory chip for action. For instance, in heap mode this
chip responds to requests for new memory addresses; it will remove a node (without altering
its 64-bit content [26]) from its internal list of available space, set its reference count to one,
and deliver the address on the address lines to a requesting processor (%front door”). When no
nodes are available it responds with the gero address, the address of the unusable 2048" node. It
answers queries regarding population of available nodes and unitary reference counts of specific
nodes in the same way. It is also this chip that responds to requests fo increment and decrement
reference counts from the other memory banks (back door), again without disturbing memory

content.

When memory activity is necessary, the control chip enables either of the two memory chips
to connect o the 32-bit data lines, giving them a three bit instruction telling what is to be done.
In heap mode these are commands to read (single cycle) or one of three write commands (double
cycle): unconditional and conditional (sting [7,10]) on either of two bits. In collection mode
these are a read or write (each single cycle), or two memory/data-bus swaps (double cycle). All

together, six different commands are possible, although not all are used in either mode.

Upon entry to (off-line) garbage collection mode, all twelve-bit fields are initialized to this
40003 pattern; if the node is never touched it will remain there after collection to be linked or
scavenged into available space. As a node is accessed thereafter, this count is incremented (until,

as above, it might stick at oo & 7777g). Thus, eleven low-order bits together act as a mark bit.

The garbage collector uses the high-order bit to direct its binary traversal without altering the
low-order eleven bits containing the count. Two pointer-reversal writes encapsulate the critical
steps in the in-place traversal algorithm. In one, the processor presents the address of the current
‘stack’ [19] on the data line as it presents the address of any accessible (probed) node on the
address lines. If the node is already marked (has already been counted at least once), then the
count at that address is simply incremented; if not, the value on the data lines are swapped with
one pointer in that address, its count incremented to one, and its tag flipped. Thus, another
node is stacked. The other pointer-reversal write is used to pop the stack and does not increment
counts. In that instruction the value on the data bus is swapped into either half of the node
(depending on its tag), and the tag might be flipped (depending on its value). The net effect is
popping the stack.

11

Several processors may use these two instructions to mark the variously rooted structures
without mutual interference. Because pointer-reversal occurs af memory simultaneously with
mark and tag tests, each node may be stacked only once, but every probe to it will be counted.
The alternate address bus (back door) is ignored during collection.

Section 8. Memory Chip
As the control chip is the difficult part of this design, so the memory chip is the elegant part.

Two identical chips are required; most of their area is composed of conventional memory cells.
The interesting difference from conventional memory is two 32-bit data registers at the periphery.
The two chips correspond to the CAR and the CDR fields of ordinary LISP nodes. They have
been designed as 2048 x 32-bit memories, to provide 64-bit nodes.

On a typical write instruction (heap mode), the instruction is decoded by the control chip,
which enables and instructs either of the memory chips. Simultaneously, the new pointer arrives
at that chip on the first memory cycle and is latched in an outer 32-bit register on the edge of the
memory chip.. An increment message will already have been dispatched to the alternate address
line (back door) of the DIP to which those 32 bits point. Simultaneously, the extant content at
the destination of the write instruction is fetched to an inner 32-bit register adjacent to the other
register.

During the second cycle, the contents of the two registers are swapped, the new contents are
written into the destination, and a decrement message is sent from the outer data register on this
chip o the “back door® associated with the former contents of that memory. In the case where
the former and new pointers coincide, the net effect of the transaction is a null operation (unless
the pointer’s reference count initially was 10225.) This case is important, because it shows that
the decrement message must follow the increment to the referent (so that a count of 1 goes to 2,
and back to 1; instead of to 0, whence it is recycled before it can get back to 1.)

The conditional-write instruction and manipulation of circular references involves simple
twists to the control described above. In the case of either of two ®sting instructions® [7, 16], it
is necessary that the entire write be canceled when the respective memory bit is already set to 1
as the write is attempted. In many ways it is similar to a ®test and set® (although the processor
does not wait) or the “add to memory® [12].

To implement the “sting,® one of the two distinguished bits is extracted from the inner
register, which contains extant contents of the addressed field. If that bit is “on,® then the
register-swap described just above is inhibited. The write completes in the ordinary manner: the

extant content is refurned to memory (without changing its count), and the “new” content is

12

shipped off as a “decrement® message to arrive on the heels of the already dispatched increment,
nullifying it.

The idea behind reference counting of circular structures is that certain distinguished circular)
links are not counted [9]. It remains a burden on the programmer that such cycles be created
all at once, that no reference into the cycle outlive the reference by which it gained access there,
and that these distinguished links be easily detectable. A bit in each pointer is dedicated to
distinguishing such “cycle closing” links.

If such a bit is present in the new contents being written to a poihter field in memory, then
the usual increment message will not have been sent (or perhaps redirected to local address 0).
When such a bit is found in the obsolete pointer register (which would generate a decrement

message), then that message is similarly canceled (or diverted).

The same swapping mechanism will be used to provide a single instruction to invert pointer
chains during collection mode. The collector will access a node by addressing it, while offering
a chain address on the data line. The control chip will (increment the reference count, marking
the node, and) chain the stack in the appropriate way. Ii will use the same two registers on one
(and later the other) of the two chips to perform the pointer swap that is the critical step in the
classic Deutsch-Schorr-Waite Algorithm [21].

Section 7. Progress and Conclusions The design of the memory chip, described in the
preceding section, has been pursued as far as a partial layout. Its floor plan and layout are firm
and well understood. The control chip has a functional specification, and a spare command code

remains that might be used in further development.

While “pin out® has been considered here, there has been no enumeration of the pads—
specifically the test pads-that would be necessary to support production. The control chip offers
a particular challenge in this respect, because its memory is not visible from any external pins.
One must provide additional pads to allow tractable testing of such internal circuits.

Finally, Hughes [14] has recently proposed the use of Tarjan’s linear-time cycle detection
algorithm to allow reference counting to recover small, circular structures. It might be possible to
provide such a facility on the control chip when the cycle is localized to reside entirely within the
local memory. While there is area and an instruction available for such a facility, and while it is
consistent with Bobrow’s recommendations [2], its time overhead might undo the constant-time

behavior already provided.

13

9. D.P. Friedman and D.S. Wise. Reference counting can manage the circular environments
of mutual recursion. Inform. Proc. Lirs. 8, 1 (January, 1079), 41-44.

10. D.P. Friedman and D.S. Wise. An approach to fair applicative multiprogramming. In
G. Kahn (ed.), Semantics of Concurrent Computation, Berlin, Springer (1978), 203-250.

11. D. Gries. An exercise in proving programs correct. Comm. ACM 20, 12 (December,
1977) 921-930.

12. A. Gottlieb, R. Girshman, C.P. Kruskal, K.P. McAuliffe, L. Rudolpk, and M. Snir.
The NYU ultracomputer—Designing an MIMD shared memory parallel computer. IEEE Trans.
Computers C-32, 2 (February, 1983), 175-189.

13. P. Hudak and R.M. Keller. Garbage collection and task deletion in distributed applicative
processing systems. Conf. Rec. 1982 ACM Symp. on LISP and Functional Programming (1982),
168-178.

14. R.J.M. Hughes. Reference counting with circular structures in virtdal memory applicative
systems. Programming Research Group, Oxford (1984).

15. D.H.H. Ingalls. The Smalltalk-76 programming system: design and implementation.
Conf. Rec. 5th ACM Symp. on Principles of Programming Languages (1978), 9-15.

16. S.D.Johnson. Connection networks for output-driven list multiprocessing. Tech. Rept.
114, Computer Science Dept., Indiana University (October, 1981).

17. S.D. Johnson. Storage allocation for list multiprocessing. Tech. Rept. 168, Computer
Science Dept., Indiana University (March, 1985).

18. A.T. Kohlstaedt. Daisy 1.0 reference manual. Tech. Rept. 119, Computer Science Dept.,
Indiana University (November, 1981).

19. H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetime of
objects. Comm. ACM 28, 6 (June, 1083), 410-429.

20. D. Moon. Garbage collection in a large LISP system. Conf. Rec. 1984 ACM Symp. on
LISP and Functional Programming (1982), 235-246.

21. H. Schorr and W.M. Waite. An efficient machine-independent procedure for garbage
collection in various list structures. Comm. ACM 10, 8 (August, 1967), 501-506.

22. G.L. Steele, Jr. and G.J. Sussman. The revised report on SCHEME: a dialect of LISP.
MIT A.L Memo 452 (January, 1978).

23. W.R. Stoye, T.J.W. Clarke, and A.C. Norman. Some practical methods for rapid
combinator reduction. Conf. Rec. 198§ ACM Symp. on LISP and Functional Programming
(1982), 159-166.

24. N. Suguki and M. Terada. Creating efficient systems for object-oriented languages. Conf.
Rec. 11th ACM Symp. on Principles of Programming Languages (1984), 200-206.

25. J. Von Neumann. Theory of Self-Reproducing Automata (Edited and compiled by A. W.
Burks), Urbana, Univ. of Illinois Press (1966).

26. J. Weizenbaum. Symmetric list processor. Comm. ACM 8, 9 (December, 1963), 524-544.

27. D.S. Wise. Morris’s garbage compaction algorithm restores reference counts. ACM
Trans. Prog. Lang. & Systems 1, 1 (July, 1979), 115-120.

28. D.S.‘Wise. The applicative style of programming. Abacus 2, 2 (Winter, 1985}, 20-32.

29. D.S. Wise and D.P. Friedman. The one-bit reference count. Nordisk. Tidskr. Informa-
tionsbehandling (BIT) 17, 3 (September, 1977), 351-359.

