
Object-Oriented Style
Daniel P. Friedman
dfried@indiana.edu

Indiana University

O0S – p.1

Goals of the talk

� Explain conventional OOP

Super method call

Object method call

Using a style for OOP

O0S – p.2

Goals of the talk

� Explain conventional OOP

� Super method call

Object method call

Using a style for OOP

O0S – p.2

Goals of the talk

� Explain conventional OOP

� Super method call

� Object method call

Using a style for OOP

O0S – p.2

Goals of the talk

� Explain conventional OOP

� Super method call

� Object method call

� Using a style for OOP

O0S – p.2

Meta-goals of the talk

� Make explicit what’s static

Use variables instead of symbols

Recursion only through it (self or this)

Make what’s global potentially local

defines could be lets

define-syntaxes could be let-syntaxes

O0S – p.3

Meta-goals of the talk

� Make explicit what’s static

� Use variables instead of symbols

Recursion only through it (self or this)

Make what’s global potentially local

defines could be lets

define-syntaxes could be let-syntaxes

O0S – p.3

Meta-goals of the talk

� Make explicit what’s static

� Use variables instead of symbols

� Recursion only through it (self or this)

Make what’s global potentially local

defines could be lets

define-syntaxes could be let-syntaxes

O0S – p.3

Meta-goals of the talk

� Make explicit what’s static

� Use variables instead of symbols

� Recursion only through it (self or this)

� Make what’s global potentially local

defines could be lets

define-syntaxes could be let-syntaxes

O0S – p.3

Meta-goals of the talk

� Make explicit what’s static

� Use variables instead of symbols

� Recursion only through it (self or this)

� Make what’s global potentially local

� defines could be lets

define-syntaxes could be let-syntaxes

O0S – p.3

Meta-goals of the talk

� Make explicit what’s static

� Use variables instead of symbols

� Recursion only through it (self or this)

� Make what’s global potentially local

� defines could be lets

� define-syntaxes could be let-syntaxes

O0S – p.3

Structure of the talk

� What is a Style?

Familiar Examples

Position Environments

Installation of Position Environments

Interface Operators

The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

Position Environments

Installation of Position Environments

Interface Operators

The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

Installation of Position Environments

Interface Operators

The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

Interface Operators

The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

� Protocols in the Style

Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

� Protocols in the Style

� Three ways to Lift Methods

Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

� Protocols in the Style

� Three ways to Lift Methods

� Hygienic Macros (See paper)

Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

� Protocols in the Style

� Three ways to Lift Methods

� Hygienic Macros (See paper)

� Lexical Scope vs. Protected Scope

Conclusions

O0S – p.4

Structure of the talk

� What is a Style?

� Familiar Examples

� Position Environments

� Installation of Position Environments

� Interface Operators

� The Style

� Familiar Example in the Style

� Protocols in the Style

� Three ways to Lift Methods

� Hygienic Macros (See paper)

� Lexical Scope vs. Protected Scope

� Conclusions O0S – p.4

What is a style?

� An encoding of an idiom

Encode everything that matters

Advantage of programming languages

They hide idioms

Disadvantage of programming languages

They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

Advantage of programming languages

They hide idioms

Disadvantage of programming languages

They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

� Advantage of programming languages

They hide idioms

Disadvantage of programming languages

They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

� Advantage of programming languages

� They hide idioms

Disadvantage of programming languages

They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

� Advantage of programming languages

� They hide idioms

� Disadvantage of programming languages

They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

� Advantage of programming languages

� They hide idioms

� Disadvantage of programming languages

� They hide idioms

A style makes explicit what’s implicit

O0S – p.5

What is a style?

� An encoding of an idiom

� Encode everything that matters

� Advantage of programming languages

� They hide idioms

� Disadvantage of programming languages

� They hide idioms

� A style makes explicit what’s implicit

O0S – p.5

Continuation-Passing is a style

� An encoding of call/cc

Encode every continuation

Advantage of programming languages

We don’t see all the continuations

Disadvantage of programming languages

Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

Advantage of programming languages

We don’t see all the continuations

Disadvantage of programming languages

Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

� Advantage of programming languages

We don’t see all the continuations

Disadvantage of programming languages

Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

� Advantage of programming languages

� We don’t see all the continuations

Disadvantage of programming languages

Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

� Advantage of programming languages

� We don’t see all the continuations

� Disadvantage of programming languages

Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

� Advantage of programming languages

� We don’t see all the continuations

� Disadvantage of programming languages

� Understanding call/cc is hard

But, not if you learn CPS first.

O0S – p.6

Continuation-Passing is a style

� An encoding of call/cc

� Encode every continuation

� Advantage of programming languages

� We don’t see all the continuations

� Disadvantage of programming languages

� Understanding call/cc is hard

� But, not if you learn CPS first.

O0S – p.6

Mutual-Recursive Example
(define vr vector-ref)

(define eo-procs
(vector
(lambda (it n)
(if (zero? n) #t

((vr it 1) it (- n 1))))
(lambda (it n)
(if (zero? n) #f

((vr it 0) it (- n 1))))))

> ((vr eo-procs 0) eo-procs 5)
#f

O0S – p.7

Familiar Example: Color Points

� One chain

<o>: Root

<p>: Points:
x, y;
move, get-loc, diag

<cp>: Color Points:
hue;
get-hue, diag&set

<scp>: Stationary Color Points:
y;
move, show-y

O0S – p.8

Familiar Example: Color Points

� One chain

� <o>: Root

<p>: Points:
x, y;
move, get-loc, diag

<cp>: Color Points:
hue;
get-hue, diag&set

<scp>: Stationary Color Points:
y;
move, show-y

O0S – p.8

Familiar Example: Color Points

� One chain

� <o>: Root

� <p>: Points:
x, y;
move, get-loc, diag

<cp>: Color Points:
hue;
get-hue, diag&set

<scp>: Stationary Color Points:
y;
move, show-y

O0S – p.8

Familiar Example: Color Points

� One chain

� <o>: Root

� <p>: Points:
x, y;
move, get-loc, diag

� <cp>: Color Points:
hue;
get-hue, diag&set

<scp>: Stationary Color Points:
y;
move, show-y

O0S – p.8

Familiar Example: Color Points

� One chain

� <o>: Root

� <p>: Points:
x, y;
move, get-loc, diag

� <cp>: Color Points:
hue;
get-hue, diag&set

� <scp>: Stationary Color Points:
y;
move, show-y

O0S – p.8

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

One chain

«o»: Root Shadow

«p»: Point Shadow

«cp»: Color Point Shadow

«scp»: Stationary Color Point Shadow

O0S – p.9

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

� One chain

«o»: Root Shadow

«p»: Point Shadow

«cp»: Color Point Shadow

«scp»: Stationary Color Point Shadow

O0S – p.9

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

� One chain

� «o»: Root Shadow

«p»: Point Shadow

«cp»: Color Point Shadow

«scp»: Stationary Color Point Shadow

O0S – p.9

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

� One chain

� «o»: Root Shadow

� «p»: Point Shadow

«cp»: Color Point Shadow

«scp»: Stationary Color Point Shadow

O0S – p.9

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

� One chain

� «o»: Root Shadow

� «p»: Point Shadow

� «cp»: Color Point Shadow

«scp»: Stationary Color Point Shadow

O0S – p.9

Familiar Example: Shadows

� Host Class = Host Shadow + Super Class

� One chain

� «o»: Root Shadow

� «p»: Point Shadow

� «cp»: Color Point Shadow

� «scp»: Stationary Color Point Shadow

O0S – p.9

Points (no details)
(define-syntax <<p>>
(extend-shadow <<o>> (x y)
([move (method (dx dy) ---)]
[get-loc (method () ---)]
[diag (method (a)

(move it a a))])))

(define <p>
(create-class <<p>> <o>))

O0S – p.10

Points
(define-syntax <<p>>
(extend-shadow <<o>> (x y)
([move (method (dx dy)

(set! x (+ x dx))
(set! y (+ y dy)))]

[get-loc (method ()
(list x y))]

[diag (method (a)
(move it a a))])))

(define <p>
(create-class <<p>> <o>))

O0S – p.11

Color Points
(define-syntax <<cp>>
(extend-shadow <<p>> (hue)
([get-hue (method () hue)]
[diag&set (method (a)

(diag it a)
(set! hue a))])))

(define <cp>
(create-class <<cp>> <p>))

O0S – p.12

Stationary Color Points
(define-syntax <<scp>>
(extend-shadow <<cp>> (y)
([move (method (xˆ yˆ)

(show-y it))]
[diag (method (a)

(write hue)
(diag sup a))]

[show-y (method ()
(display y))])))

(define <scp>
(create-class <<scp>> <cp>))

O0S – p.13

Position Environments
A map from variables to positions
Represented by a list of pairs.

(define penv ’([a 0][b 1][c 2]))
(define qenv ’([a 0][d 1]))

(append-env penv qenv)

� � � �

([a 0][b 1][c 2][a 3][d 4])

O0S – p.14

Installation
(list 5 3 1 2 6 4)

(let* ([a 0][b 1][c 2][a 3][d 4])
(list 5 a b c 6 d))

(let ([b 1][c 2][a 3][d 4])
(list 5 a b c 6 d))

� � � �

(5 3 1 2 6 4)

O0S – p.15

Data Structures

(

 0 1 2 3

q

)

(

 0 1

<q>

Classes Objects and, , MethodsFields,

x y

10 20

)

β

a b c d

α γ δ

O0S – p.16

Five Interface operators
Asumme �, , , and

�

are closures.

<q> � ((x y) (a b c d) #(� �
))

q � ‘(#(10 20) . ,(cdr <q>))

(fx <q> ’(y)) � (x y y)
(mx <q> ’(e)) � (a b c d e)

(fp q 1) � 20
(fp! q 1 30) � unspecified
(fp q 1) � 30
(mp q 2) �

(mp <q> 2) �

O0S – p.17

Binding variables to values

� Because we know that there is a one-to-one
correspondence between the variables in the
field environment of a class and the positions
in the field vector of its associated class,
we can think of the fields in the vector as if they
had a name.

Because we know that there is a one-to-one
correspondence between the variables in the
method environment of a class and the positions
in the method vector of the class,
we can think of the methods in the vector as if
they had a name.

O0S – p.18

Binding variables to values

� Because we know that there is a one-to-one
correspondence between the variables in the
field environment of a class and the positions
in the field vector of its associated class,
we can think of the fields in the vector as if they
had a name.

� Because we know that there is a one-to-one
correspondence between the variables in the
method environment of a class and the positions
in the method vector of the class,
we can think of the methods in the vector as if
they had a name.

O0S – p.18

The Style Template
(list
(fx <super> ’(field-var ...))
(mx <super> ’(method-var ...))
(vector
(lambda (it arg ...) ---)
(lambda (it arg ...) ---)
(mp <super> 2)
(lambda (it arg ...) ---)
(mp <super> 4)
(mp <super> 5)
(lambda (it arg ...) ---)
(lambda (it arg ...) ---)
(lambda (it arg ...) ---)))

O0S – p.19

The Style (Part 1)

� The arguments to fx are the super class and the
fresh field variables. These variables cannot
contain duplicates, and their order matters.

The arguments to mx are the super class and the
fresh method variables. These variables cannot
contain duplicates, their order matters, and they
are different from those in the super class.

O0S – p.20

The Style (Part 1)

� The arguments to fx are the super class and the
fresh field variables. These variables cannot
contain duplicates, and their order matters.

� The arguments to mx are the super class and the
fresh method variables. These variables cannot
contain duplicates, their order matters, and they
are different from those in the super class.

O0S – p.20

The Style (Part 2)

� Each method of the host class is determined in
one of three ways

1. The result of evaluating an expression
(e.g., an mp expression), yielding a
contributed (or inherited) method, or

2. The result of evaluating an expression
(e.g., a lambda expression), yielding a
replaced (or overridden) method, or

3. The result of evaluating an expression
(e.g., a lambda expression), yielding a
fresh method.

O0S – p.21

The Style (Part 2)

� Each method of the host class is determined in
one of three ways

� 1. The result of evaluating an expression
(e.g., an mp expression), yielding a
contributed (or inherited) method, or

2. The result of evaluating an expression
(e.g., a lambda expression), yielding a
replaced (or overridden) method, or

3. The result of evaluating an expression
(e.g., a lambda expression), yielding a
fresh method.

O0S – p.21

The Style (Part 2)

� Each method of the host class is determined in
one of three ways

� 1. The result of evaluating an expression
(e.g., an mp expression), yielding a
contributed (or inherited) method, or

� 2. The result of evaluating an expression
(e.g., a lambda expression), yielding a
replaced (or overridden) method, or

3. The result of evaluating an expression
(e.g., a lambda expression), yielding a
fresh method.

O0S – p.21

The Style (Part 2)

� Each method of the host class is determined in
one of three ways

� 1. The result of evaluating an expression
(e.g., an mp expression), yielding a
contributed (or inherited) method, or

� 2. The result of evaluating an expression
(e.g., a lambda expression), yielding a
replaced (or overridden) method, or

� 3. The result of evaluating an expression
(e.g., a lambda expression), yielding a
fresh method.

O0S – p.21

The Style (Part 3)

� A method is contributed if its associated
variable is in the domain of the super method
environment, and it is not replaced.

The contributed methods fill in the vector with
(mp <super> position).

As the method vector is filled in, each method
must fit into the right position. The replaced and
contributed methods must be in the same position
as in their super class. The fresh methods follow
these, and they must be in the order they appear
in the call to mx.

O0S – p.22

The Style (Part 3)

� A method is contributed if its associated
variable is in the domain of the super method
environment, and it is not replaced.

� The contributed methods fill in the vector with
(mp <super> position).

As the method vector is filled in, each method
must fit into the right position. The replaced and
contributed methods must be in the same position
as in their super class. The fresh methods follow
these, and they must be in the order they appear
in the call to mx.

O0S – p.22

The Style (Part 3)

� A method is contributed if its associated
variable is in the domain of the super method
environment, and it is not replaced.

� The contributed methods fill in the vector with
(mp <super> position).

� As the method vector is filled in, each method
must fit into the right position. The replaced and
contributed methods must be in the same position
as in their super class. The fresh methods follow
these, and they must be in the order they appear
in the call to mx.

O0S – p.22

The Style (Part 4)

� Some methods are not expressed as a procedure
built from a lambda expression, but those that
are, have it, which may be bound to
an object or a class, as their first argument.

When it is bound to an object, we can reference
or update its fields through a constant position in
its field vector.

Every object uses the same position in its field
vector for each field defined by the class of its
object.

O0S – p.23

The Style (Part 4)

� Some methods are not expressed as a procedure
built from a lambda expression, but those that
are, have it, which may be bound to
an object or a class, as their first argument.

� When it is bound to an object, we can reference
or update its fields through a constant position in
its field vector.

Every object uses the same position in its field
vector for each field defined by the class of its
object.

O0S – p.23

The Style (Part 4)

� Some methods are not expressed as a procedure
built from a lambda expression, but those that
are, have it, which may be bound to
an object or a class, as their first argument.

� When it is bound to an object, we can reference
or update its fields through a constant position in
its field vector.

� Every object uses the same position in its field
vector for each field defined by the class of its
object.

O0S – p.23

The Style (Part 5)

� To invoke a method of an object or a class, first
obtain the method through a constant position of
a method vector and invoke it on some object or
class and perhaps some additional arguments.

If the method is from an object, then its first
argument is the object.

If the method is from a class, then its first
argument is either the class or it.

There are no restrictions on the method bodies.

O0S – p.24

The Style (Part 5)

� To invoke a method of an object or a class, first
obtain the method through a constant position of
a method vector and invoke it on some object or
class and perhaps some additional arguments.

� If the method is from an object, then its first
argument is the object.

If the method is from a class, then its first
argument is either the class or it.

There are no restrictions on the method bodies.

O0S – p.24

The Style (Part 5)

� To invoke a method of an object or a class, first
obtain the method through a constant position of
a method vector and invoke it on some object or
class and perhaps some additional arguments.

� If the method is from an object, then its first
argument is the object.

� If the method is from a class, then its first
argument is either the class or it.

There are no restrictions on the method bodies.

O0S – p.24

The Style (Part 5)

� To invoke a method of an object or a class, first
obtain the method through a constant position of
a method vector and invoke it on some object or
class and perhaps some additional arguments.

� If the method is from an object, then its first
argument is the object.

� If the method is from a class, then its first
argument is either the class or it.

� There are no restrictions on the method bodies.

O0S – p.24

The Style (Part 6)

� If a class is passed to an interface operator, it
should be the host’s super class.

There are no more constraints on how the
method vector is built.

O0S – p.25

The Style (Part 6)

� If a class is passed to an interface operator, it
should be the host’s super class.

� There are no more constraints on how the
method vector is built.

O0S – p.25

Points in the Style
(define <p>
(list
(fx <o> ’(x y))
(mx <o> ’(move get-loc diag))
(vector
(lambda (it dx dy)
(fp! it 0 (+ (fp it 0) dx))
(fp! it 1 (+ (fp it 1) dy)))

(lambda (it)
(list (fp it 0) (fp it 1)))

(lambda (it a)
((mp it 0) it a a)))))

O0S – p.26

Color Points in the Style
(define <cp>
(list
(fx <p> ’(hue))
(mx <p> ’(get-hue diag&set))
(vector
(mp <p> 0)
(mp <p> 1)
(mp <p> 2)
(lambda (it) (fp it 2))
(lambda (it a)
((mp it 1) it a)
(fp! it 2 a)))))

O0S – p.27

Stat. Color Points in the Style
(define <scp>
(list
(fx <cp> ’(y))
(mx <cp> ’(show-y))
(vector
(lambda (it xˆ yˆ)
((mp it 5) it))

(mp <cp> 1)
(lambda (it a)
(write (fp it 2))
((mp <cp> 2) it a))

(mp <cp> 3)
(mp <cp> 4)
(lambda (it)
(display (fp it 3))))))

O0S – p.28

Three Protocols

� sup is a lexical variable

Installing method environments

Installing field environments

O0S – p.29

Three Protocols

� sup is a lexical variable

� Installing method environments

Installing field environments

O0S – p.29

Three Protocols

� sup is a lexical variable

� Installing method environments

� Installing field environments

O0S – p.29

Stationary Color Points: super
(define <scp>
(let ([sup <cp>])
(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
(lambda (it xˆ yˆ)
((mp sup 5) it))

(mp sup 1)
(lambda (it a)
(write (fp it 2))
((mp sup 2) it a))

(mp sup 3)
(mp sup 4)
(lambda (it)
(display (fp it 3)))))))O0S – p.30

Installing method envs: (Part 1)
(define <scp>
(let ([move 0]

[get-loc 1]
[diag 2]
[get-hue 3]
[diag&set 4]
[show-y 5]

(let ([sup <cp>])
--------------------------))))

O0S – p.31

Installing method envs: (Part 2)
(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
(lambda (it xˆ yˆ)
((mp it show-y) it))

(mp sup get-loc)
(lambda (it a)
(write (fp it 2))
((mp sup diag) it a))

(mp sup get-hue)
(mp sup diag&set)
(lambda (it)
(display (fp it 3))))

O0S – p.32

Installing field envs: (Part 1)
(define <scp>
(let* ([x 0][y 1][hue 2][y 3])
(let ([move 0]

[get-loc 1]
[diag 2]
[get-hue 3]
[diag&set 4]
[show-y 5])

(let ([sup <cp>])
---------------------))))

O0S – p.33

Installing field envs: (Part 2)
(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
(lambda (it xˆ yˆ)
((mp it show-y) it))

(mp sup get-loc)
(lambda (it a)
(write (fp it hue))
((mp sup diag) it a))

(mp sup get-hue)
(mp sup diag&set)
(lambda (it)
(display (fp it y)))))

O0S – p.34

Fully-colorized (Part 1)
(define <scp>
(let* ([x 0][y 1][hue 2][y 3])
(let ([move 0]

[get-loc 1]
[diag 2]
[get-hue 3]
[diag&set 4]
[show-y 5])

(let ([sup <cp>])
---------------------)))))

Everything above this line remains unchanged.

O0S – p.35

Fully-colorized (Part 2)
(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
(lambda (it xˆ yˆ)
((mp it show-y) it))

(mp sup get-loc)
(lambda (it a)
(write (fp it hue))
((mp sup diag) it a))

(mp sup get-hue)
(mp sup diag&set)
(lambda (it)
(display (fp it y)))))

O0S – p.36

Three Ways to Lift Methods

� Naive Lifting

Triply-Nested let

Quadruply-Nested let

O0S – p.37

Three Ways to Lift Methods

� Naive Lifting

� Triply-Nested let

Quadruply-Nested let

O0S – p.37

Three Ways to Lift Methods

� Naive Lifting

� Triply-Nested let

� Quadruply-Nested let

O0S – p.37

Naive Lifting: (Part 2)
(let ([move (lambda ---)]

[diag (lambda ---)]
[show-y (lambda ---)])

(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
move
(mp sup get-loc)
diag
(mp sup get-hue)
(mp sup diag&set)
show-y)))

O0S – p.38

Triply-Nested let: (Part 2)
(let ([h-move (lambda ---)]

[h-diag (lambda ---)]
[h-show-y (lambda ---)])

(let ([move (mp sup move)]
[get-loc (mp sup get-loc)]
[diag (mp sup diag)]
[get-hue (mp sup get-hue)]
[diag&set (mp sup diag&set)])

O0S – p.39

Nested let: (Part 3)
Everything below this line remains unchanged.

(let ([move h-move]
[diag h-diag]
[show-y h-show-y])

(list
(fx sup ’(y))
(mx sup ’(show-y))
(vector
move
diag
get-loc
get-hue
diag&set
show-y)))

O0S – p.40

Quadruply-Nested let: (Part 2)
(let ([s-move (mp sup move)]

[s-get-loc (mp sup get-loc)]
[s-diag (mp sup diag)]
[s-get-hue (mp sup get-hue)]
[s-diag&set (mp sup diag&set)])

(let ([h-move (lambda ---)]
[h-diag (lambda ---)]
[h-show-y (lambda ---)])

(let ([move s-move]
[get-loc s-get-loc]
[diag s-diag]
[get-hue s-get-hue]
[diag&set s-diag&set])

O0S – p.41

Zoom in on Methods: (Part 3)
(let ([h-move

(lambda (it xˆ yˆ)
((mp it show-y) it))]

[h-diag
(lambda (it a)
(write (fp it hue))
(s-diag it a))]

[h-show-y
(lambda (it)
(display (fp it y)))])))

O0S – p.42

Zoom out on diag: (Part 3)
(let* ([x 0][y 1][hue 2][y 3])
(let ([diag 2] ...)
(let ([sup <cp>] ...)
(let ([s-diag ---] ...)
(let ([h-diag ---] ...)
(let ([diag s-diag] ...)
(let ([diag h-diag] ...)
(list
(fx ...)
(mx ...)
(vector
... diag ...)))))))))

O0S – p.43

Two Scope Issues

� Lexical Scope

Protected Scope

Which one should shadow the other?

Where should one shadow the other?

Assume that we have extended <scp> with the
method show-y.

O0S – p.44

Two Scope Issues

� Lexical Scope

� Protected Scope

Which one should shadow the other?

Where should one shadow the other?

Assume that we have extended <scp> with the
method show-y.

O0S – p.44

Two Scope Issues

� Lexical Scope

� Protected Scope

� Which one should shadow the other?

Where should one shadow the other?

Assume that we have extended <scp> with the
method show-y.

O0S – p.44

Two Scope Issues

� Lexical Scope

� Protected Scope

� Which one should shadow the other?

� Where should one shadow the other?

Assume that we have extended <scp> with the
method show-y.

O0S – p.44

Two Scope Issues

� Lexical Scope

� Protected Scope

� Which one should shadow the other?

� Where should one shadow the other?

� Assume that we have extended <scp> with the
method show-y.

O0S – p.44

Lexical Scope (Part 1)
[show-y
(let ([hue* "outside "]

[diag* (lambda (x y)
(display
"moving "))])

(method ()
(display hue)
(diag* 5 5)
(let ([hue "inside "]

[diag (lambda (n self)
(diag self n))])

(display hue)
(diag 5 it))))]

O0S – p.45

Lexical Scope (Part 2)
[show-y
(let ([hue "outside "]

[diag (lambda (x y)
(display
"moving "))])

(method ()
(display hue)
(diag 5 5)
(let ([hue "inside "]

[diag (lambda (n self)
(diag self n))])

(display hue)
(diag 5 it))))]

O0S – p.46

Lexical Scope (Part 3)
(define <e>-maker
(lambda (x)
(let-syntax
([<<e>>

(extend-shadow <<scp>> ()
([e
(begin
(write x)
(let ([y 1])
(method (q . a)
(+ x y q
(car a)))))]))])

(lambda (s)
(create-class <<e>> s)))))

O0S – p.47

Conclusions

� Meta-goal: Everything as static as possible

Goal: Clarified super and object method calls

Continuation-Passing Style vs.
Object-Oriented Style

Both get their power by harnessing properties
with an extra argument

O0S – p.48

Conclusions

� Meta-goal: Everything as static as possible

� Goal: Clarified super and object method calls

Continuation-Passing Style vs.
Object-Oriented Style

Both get their power by harnessing properties
with an extra argument

O0S – p.48

Conclusions

� Meta-goal: Everything as static as possible

� Goal: Clarified super and object method calls

� Continuation-Passing Style vs.
Object-Oriented Style

Both get their power by harnessing properties
with an extra argument

O0S – p.48

Conclusions

� Meta-goal: Everything as static as possible

� Goal: Clarified super and object method calls

� Continuation-Passing Style vs.
Object-Oriented Style

� Both get their power by harnessing properties
with an extra argument

O0S – p.48

	Goals of the talk
	Meta-goals of the talk
	Structure of the talk
	What is a style?
	Continuation-Passing is a style
	Mutual-Recursive Example
	Familiar Example: 	extcolor {green}{C}	extcolor {yellow}{o}	extcolor {red}{l}	extcolor {white}{o}	extcolor {magenta}{r} Points
	Familiar Example: Shadows
	Points (no details)
	Points
	Color Points
	Stationary Color Points
	Position Environments
	Installation
	Data Structures
	Five Interface operators
	Binding variables to values
	The Style Template
	The Style (Part 1)
	The Style (Part 2)
	The Style (Part 3)
	The Style (Part 4)
	The Style (Part 5)
	The Style (Part 6)
	Points in the Style
	Color Points in the Style
	Stat. Color Points in the Style
	Three Protocols
	Stationary Color Points: super {}
	Installing method {method} envs: (Part 1)
	Installing method {method} envs: (Part 2)
	Installing �ield {field} envs: (Part 1)
	Installing �ield {field} envs: (Part 2)
	Fully-colorized (Part 1)
	Fully-colorized (Part 2)
	Three Ways to Lift Methods
	Naive Lifting: (Part 2)
	Triply-Nested lett {}: (Part 2)
	Nested lett {}: (Part 3)
	Quadruply-Nested lett {}: (Part 2)
	Zoom in on Methods: (Part 3)
	Zoom out on method {diag}: (Part 3)
	Two Scope Issues
	Lexical Scope (Part 1)
	Lexical Scope (Part 2)
	Lexical Scope (Part 3)
	Conclusions

