THE DOUBLE BUDDY-SYSTEM ¥

by
David S. Wise
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecunicaL ReporT No. 79
THE DouBLE Buppy:SYSTEM

Davip S. WisEe
DeEcemBER, 1978

¥ Research reported herein was supported (in part) by the

National Science Foundation under a grant numbered MCS77-22325.

Abstract: A new buddy system is described in which the
region of storage being managed is partitioned into two sub-
regions, each managed by a fairly standard "binary" buddy
system. Like the weighted buddy system of Shen and Peterson,
the block silzes are of sizes 2n+l or 3-2n , but unlike theirs
there 1s no extra overhead for typing information or for buddy
calculation, and an allocation which requires splitting an
extant available block only rarely creates a block smaller
than the one being allocated. Such smaller blocks are carved
out only when the boundary between the two subregions floats;
the most interesting property of this system is that the
procedures for allocation and deallocation are designed to
keep blocks immediately adjacent to the subregion boundary
free, so that the boundary may be moved within a range of
unused space without disturbing blocks in use. This option
is attained with a minimum of extra computation beyond that
of a binary buddy system, and provides this scheme with a

new approach to the problem of external fragmentation.

A new buddy system 1s described in which the region of
storage being managed is partitioned into two subregions,
each managed by a fairly standard "binary" buddy system. Like
the weighted buddy system of Shen and Peterson [11] the block
sizes are of sizes 2™ op gag” , but unlike their's there is
no extra overhead for typing information or for buddy calculation,
and an allocation which requires splitting an extant available
block only rarely creates a block smaller than the one being
allocated. Such smaller blocks are carved out only when the
boundary between the two subregions floats; the most interesting
property of this system 1s that the procedures for allocation
and deallocation are designed to keep blocks immediately
adjacent to the subregion boundary free, so that the boundary
may be moved within a range of unused space without disturbing
blocks in use. This option is attained with a minimum of
extra computation beyond that of a binary buddy system, and
provides this scheme with a new approach to the problem of
external fragmentation.

The remainder of this paper is in six parts. A review
of the history of the buddy system is followed by a descrip-
tion of the data structure necessary for the double buddy-
system. An example developed in that section 1s continued
in the next which deals with allocation when the boundary
is fixed. The next section describes the algorithm for re-

leasing used blocks and is followed by a section on allocation

il

with boundary movement. The final section anticipates the
behavior of the algorithm and improvements available through

tuning and generalization.

History

This paper presents an algorithm for the double buddy-
system, an alternative to Peterson's weighted buddy system
[11] which has been known by this author for five years—-—
antedating his knowledge of that work. Because of the in-
terest in the buddy system, (both for application as the
storage manager of various operating systems and, therefore,
as a procedure for significant mathematical analysis), the
novel properties of this algorithm, and the unliklihood that
it will be investigated further in these quarters, it is
time that others saw it. Because of the availability of
detailed programs the buddy system [5, 6-Appendix] and the
difficulty of expressing bit manipulations in higher level
languages, the double buddy-system will be described in
English with a minimum of code. The invariants given are
peculiar to the new features of this algorithm.

The original buddy system, discovered by Knowlton [4]
and Markowitz, studied by Knuth [5] and Purdom and Steigler
[7,8] managed blocks of size 2n and has been called the binary
buddy system. Hirschberg [3] developed Knuth's idea of a
Fibonaceci buddy system, which provided blocks roughly of
Fn£¢nﬁf§‘ (where ¢ = (1 +/5)/2 = 1.618...), which compli-
cates the problem of locating buddies [1,2]. Shen and Peter-
son [11] present a modification to a weighted buddy system,

n+2

in which a block of size 2 is split into buddies of size

2" and 32" and a block of size 3+2% is split into bud-
dies of size 2" and 2n+l (just as a Fibonaceci block of
size F is split into buddies of size Fn and F >,

n+2 n+l
Thus, the ratio of successive block sizes has decreased from

2 (binary) to 1.618 (Fibonacci) to 1.417 (weighted; this is
the simple average of the alternating 4/3 and 3/2 ratio) with
a corresponding improvement on internal fragmentation.

Internal fragmentation [9] is an inefficiency in stor-

age management caused by allocating a block satisfying a
request which is larger than required. Buddy systems are
characterized by a fixed sequence of "legal" block sizes,

and so a lower ratlo between successive sizes will reduce
this internal fragmentation, [6,11] and analytic results
[6,10] confirm this. According to Russell's analysis, we may
expect 30%% of allocated memory to be wasted in this way for
a binary system, versus an expected 22% for the Fibonacci

%
system, and something like 16%% for a weighted buddy system.

*Russell's formula for expected overallocation does not really
apply to the weighted buddy system because it is not "simple",
but Peterson's minimum and maximum [6 - p. 425] correlate
nicely with those Russell's formulae would derive from the
simple average above. This 16%% figure is (mis)derived simi-
larly for comparison, but it seems to fit Peterson's Figures

3 and 4.

External fragmentation is an inefficiency in management

characterized by the unallocated space being in blocks too

small to be useful. It is known that internal fragmentation

is the real problem with the binary buddy system [10, 5, 7],

and Peterson and Norman showed further that external fragmentation
rises when the Fibonacci or weighted buddy system is used to
decrease internal fragmentation [6]. The weighted buddy system,
however, suffers particularly from external fragmentation; its
total fragmentation is worst of any studied and they advise
against 1ts use in general.

Perhaps it is so bad because the weighted buddy system
routinely splits a block to leave an unallocated block available
which 1s smaller than the one being allocated. Such a prolif-
eration of small blocks, which occurs whenever it is necessary
to split to get a block of size 3°2n , encumbers the storage
manager with additional external fragmentation and recombi-
nation time when these too-small blocks go unused. A lesser
problem with the weighted buddy system is that an additional
two type bits are required in every allocated (and unallocated)
block. These are necessary to the "buddy address" calculation,
which 1s considerably more complicated than that for the binary

buddy system [1ll - Corrigendum].

Introduction

The double buddy-system¥* exhibits none of these handi-

caps which hamper the weighted buddy system. Nevertheless,
it provides the same sizes of blocks as the weighted buddy
system so that the discussion of internal fragmentation
above applies in general.+

It also exhibits a new behavior by the way it uses both
ends of the available space lists which tends to push allo-
cated blocks toward the end of the memory region being managed.
This could turn out to be very significant in controlling
external fragmentation. The run-time overhead is ordinarily
quite comparable to that of the binary buddy system; a request
is handled as directly according to two bits from the binary
representation of its size, the "buddyaddress" calculation
is direct (using binary arithmetic also), and there is no
need for additional information in any block. Addresses
carry such information implicitly.

The double buddy system 1s really two binary buddy

systems managing adjacent subregions of one large contiguous

*¥The hyphen is only for parsing assistance.

ikl is requested

TThe exception is when a block of size 2
and only one of size 3-2n (at an address away from the
boundary) is available. Unless special provision is made ,

such a request is unfillable under the double buddy-system.

region of memory. A boundary address, B, separates the region
allocated in blocks of size 2n+1 from that allocated in blocks
of 3-2n . Each subregion has its own array of doubly-linked
lists of available blocks and operates only between its limiting
addresses: the boundary and one end of memory. Each binary
buddy system also endeavors to allocate blocks far from B
whenever possible. Thus, if one subregion is inappropriately
large then some of its blocks adjacent to the boundary will

be free. So the boundary may be moved into this unused region
in order that the other subregion might grow; only available
blocks are disturbed by this tuning and the alterations to

the available space lists are straightforward.

Data Structure

Let the region addressed from and including address L up
to but excluding address H be that to be managed by double
buddy-system. L, the lower, should be even and that H, the
higher 1limit, should be a multiple of three; IL+1 < H . Some
B, an even multiple of 6, is selected so that L < B < H ;

B denotes the boundary between the two subreglons each parti-

tioned into blocks of appropriate size. That is,

Invariant 1: A pointer, P, to a block such that L < P < B

always refers to a block of size 2n+l where P+1 1s neces-

sarily a multiple of 2n+1 .

Invariant 2: When such a pointer P' satisflies B < P' < H

then P' refers to a block of size 3°2n Where P' 1s neces-

sarily a multiple of 3-2n .

We shall use the convention of P pointing to a "two-block"

n) and P' referring to a "three-block" (of size

(of size. 22
3-2n) below to suggest these invariants.

It is straightforward to show that a two-block of size
2n+l at address P may be split into two adjacent two-
blocks of size o™ at addresses P and P-20 respectively
(when n>1), and Invariant 1 above will still be preserved.
Similarly, a three-block size 3-2n at address P' may be

split into two adjacent three-blocks of size 3.2n—l at ad-

dresses P' and P' + 3.2n—1 , respectively, whenever n>1

without violating Invariant 2. Such splits may be rejoined,
of course, and still preserve these invariant relations.

Unused blocks of available space are maintained in doubly
linked lists of similarly sized blocks. Like the binary buddy
system described by Knuth [5], these lists have headers in an
array indexed by the exponents, n above. In this case the array
of headers is partitioned into two arrays; ARRAY2 contains the
headers for lists of unused two-blocks and ARRAY3 contains the
headers for lists of unused three-blocks. Let ARRAY2 be indexed
from 0 up to s and ARRAY3 be indexed from 0 up to t ¥; then s should
equal t (alternatively, t+l), and (H-L)/2°% > 3 (respectively, 2).

Associated with the address of every block in the system is a
bit which indicates whether that block is in use; we shall use the
terms used and free (denoted ¥ and ° in the figures) to indicate the
two values of that bit. (Knuth [5-prob. 29] suggests that this bit
may be located in a separate bit table, a good idea here since the
bit which be in a different position within a used block depending
on whether is is a two-block or a three-block.) No other infor-

mation is needed for used blocks. Free blocks contain three other

¥*The letters s and t are suggested by the second and third
ordinals. A lower bound for these arrays above zero is pos-
sible, but it would restrict our choice of L, H, B, and .

below.

i

pieces of information at their block address: two pointers
for double linking to the appropriate available space list

and a value of n (between 0 and s) where either the block

at P 1s of size 201 n+l

n+l

stretching from address (k-1)2

up through k-2 - 1=P , or the block is at P' of size

3-2rl and stretches from address 3k-2n = P' up through
3(k+1)2rl - 1 . This places the address of any block P
(alternatively, P') at the rightmost (respectively, left-
most) end closest to the boundary address, B .

Figure 1 illustrates an example initialization of a
double-buddy system managing a region of one-hundred words.
The addresses are arbitrary, relative to a zero discussed
in the last seection L=44 , H=144 , s=5 , and ¢t=4 .
Initially we consider B=96 so that the single available
three-block of size U8 1s located at 96 and is linked onto
AVAIL3[4]. The remaining AVAIL3[i] are empty for
0 <1 <3 . There are initially three available two-
blocks of size U4, 16, and 32 located at 47, 63, and 95,
respectively. These are doubly linked onto AVAIL2[1],
AVAIL2[3], and AVAIL2[4] with the other AVAIL2[i] being
empty. The figure indicates how two-blocks are ad-
dressed by their highest (rightmost) word and how

three-blocks are addressed by their lowest (leftmost).

s

Allocation-Fixed Boundary

Let us pursue the example above for a moment and
see how the initialized system of Figure 1 might allocate
space. Consider i1ts response to a request gueue of successively
Fibonacci-sized blocks i1llustrated in Figure 2. The requests
of size 1 and 2 may be satisfied with blocks of size 2l at
addresses U5 and 47, created by splitting the initial block

of size 22

at 47. The request of size 3 is met by fragmenting
three-blocks until a block of size 3-20 at 141 is attained.
The request for 5 1s then satisfied by the extant three-block
of size 3-21 at 132. The requests for 8 and 13 each require
a two-block which is fragmented from an available block too
large; the 8-request is satisfied by a perfectly sized block
at address 55 and the 13-request is filled with a block of
size 2u at address 79. (That leaves avallable two-blocks

4

of size 23 at 63 and 2 at 95.) The request for a block

of size 21 is met by a then-extant three-block of size 3-23
at 96. (The unused three-blocks are of size 3-22 at 120
and 3-20 at address 138.)

The allocation procedure reflected in Figure 2 is
a direct modification of the procedure for other (notably
the binary) buddy systems. When a request of size r is

received, the value of r-1 is analyzed to determine how

the request should be handled. (There is always some

By

for the smallest n < j < s (n < j £ t) such that
AVAIL2[j] (AVAIL3[j]) is not empty. A block of size
2‘}-+l (3-2j) at address P (P') 1is removed from the
head of that 1list (This choice will become more compli-
cated when j=s (respectively Jj=t) below), and suc-
cessively split into buddies of exponents i where
ns<1i<y3 . In each case the buddy whose address is
closest to B 1is freed and returned to AVAIL2[i] (or
AVAIL3[1i]) becoming the only block on that list. The
allocated block will therefore be located at address
P - 2(2j - 2n) (respectively P! + 3(2j - Y

If no such J exists then the request will be con-
sidered unfillable--for the moment. This allows for the
possibility that there is, for instance, a three-block
which could satisfy r , but since 3_2n-l & p g pttl
we are looking for a two-block and there just isn't
anything on AVAIL2[n] ... AVAIL2[s]. We shall make no
provision for this sort of failure; the alternative is
obvious.

A different alternative which we shall consider in detail
below, however, is moving the boundary. Anticipating this
feature, we introduce here two system variables which will

be maintalined in order to indicate when boundary moving is

possible.

- -

Invariant 3: D always denotes the address of the highest

two-block which is used. U similarly contains the address
of the lowest used three-block. When no space is in use

then D = L-1 and U =H .

The memory properly between D and U is available and could
belong to either subregion. Thus D and U always point
down and up from B delimiting a "no=man's~land" of memory
within which B is free to move without disturbing blocks in
use. In Figure 2, D = 79 and U = 96 = B, and B could there-
fore be relocated to 84 or 90.

The reason that D and U are introduced here is that
they must be maintained, even on simple allocation.
Because an available block selected for splitting or for
direct allocation might be this in no=—man's-land, we must
make one last test after allocating a block. If the address
of a newly allocated two-block, P is such that P > D
then D 1is reset up to P . (Similarly if the address
of a newly allocated three-block, P' , is such that
P' < U then U 1s set back to P' .)
This convention preserves Invariant 3 over the simple allocations

described above.

o s

Release

Upon release of a used block the first thing to notice
is whether that block borders upon no-man's-land. When
the two-block at D (respectively the three-block at U)
is released then D will be decreased (U will increase)
after all possible recombination in order to preserve
Invariant 3.

The recombination algorithm is the same as for a
conventional binary buddy system restricted to the sub-
region boundaries [5,6]. The "buddyaddress" calculation is
particularly straightforward with binary arithmetic.

The buddy of a newly freed two-block of size 2n+l at

address P = k.2t _ 1 may be computed as the "exclusive-

or" of P and 2n+1

n

The buddy of a three-block of
size 32 at address P' 1is found by testing whether

P' mod 27 1is even or odd (a mask and test instruction);
if it's even then the buddy is at P' + 3.2% and other-
wise it's at P' - 3-2rl . The buddy of a block is always
of the same size as that block.

After all recombination has been performed then the
resultant free block is returned to available space. If
the originally released block was not at D or U then
the recombined block is placed at the head of the appro-

priate available spacelist and the release procedure

terminates. If it was at D (for two-blocks) or at U

=1 6=

(for three-blocks) then there is more to do to preserve
Invariant 3.

In this case D (respectively, U) is decreased (in-
creased) by the size of the block resulting from recom-
bination; let it be of size 2"*1 1ocated at address P
(3.2 at address P'). When n<s (n < T respectively)
that block is spliced at the tail of the appropriate
available space 1list, where it will always be last or
second-last. (AVAIL2[s] and AVAIL3[t] do not exhibit
this property, and so the released block is spliced on
directly at the tail.) It will be last precisely when
there 1s no other free block of that size already in
no-man's-land closer to B. This 1is easily tested as
we splice it on by checking whether AVAIL2[n].TAIL > P
(respectively, AVAIL3[n].TAIL < P')¥; if so then the
new block is spliced in just ahead of that one which is
already available.

Theorem: There are at most two-blocks of size 2n+1
where n < s or of size 3+2" where n < t in

memory between D and U.

#These inequalities suggest that the array AVAIL2 be
located beneath address L and that AVAIL3 be located above

H; then the empty circular lists are not exceptions.

" iy

The proof derives from the fact that if there were three,
then two of them would be available buddies and hence already
recombined. We arrange for such blocks to dwell at the
bottom of the available space lists so that blocks closest

to B (i.e. in no-man's-land) are allocated last, so that

U-D will tend to be large. (For n=s or n=t this goal is
obtained on allocation where AVAIL2[s] or AVAIL3[t] should

be searched from the head for the first block outside no-
man's-land or, failing that, for the block furthest from

B.)

s+1

Invariant 4: Every block smaller than 2 and 3-2t

with storage address between D and U is at the bottom or

next-to-bottom of its respective available space list.

Finally, after the recombined block is placed at the
tail of its 1list, D may be decreased (U may be increased)
further as long as it refers to a free block of, say, size

Bl ond D > L (3+2" and U < H).

2
If so then AVAIL2[n].TATL is checked (unless n=s) to

see that the block at D is in its appropriate position on
that 1ist (either last or second-last); if not then it is
excised directly from wherever it was on that list and
spliced back appropriately at the tail. Then D := D - 2n+l

and the next block at D is checked. (Similarly for AVAIL3,

=18-

t, and U:=U + 3.2™.) This restores Invariants 3 and 4 on

release.

w3

Allocation--Floating Boundary

If, say, a three-block is required to meet a request
and there are no three-blocks available of the appropriate
slze or larger, then the request might still be filled
by locating the desired block within no-man's-land: by
moving B down to or beyond that block to some address
(still a multiple of 6) above D and reconfiguring AVAIL?2
and AVAIL3. A two-block may be located similarly by
moving B up toward U.

The procedure for moving the boundary, outlined in
this section for locating such a three-block, is compli-
cated by a division by three. On a binary computer with
slow integer division this increases overhead and so we
shall consider how to use tuning to avoid this procedure
in the next section. The procedure for locating a two-
block by moving B 1s similar to that described below for
a three-block.

Suppose that we require a block of size 3-2n
which cannot be satisfied by AVAIL3. First we must see

if a legal block is available in the memory from D up

]

to U. Consider the integer part of U/2" = X and its
integer quotient X/3 . Just one of X , X-1 , or

X-2 is evenly divisible by three; let Y be the product of
it and 2" . (When n=0 s, Y=U .) We have determined
that the block from Y — 327 wup through Y-1 < U

is the first legal three-block below U which satisfies the

2D

request. But is it available and attainable? It is
available if that block lies entirely in no-man's-land --

if D < Y - 3.2 | Tt is attainable if there is a

largest, legal (multiple of 6) boundary value, B', in
no-man's-land beyond the new block; when n > 0 then B' = Y - 3-2n
is legal and if n=0 then B' = U-6 is the next legal boundary
below B. Thus we locate D < B' < Y-3-2% <y < U
if no such B' and Y exist then allocation is impossible!
The choice of Y is necessary to preserve Invariant 2, and
this choice of B' is necessary to maintain Invariants 1 and
2 when B is reset to B' later. (In allocating a two-block

we search for D < Y < Y + 2n+l

< B'" £ U 5 shifting,
addition, and comparison is sufficient to determine avail-
ability, but a division-by-three is necessary to assure
attainability.)

After locating the block about to be allocated we must
remove all blocks which are currently occupying its space
from AVAIL2 and AVAIL3. Starting from the available two-
block at P=B-1 and moving sequentially down memory according
to the size of blocks encountered, we visit every two-block
with address P > B' . Each of these is exeised from the
AVATLZ2 list into which it was doubly linked. The space
beneath B' and above the address of the final P (< B') belonged
to the final block of size 29+l removed from AVAIL2, but that

space must remain available in the subregion managed by AVAILZ2

and Invariant 3 requires that it be returned--in smaller

=

blocks--to AVAIL2. Starting, then, with Q = B!'-1 and
moving Q down towards P, the largest i < J , such that
A 141

Q-2 2 P and 2 evenly divides Q+1 , is chosen; a free

two-block of size 21+1 is established at Q, and linked onto

the tail of AVAIL2[i]; then Q is decremented by 21 . The
value of 1 is strictly monotone increasing during this
reassembly of two blocks, which 1s repeated until Q reaches P
after at most J < s 1terations. Invariant 4 for two-blocks
requires that these "new" free blocks be linked at the tail of
the AVAILZ2 lists.

A similar procedure is now used to clean up AVAILS3.
Starting from the three-block at B and moving sequentially up
memory according to the size of the blocks encountered P!
visits every three-block until P' > Y . Each of these is
excised directly from AVAIL3, but we need to return any
portion above Y from the last block of size 3-2‘j located at
P'-3*2‘j (where P' is the first address at or above Y so
encountered). So starting with Q=Y and moving Q up towards P',
we create an available block of size 3-2i at Q for the largest
1 % 3 sueh that Q+3-215Y and 3-2i evenly divides Q¥. That

block is doubly linked onto the tail of AVAIL3[i] and Q is

¥The quotient X/3 from above is useful in finding the first i
without division, and thereafter the strict monotonicity of 1

obviates the need to test divisibility of Q ever again.

DD

increased by 3-2i . The reassembly of three-blocks
continues, with i again strictly monotone until Q reaches
P' after at most Js<t iterations.

Now B may be set to B' and U may be changed to be

¥-3s M

> the address of the new used block. Invariant 3 is
restored but Invariant 4 may not be satisfied yet. The new
value of U will be either B' or, when n=0 , B' + 3 ., 1In
the latter case a free block of size 3-20 must be created
at B' and linked onto the tail of AVAIL3[0]. (This tiny three-
block is very unlikely to be used, but it is necessary to
restore Invariant 2.) At last all invariants are again
satisfied.

The net effect of this procedure is to move B in order
to satisfy an order for a three-block. The procedure for
allocating a two-block is quite similar, using nearly iden-
tical procedures for cleaning up AVAIL2 and AVAIL3; the only
real differences have to do with locating Y, B', and D, and
with the final additions to AVAIL2[0] or AVAIL2[1]. In the
case detailed above we have converted a series of available
two-block-triplets (six words of memory) at B into three-block-
pairs; when enough were changed to fill the request we restored
the invariants of the buddy system and the four of this paper.
Going the other way, a two-block may be created with a move of
the boundary by converting a series of three-block-pairs at

the boundary into two-block-triplets and then restoring the

invariant properties of both binary buddy systems.

-23-

Behavior and Conclusions

In this section we raise several points which should
be studied before the double buddy-system is put into pro-
duction. These issues should also be considered by those who
would simulate or analyze the algorithm, because minor alter-
ations to the implementation will be seen to have noticeable
effects in performance.

Although the floating boundary allows the double-buddy
system to be initialized quite easily, it is rather expensive
to allow the boundary to thrash back and forth. Initialization
is possible with L =D + 1 (an odd number), B = U = H
(a multiple of 6), AVAIL3 empty, and AVAIL2 initialized as in
a2 binary buddy system [5-Problem 25]. Thence, the system may
be run directly as described above or it may be simulated until
the behavior of the boundary B has stabilized.

After initial study of the behavior of B in a particular
application, several alterations might constrain the boundary
from minor but expensive vibrations. We might simply fix B
and eliminate all code involving D and U and maintaining order
at the tails of the available space lists; if B were stable
then this cut makes sense. If not then a better tactic would
be to allow the boundary to move only under extreme demand.
For instance, we might establish a lower limit on the request
size which could be filled through a boundary move until a

trend in one direction were established by a census of unfilled

2l

requests. Rather then letting B float freely we could then
treat the moving boundary as a system tuning parameter,
which may be fixed when the storage management system is
installed or which may track the dynamic performance of the
system and tune itself conservatively, like the governor

on an engine.

The choice of the address base for the region being
managed may also need tuning. Figures 1 and 2 illustrate an
example of a region managed by the double-buddy system which
is addressed relative to a zero not even in the region. (Any
even multiple of 6-2° may be considered as a zero for this
discussion.) The choice of the zero for addressing within
this buddy system is important because it may encourage or
restrain the moving boundary. While negative addresses are
perfectly reasonable addresses for this scheme, no block has
buddyaddress on the other size of a zero from itself; any zero
becomes an absolute boundary between all blocks. If B
happened to fall at a zero of the address scheme, then any
allocation made by moving B would require that the entire
new block be allocated from no-man's-land in the other sub-
region. Thus, moving the boundary becomes a rarely usable
allocation strategy for large blocks, but it is exactly the
large requesﬁs which will not be fillable from extant free
blocks in a loaded system. At the other extreme, when
B = 2(4" -1) then we are assured of a plethora of small blocks

in both subregions on either side of B (of sizes 21_1 and 3¢2i

-25-

for 1 ranging from 1 on up). Since such blocks will be
discriminated against by being at the tails of awvailable
space lists and since there is usually an adequate supply of
small blocks at the heads of these lists, such blocks will
very likely go unused. In the first case the selection of
zero made a particular choice of B artificially stable; in
this latter case the choice of B creates a contiguous but
unusable chunk of free space in no-man's-land and B becomes
artificially mobile.

For example, the Fibonacci requests of Figure 2 could
be satisfied (quite compactly) using a moving boundary
allocation scheme on only sixty words if we were fortunate
enough to choose zero so that L =20 and U = 81 ;
ultimately B = 48 and all those requests are filled. The
same sequence of requests: 1, 2, 3, 5, 8, 13, 21; could not
be filled by the same algorithm managing a region of seventy-
eight words if we were so unfortunate as to choose L = 24
and U =102 . Figure 3 illustrates the breakdown of the
system on the last request. Of course, these are pathologies
which might be avoided if we chose s << 10g2(H - L) , but
they illustrate the significance of the choice of a zero.

Before B is fixed, therefore, we should experiment with
alterations to the whole addressing scheme; the stability of
B might change suddenly by adding a small constant to L, to H,

and to all other addresses in the system without changing the

e T

size of the managed region. It may turn out that it is more
important to have a correct zero for the addressing scheme
than to have the pointers be of minimal size; Figures 1 and 2
illustrate pointers of eight bits (to range from 44 to 144)
when seven bits would suffice 1f the zero were moved. After
a desirable value of B is found relative to L and H (not to
zero) and when we decide to fix B at this value, then it is
most appropriate that this B be made a zero of the addressing
scheme.

The double buddy-system generalizes naturally to other
ratios between the blocks in the two subregions. For
instance, it would also work with blocks of size 5.2 and
7-2n although computation overhead would be a bit more
complicated. (e.g. requests of size r would be filled with
a "five-block" if the leading bits of r-1 were 111... or 100...
and with a "seven-block" if 10l1... or 110...; buddyaddress
computations would be messier.) Blocks of this size, however,
have a much more uniform alternating ratio (1.40 and 1.43)
between successive blocks.

If the five/seven ratio of the previous paragraph 1is
computationally tractable and the boundary B can be fixed with-
out excessive external fragmentation but internal fragmentation
is still a problem, then there is another generalization of
the double-buddy system which may be investigated: more than

two subregions. In the extreme this becomes a best-fit strategy

-2

[5]1 when there are as many subregions as possible requests.
With B fixed we would free each subregion to divide into two
"sub=subregions™ so that there might be blocks of size 7-2rl
and 4.2" (4n the region that was all two-blocks above)
and of size 5-2n and 6-2" (in the region that was formerly
composed of three-blocks). The same requests would be handled
in each subregion, but each subregion would be managed by its
own double buddy-system. Russell's estimate [10] would
predict internal fragmentation of something like only 8%% for
this scheme. Without a suitable fixed B (quite a challenge

if external fragmentation remains the major problem) this
propocsal is not at all attractive, however; four subregions
are too many for simple tuning by floating boundaries

[5-page 242].

Finally, we make an observation about the cost of main-
taining D and U, the boundaries of no-man's-land. This over-
head must be endured on every allocation and release even
when boundary movement is restrained, but we argue here that
that overhead is minimal; so the noticeable increase in
running time of the double buddy-system is really due to
boundary movement. There is no particular bother in main-
taining D and U on releasing nodes because in most cases
released nodes will not border on no-man's-land. When they
do, the adjustment of D or U after recombination might require

some additional traversal of adjacent free blocks, but that

-28-

1s no worse than the potential recombination effort for a
block of that size. The allocation overhead is trivial when
the boundary remains stationery, with an apparent exception
when allocating from AVAIL2[s] or AVAIL3[t]. Those lists
ought to be searched to find a block not in no-man's-land

or to find the one furthest from B if all such blocks are
between D and U. This apparently lengthy search is likely
to be trivial in practice. There is never more than one
block on both these lists when the system is loaded, because
any outstanding request may be serviced in that case. If
all requests have been satisfied then the storage manager
cught to be allowed some leisure to perform the prescribed
search; it's doing a fine job!

There is, therefore, much to be learned from the imple-
mentation, simulation, and analysis of the double buddy-
system. Properly tuned, it should prove to be quite useful
because it provides the good behavior with respect internal
fragmentation like the weighted buddy system and H has the
characteristic ability of the binary buddy system to "learn"
what size blocks are needed (by always leaving an equal free
block when a split is necessary) which reduces external

fragmentation.

d0,

i

REFERENCES

Cranston, B. and Thomas, R. A simplified recombination
algorithm for the Fibonacci buddy system. Comm. ACM 18,
6 (June, 1975), 331-332.

Hinds, J. A. An algorithm for locating adjacent storage
blocks in the buddy system. Comm. ACM 18, & (April, 1975),
221-222, T

Hirschberg, D. S. A class of dynamic memory allocation
algorithms. Comm. ACM 10 (October, 1973), 615-618.

Knowlton, K. C. A fast storage allocator. Comm. ACM 8,
10 (October, 1965), 623-625.

Knuth, D. E. The Art of Computer Programming I, Fundamental
Algorithms (2nd ed.), Addison-Wesley, Reading, MA (1973),
435-455, 460-U461, 596-606.

Peterson, J. L., and Norman, T. A. Buddy systems. Comm. ACM 20,
6 (June, 1977), U421-431.

Purdom, P. W. Jr., Stigler, S. M. Statistical properties
of the buddy system. J. ACM 17, 4 (October, 1970), 683-697.

Purdom, P. W. Jr., Stigler, S. M., and Cheam, T. O. Statis-
tical investigation of three storage allocation algorithms.
BIT 11 (1971), 187-195.

Randell, B. A note on storage fragmentation and program
representation. Comm. ACM 12, 7 (July, 1969), 365-369/372.

Russell, D. L. Internal fragmentation in a class of buddy
systems. SIAM J. Comput. 6, 4 (December, 1977), 607-621.

Shen, K. K., and Peterson, J. L. A weighted buddy method
for dynamic storage allocation. Comm. ACM 17, 10 (October,
1974), 558-562. Corrigendum. Comm. ACM 18, &I (April, 1975)
202.

