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Organization:

The lecture is in three parts. In the first part we define, primarily by example, the key
terms. These are conventional procedures, escape procedures and continuations. The
primitive notions of lambda^ and call/cc are presented. In the second part we develop
examples of simple applications, specifically a simple LISP-like BREAK and a CYCLE pro-
cedure which loops indefinitely, but makes available the ability to break out of the loop.
Also in this section we point out that call/cc is not strictly necessary if all procedures
are written in continuation-passing-style. We complete this section by demonstrating that
even the unpopular GO TO style programming of LISP’s PROG looks reasonable in the
presence of the proper uses of call/cc. In the last section we develop a DISPATCHER for
synchronous processes. At the end of these notes are two special features. The first is a
set of ten exercises that we hope you will enjoy. Some of them are puzzles designed to
challenge and others are more realistic like adding asynchronous processes and exception
handling to the DISPATCHER. Finally we have included two appendices. In Appendix A we
have presented a meta-circular interpreter for a fully curried version of a subset of Scheme
which includes call/cc and lambda^. In Appendix B we have included the remaining
code necessary to test DISPATCHER.



Lecture Notes — Applications of Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 2

Outline:

I. Key Terms and Definitions

1. Properties of Scheme
2. Description of escape procedures
3. Notation for characterizing escape procedures
4. Invoking escape procedures is replacing the control stack
5. lambda^ : the creator of general escape procedures
6. call/cc : a creator of escape procedures
7. Describing escape procedures created by call/cc
8. A very simple example of call/cc
9. Continuations describe the rest of the computation

10. Continuations are first-class objects

II. Meta-Programming

1. Default Law of call/cc
2. With lambda^ the Default Law of call/cc is not true
3. A simple LISP-like BREAK
4. How to construct lambda^
5. Programming in continuation-passing-style
6. Meta-Programming with call/cc: CYCLE
7. LISP’s PROG with GO and RETURN: “GO TO” programming revisited

III. Synchronous Processes

1. Continuations as synchronous processes
2. Extending the language of processes
3. Swapping and running the current process
4. Creating processes
5. HALT and DISPATCHER
6. Exercises

IV. References

1. Programming and Reasoning with Continuations
2. Continuations for Semantic Descriptions

V. Appendices

A. A meta-circular interpreter which includes lambda^ and call/cc
B. Supporting code for DISPATCHER



Lecture Notes — Applications of Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 3

I. Key Terms and Definitions

I-1. Properties of Scheme

The programming language Scheme is a call-by-value lexically scoped dialect of LISP
with first-class procedures. A condition imposed on any implementation is that it be
properly tail-recursive. In simple terms this means that there is no control stack growth
when unnecessary and that, in particular, the cost of simple loops written using recursion
is minimal. A subset of the language is functional, but the entire language supports
imperative concepts such as input/output, assignment to lexical variables and first-class
continuations.

I-2. Description of escape procedures

Suppose we consider the following simple expression:

(* (/ 24 (f 0)) 3)

Possible outcomes:

1. (f 0) is 4, so the result is 18.
2. f is undefined at 0, leading to an error message and causing the

computation to abort.
3. f is undefined at 0, leading to an infinite loop, e.g.,

(define f
(lambda (n)
(if (zero? n) (f n) n)))

4. (f 0) is 4, but f is an escape procedure so the result is 4.

I-3. Notation for characterizing escape procedures

We introduce a notation for characterizing escape procedures. If f is a procedure, its
corresponding escape procedure is f^. f^ does exactly what f does, but (f^ ...) escapes
as the answer and it is subsequently printed. Sometimes this is referred to as escaping to
the top level or read-eval-print loop.

The simplest escape procedure corresponds to the identity: I. If f^ = I^, then the result
is 0 and no division occurs. A more powerful escape procedure is +^.

Consider: (* 3 (+^ 4 5)) =⇒ 9.

But note that this is similar to (* 3 (I^ (+ 4 5))) =⇒ 9.

I-4. Invoking escape procedures is replacing the control stack

In the expression above the contents of the control stack at the time of invoking (+^ 4 5)
is <3, *>. Invoking the escape procedure has the effect of forgetting the current contents
of the control stack and processing only the +^ and its arguments. Although it appears
that (I^ (+ 4 5)) is the same as (+^ 4 5) they are not operationally the same. There is
more growth of the control stack with (I^ (+ 4 5)). This understanding of the growth
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of the control stack will play a rôle later when we look at sophisticated uses of escape
procedures.

I-5. lambda^ : the creator of general escape procedures

Given any lambda expression we can form its corresponding escape counterpart.

So that (lambda (x) ...) becomes (lambda^ (x) ...).

We assume the existence of such a capability. Later we clarify how such objects are built.

I-6. call/cc : a creator of escape procedures

Scheme has a feature for creating escape procedures internally and making them available
to the user. In Scheme these procedures also interact with fluids. However, for purposes of
this lecture we will not discuss the vagaries of fluids. See [9] for a discussion of continuations
in the presence of fluids.

These escape procedures correspond to the control stack in the run-time architecture. The
control stack corresponds to the continuation in a continuation semantics. That is why
these particular escape procedures are often referred to as continuations or continuation
objects.

In Scheme one writes

(call-with-current-continuation e)

This has the effect of invoking (e k^) where k^ is the escape procedure corresponding to
the expression instance (call-with-current-continuation e). From here on “call-
with-current-continuation” is shortened to “call/cc”.

I-7. Describing escape procedures created by call/cc

For example, suppose we have the expression:

(+ 3 (call/cc (lambda (k^) ...)))

then k^ can be formed by replacing the call/cc expression by a fresh variable, say v, and
abstracting with v over the result:

k^ = (lambda^ (v) (+ 3 v))

I-8. A very simple example of call/cc

Let’s practice:

(+ (call/cc
(lambda (k^)
(/ (k^ 5) 4)))

8)
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=⇒ First form k^ = (lambda^ (v) (+ v 8))
=⇒ Evaluate (/ (k^ 5) 4) knowing the value of k^
=⇒ Evaluate (k^ 5)
=⇒ 13 is the result, the waiting division is forgotten since k^ is an escape procedure.

I-9. Continuations describe the rest of the computation

Another simple example:
(* (+ (call/cc

(lambda (k^)
(/ (k^ 5) 4)))

8)
3)

=⇒ First form k^ = (lambda^ (v) (* (+ v 8) 3))
=⇒ Evaluate (/ (k^ 5) 4)
=⇒ Evaluate (k^ 5)
=⇒ Evaluate ((lambda^ (v) (* (+ v 8) 3)) 5)
=⇒ Result is 39.

The use of “*” is arbitrary here. What we mean is whatever is left to do. In this case the
only thing left to do is multiplication. Of course, it could have been any f and in that case
we would have all the work of f left to do.

This next example shows that it is not always completely obvious what is meant by the
rest of the computation.
(* (+ (let ([u (+ 3 2)])

(call/cc
(lambda (j^)

(/ (j^ u) 4))))
8)

3)

Here the work of u “becoming 5” occurs prior to determining the value for j^. The
continuation j^ is the same as k^. Since (+ 3 2) is 5, both expressions yield the same
result.

I-10. Continuations are first-class objects

With call/cc we might choose to save away the escape procedure, but not invoke it until
later in the computation.
(+ (call/cc

(lambda (k^)
(begin

(set! +8^ k^)
(display "inside body")
5)))

8)
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=⇒ First form k^ = (lambda^ (v) (+ v 8))
=⇒ Evaluate the body (begin

(set! +8^ k^)
(display "Inside body")
5)

=⇒ The lexical variable +8^ is set to (lambda^ (v) (+ v 8)),
“Inside body” is printed,
and 5 is returned as the result of the body.

=⇒ 13 is the answer of the entire expression.

Later we may invoke (* (/ (+8^ 35) 0) 100) =⇒ 43

II. Meta-Programming

II-1. Default Law of call/cc

The reason that 5 is sent to the waiting + in the previous example is that we claim:

(call/cc (lambda (k^) e)) = (call/cc (lambda (k^) (k^ e)))

That is, the continuation waiting for the result is the same as the escape procedure created
by call/cc. From this equation we know that e defaults to (k^ e).

Thus in our example,

(+ (call/cc
(lambda (k^)
(k^ (begin

(set! +8^ k^)
(display "Inside body")
5))))

8)

The result is (k^ 5) or 13.
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II-2. With lambda^ the Default Law of call/cc is not true

Escaping by applying call/cc to an escape procedure (i.e., a procedure (lambda^...))
imposes on the user even more control responsibility. The user of the language is then
required to make every decision about exiting from the body of the applied escape proce-
dure. Look at the following two examples. They appear equivalent using the Default Law
from above. But that equation used (lambda ...) not (lambda^...). With (lambda^
...) being applied to the current continuation we get different behaviors.

(+ 3 (call/cc (lambda^ (k^) (k^ 8)))) Here we would get: 11
(+ 3 (call/cc (lambda^ (k^) 8))) But here we would just get: 8

We conclude this portion of the lecture with the reminder that call/cc may be passed
either a conventional or an escape procedure, and the continuation is always an escape
procedure like k^.

II-3. A simple LISP-like BREAK

By saving continuations we can write a BREAK procedure that allows for the computation to
RESUME at the discretion of the user. Upon invocation of BREAK a message will be returned
to top level. The system listening loop will then be in control until the user executes
(RESUME ...), at which time the argument to RESUME will be the value of the original
(BREAK ...) invocation.

(define BREAK
(lambda (message)
(call/cc

(lambda (k^)
(set! RESUME k^)
((lambda^ (x) x) message)))))

BREAK is a fascinating example where the use of first-class continuations leads to an elegant
solution. Brian Smith chose a more sophisticated version of BREAK as an example of the
power of reflection [25].

II-4. How to construct lambda^

Next we consider how to form (lambda^ (i ...) e ...) and note why we cannot
think about (lambda^...) as part of Scheme, but must always construct it at run time.
We define a procedure INVOKE/NO-CONT which takes as an argument a procedure f of no
arguments and invokes f as if it were an escape procedure. Given INVOKE/NO-CONT we can
syntactically express lambda^.
(lambda^ (id ...) e ...)

≡
(lambda (id ...) (INVOKE/NO-CONT (lambda () e ...)))
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Below is the procedure make-INVOKE/NO-CONT followed by its invocation.

(define make-INVOKE/NO-CONT
(lambda ()
((call/cc

(lambda (k^)
(set! INVOKE/NO-CONT (lambda (th) (k^ th)))
(lambda () ’INVOKE/NO-CONT))))))

(make-INVOKE/NO-CONT)

The (make-INVOKE/NO-CONT) must be invoked from the top-level. When we form the k^
for building the definition of INVOKE/NO-CONT, we see that it is (lambda^ (v) (v)), with
no continuation. Hence, we are invoking the procedure of zero arguments in the “empty”
or “top-level” continuation when we pass it to INVOKE/NO-CONT. The clue that this is
happening is the double left parentheses around the call/cc. By binding INVOKE/NO-
CONT to a procedure whose sole purpose is to invoke its argument, we can guarantee that
there is no continuation waiting for its result. Think what would happen if instead we
invoked (+ 5 (make-INVOKE/NO-CONT)) at top-level.

II-5. Programming in continuation-passing-style

The following program yields the sum of the nodes in a binary search tree. If a 0 is found
in the tree, the result is 0.

(define sum-bst
(lambda (t)
(call/cc

(lambda (exit^)
(letrec

([sum-bst
(lambda (t)

(cond
[(null? t) 0]
[(zero? (info t)) (exit^ 0)]
[else (+ (info t)

(sum-bst (left t))
(sum-bst (right t)))]))])

(sum-bst t))))))

Below is the equivalent definition in continuation-passing-style [26].
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(define sum-bst
(lambda (t)
(letrec

([sum-bst
(lambda (t k)
(cond

[(null? t) (k 0)]
[(zero? (info t)) 0]
[else (sum-bst (left t)

(lambda (result1)
(sum-bst (right t)

(lambda (result2)
(k (+ (info t) result1 result2))))))]))])

(sum-bst t (lambda (x) x)))))

Such programs can be read and written with practice. Consider the else line. It says:
“Imagine that you have the result of the left tree and call it result1, then imagine you
have the result of the right tree and call it result2, then take the sum of the information
at the root of the tree with the sum of result1 and result2 and pass this value to the
waiting continuation k”. The zero test line says to abandon the waiting continuation and
return the value 0 to the continuation of the original invoker of bst. Some find this a bit
awkward, but the real difficulty is that writing in this style often imposes its will on every
program. For instance, if one uses a mapping procedure then the procedure that is being
mapped might also be required to be in this style.

To quote James S. Miller [19] “Unfortunately, the procedures resulting from the conversion
process are often difficult to understand. The argument that continuations need not be
added to the Scheme language is factually correct. It has as much validity as the state-
ment that the names of the formal parameters can be chosen arbitrarily. And both of these
arguments have the same basic flaw: the form in which a statement is written can have a
major impact on how easily a person can understand the statement. While understanding
that the language does not inherently need any extensions to support programming us-
ing continuations, the Scheme community nevertheless chose to add one operation to the
language to ease the chore.”
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II-6. Meta-Programming with call/cc: CYCLE

We can meta-program:

CYCLE works for infinite loops with an EXIT-CYCLE-WITH

(define CYCLE
(lambda (f)
(call/cc

(lambda (k^)
(letrec ([loop (lambda ()

(f k^)
(loop))])

(loop))))))

The protocol for CYCLE follows:

(CYCLE (lambda (EXIT-CYCLE-WITH) e ...))

The expectation is that somewhere within the e ... there is at least one invocation of
(EXIT-CYCLE-WITH ...). This way, the infinite loop will terminate with the argument to
the first (EXIT-CYCLE-WITH ...) that it encounters.

II-7. LISP’s PROG with GO and RETURN: “GO TO” programming revisited

Let us consider LISP’s PROG:

(PROG (id ...)
label1 e1 ...
...
labeln−1 en−1 ...
labeln en ...)

≡
(let ([id ’()] ...)
((call/cc
(lambda (GO)

(let ([RETURN (lambda (v) (GO (lambda () v)))])
(letrec

([label1 (lambda () e1 ... (label2))]
...
[labeln−1 (lambda () en−1 ... (labeln))]
[labeln (lambda () en ... (RETURN ’()))])
(label1))))))
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With this definition we avoid any risk of losing tail recursion. Even if the program contains
an instance of bizarre code like

(begin
(GO x)
(print 3))

it will still be run as if the instance were just (GO x). The reason that we need invoke
only (labeli) instead of (GO labeli) is that these particular invocations are always in
tail-recursive position.

These definitions are strictly more general than necessary. For example, it is possible to
have instances of (f labeli), (f RETURN), and (f GO) within the e .... Furthermore,
labeli, RETURN and GO may be stored away for later use. This is how some of the mecha-
nisms for non-blind backtracking such as a-bien-tot and au-revoir of Conniver[27] were
implemented.

III. Synchronous Processes

III-1. Continuations as synchronous processes

We will next focus on the process-oriented aspects of continuations. A continuation rep-
resents a locus of control and we can use this to implement processes [30]. A process
scheduler can be designed based on a ready queue of continuations.

If we think about a sequence of expressions (begin S1 S2 ...) then whenever Si binds
a continuation, its continuation looks like (lambda^ (waste) Si+1 Si+2 ...). These are
called command continuations because we are not interested in the value of the continuation
invocation. We show this by choosing the argument name “waste” which should not occur
free within Si’s.

For example:

(define foo
(lambda ()
(display 2)
(call/cc (lambda (ak^) ...))
(display 3)
(call/cc (lambda (bk^) ...))
(display 5)
(call/cc (lambda (ck^) ...))
(display 7)))
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If we invoke foo at the top level (with no context) then:

ak^ = (lambda^ (waste)
(display 3)
(call/cc (lambda (bk^) ...))
(display 5)
(call/cc (lambda (ck^) ...))
(display 7))

bk^ = (lambda^ (waste)
(display 5)
(call/cc (lambda (ck^) ...))
(display 7))

ck^ = (lambda^ (waste)
(display 7))

III-2. Extending the language of processes

We extend the language of expressions to include (PAUSE-HANDLER).

If in our example we replace (call/cc (lambda (ik^) ...)) by a procedure invocation
of PAUSE-HANDLER we will get something that looks like this:

(define foo
(lambda ()
(display 2)
(PAUSE-HANDLER)
(display 3)
(PAUSE-HANDLER)
(display 5)
(PAUSE-HANDLER)
(display 7)))

Then the procedure for PAUSE-HANDLER would be responsible for the call/cc.

(define PAUSE-HANDLER
(lambda ()
(call/cc

(lambda (k^)
....))))

What is left is to decide what to do with these continuations that we have bound with
call/cc. In this simple example we will

1. Insert the continuation into the process queue.
2. Delete k^ (i.e., a process object) from the front of the queue.
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3. Invoke (i.e., RUN) the continuation k^.

Hence we define PAUSE-HANDLER as

(define PAUSE-HANDLER
(lambda ()
(call/cc

(lambda (k^)
(swap-run the-process-q k^)))))

III-3. Swapping and running the current process

swap-run does the three steps alluded to above.

(define swap-run
(lambda (q k^)
(q ’en-q! k^)
(RUN (q ’de-q!))))

(define RUN (lambda (k^) (k^ ’waste)))

RUN invokes the continuation that is removed from the process queue.

III-4. Creating processes

The only issue remaining is the development of a protocol for processes: “code which uses
the PAUSE-HANDLER feature”. What should we do when there is nothing left to process? A
simple solution is to require an insertion of a HALT command. We clarify this protocol by
introducing CREATE-PROCESS. Processes, like continuations that are carved out of processes,
must be procedures of one argument.

(define CREATE-PROCESS
(lambda (th)
(lambda (v)

(th)
(HALT))))

III-5. HALT and DISPATCHER

We next define the DISPATCHER procedure as a simple synchronous process scheduler.
Each time DISPATCHER is invoked a new queue is created. The queue created by (create-
q exit^) is built with the exit^ continuation. The queue invokes the exit^ continuation
whenever there is an attempt to delete a process from an empty queue. This will exit
DISPATCHER. If the queue is not empty we sucessfully remove an element from the queue
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and RUN it. We include PAUSE-HANDLER in the definition of DISPATCHER so that it will close
over the free variable the-process-q.

(define DISPATCHER
(lambda (initialize-q)
(call/cc

(lambda (exit^)
(let ([the-process-q (create-q exit^)])

(set! HALT
(lambda ()
(RUN (the-process-q ’de-q!))))

(set! PAUSE-HANDLER
(lambda ()
(call/cc

(lambda (k^)
(swap-run the-process-q k^)))))

(initialize-q the-process-q)
(HALT))))))

The invoker of DISPATCHER passes a procedure which takes a queue as an argument. This
procedure is invoked just prior to RUNning (surprisingly with HALT) the first process. We
use it to initialize the queue. For a demonstration of how we used the initialize-q
procedure and for all the code necessary to run DISPATCHER, see Appendix B.
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III-6. Exercises

1. The BREAK program is not very general. Suppose that another invocation of (BREAK ...)
occurs. Then the RESUME would not be correct. Redesign the BREAK procedure so that the
RESUME interface is unchanged, but that many instances of BREAK can co-exist.

2. A slightly more general variant of CYCLE is to allow the user’s program the ability to loop
back to the top. Here the protocol would be as follows:

(CYCLE (lambda (EXIT-CYCLE-WITH AGAIN) e ...))

An example:

((lambda (n m)
(CYCLE

(lambda (EXIT-CYCLE-WITH AGAIN)
(if (= n m) (EXIT-CYCLE-WITH n)

(if (= n (+ m 5))
(begin (display "explicit looping")

(newline)
(set! n (sub1 n))
(AGAIN))

(set! n (sub1 n))))
(display "implicit looping")
(newline))))

24 3)

If the variable AGAIN is free in e ..., then any invocation of (AGAIN) within e ... will
take it to the top of the loop. Be careful to guarantee that these invocations of (AGAIN)
are tail recursive.

3. Reynolds [22] has a different approach to PROG. He builds as many escape procedures
as there are labels but each procedure is the concatenation of all the statements below
the label. This has the disadvantage of generating larger programs and the advantage of
avoiding the generated uses of (labeli). Implement PROG using his approach.

4. Find out how exception handlers are bound in your Scheme system and wire PAUSE-
HANDLER to it. Run test programs which have no instances of PAUSE-HANDLER physically
within the program but which invoke PAUSE-HANDLER as a result of an exception.

5. Find out how pre-emption works in your Scheme system and wire PAUSE-HANDLER to
it. Run test programs which have no instances of PAUSE-HANDLER physically within the
program but which invoke PAUSE-HANDLER as a result of something external to the program.
This yields asynchronous processes. Some Scheme systems use engines for modeling timed
preemption [12].

6. We’re just a step away from a coroutine system. In a coroutine system the decision as
to which process is run when a pause occurs becomes the responsibility of the writer of
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the code. We can use the continuations to represent coroutines just as we used them
to represent processes. We introduce a new command, (RESUME c), which relinquishes
control and runs the coroutine c. Add (RESUME ...) as a command to the DISPATCHER
by including another operation on the queue. For a completely different approach to
coroutines see [13] or [29].

7. What changes should be made to insure that the language supported by DISPATCHER
would allow invocations of (DISPATCHER ...). Hint: The solution to this exercise might
surprise you.

8. The programming language ICON [9] has an interesting control facility. Each expression in
ICON has 0, 1, or many values. Create an interface which extends the notion of expressions
to those having multiple values as is done in ICON.

9. Are continuations too general? Consider the following puzzle. Suppose that we only have
a primitive STATE which we define as follows:

(define STATE
(lambda ()
(call/cc

(lambda (k^)
(k^ k^)))))

Is it possible to define call/cc in terms of STATE?
10. Consider a program that includes, in addition to the standard expressions, three types

of special purpose expressions: (MILESTONE ...), (DEVIL ...), and (ANGEL ...). The
computation described by the program has the goal of finishing despite the existence of
devils. A devil sends control back to the last milestone. The value given to the devil
is passed to the continuation commencing at the milestone, as if that value were the
result returned by the milestone expression. Presumably this allows the computation to
take a different path, possibly avoiding the devil that is lurking somewhere ahead on the
previously used path. If another devil, or maybe even the same devil, is subsequently
encountered, then control passes back to the penultimate milestone, not to the one just
used. In other words, each milestone can be returned to exactly once; a succession of devils
pushes the computation back to earlier and earlier states. An angel sends the computation
forward to where it was when it most recently encountered a devil. The value passed
as a parameter to the angel is given to the devil’s continuation as if it were the value
of the devil. A succession of angels pushes the computation forward to more advanced
states. A milestone is a procedure of one argument that acts as the identity, as well as
recording the current context for later use by devils. If a devil (or angel) is encountered
with no milestone (or devil) remaining, the devil (or angel) has no effect. To recharge
any milestone the milestone must be re-evaluated. Implement the procedures MILESTONE,
DEVIL, and ANGEL. There is no non-determinism; this is, however, an example of non-blind
backtracking [8]. For an example of blind backtracking with continuations see [11].
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Appendices

Appendix-A: A meta-circular interpreter which includes lambda^ and call/cc

In order to help clarify the meanings of the forms used in this lecture we include an
interpreter which will run in Scheme. This interpreter is derived from one in [3]. Issue’s of
side-effects are germane, but are ignored as the goals of this lecture are primarily about the
applications of continuations. See Johnson and Duggan [14] for a further study of stores.
As usual we assume the expression is curried. A good exercise is to rewrite this program
in continuation-passing-style. (record-case e ...) is described in detail in Dybvig [4].
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It matches against the (car e) and lexically binds while pairing against the (cdr e).

(define M
(let ([extend (lambda (r var val)

(lambda (i) (if (eq? i var) val (r i))))])
(lambda (e r)

((call/cc
(lambda (I^)

(letrec
([U
(lambda (e r)

(cond
[(number? e) e]
[(symbol? e) (r e)]
[else (record-case e

[quote (lit) lit]
[lambda (fs b)
(lambda (v)

(U b (extend r (car fs) v)))]
[lambda^ (fs e)
(lambda (v)

(I^ (lambda () (U e (extend r (car fs) v)))))]
[if (test t-pt f-pt)
(if (U test r) (U t-pr r) (U f-pt r))]
[call/cc (f) (call/cc (U f r))]
[else ((U (car e) r) (U (cadr e) r))])]))])

(lambda () (U e r)))))))))

The special form execute below builds an environment with just two identifiers: + and
cons. Feel free to add additional symbols to the environment, but remember that every-
thing is curried.

(extend-syntax (execute)
[(execute e) (M ’e (let ([+ (lambda (x) (lambda (y) (+ x y)))]

[cons (lambda (x) (lambda (y) (cons x y)))])
(lambda (i)

(cond
[(eq? i ’+) +]
[(eq? i ’cons) cons]
[else (error i "undefined-id")]))))])

Appendix-B: Supporting code for DISPATCHER
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Queues created by create-q respond to en-q! and de-q! messages. If an attempt is made
to delete something from an empty queue then the continuation which was passed as an
argument to create-q is invoked. The test for an empty queue is not needed if an enqueue
has just preceded it. A good exercise is to add a new message that combines the actions
of en-q! and de-q!. Then swap-run becomes (RUN (q ’en-q-de-q! k^)).

(define create-q
(lambda (where-to-exit-when-empty^)
(let ([head ’()] [tail t])

(lambda msg
(case (car msg)

[en-q! (if (null? head)
(begin (set! head (cons (cadr msg) head))

(set! tail head))
(begin (set-cdr! tail (cons (cadr msg) ’()))

(set! tail (cdr tail))))]
[de-q! (if (null? head)

(where-to-exit-when-empty^ ’done)
(begin0 (car head)

(if (eq? head tail)
(set! head ’())
(set! head (cdr head)))))])))))
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The procedures process-maker, build-q and test create a test program.

(define process-maker
(lambda (n)
(CREATE-PROCESS

(lambda ()
(display n)
(PAUSE-HANDLER)
(newline)
(display "about to halt")
(newline)
(PAUSE-HANDLER)
(display n)))))

(define build-q
(lambda (maker n)
(lambda (q)

(letrec
([loop (lambda (n)

(cond
[(zero? n) ’queue-built]
[else (q ’en-q! (maker n))

(loop (sub1 n))]))])
(loop n)))))

(define test
(lambda ()
(DISPATCHER (build-q process-maker 8))))


