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Converting to and from Dilated Integers

Rajeev Raman and David S. Wise Member, IEEE-CS

Abstract— Dilated integers form an ordered group of the carte-
sian indices into a d-dimensional array represented in Morton
order. Efficient implementations of its operations can be found
elsewhere; this paper offers efficient casting (type)conversions
to and from ordinary integer representation. As Morton-order
representation for two- and three-dimensional arrays attracts
more users because of its excellent block locality, the efficiency
of these conversions becomes important. They are essential for
programmers who would use cartesian indexing there.

Two algorithms for each casting conversion are presented here:
including to-and-from dilated integers, for both d = 2 and d =
3. They fall into two families. One family uses newly compact
table-lookup so cache capacity is better preserved. The other
generalizes better to all d, using processor-local arithmetic that
is newly presented as abstract d-ary and (d — 1)-ary recurrences.
Test results for 2 and 3 dimensions generally favor the former.

CCS Categories and subject descriptors: E.1 [Data Struc-
tures]:Arrays; D.1.0 [Programming Techniques]: General;
B.3.2 [Memory Structures]: Design Styles; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical algorithms
and problems—computations on matrices.

General Term: Algorithms, Design, Performance
Additional Key Words: memory hierarchy, caches, paging,
compilers, classes, quadtrees, octrees, dilation, contraction.

I. INTRODUCTION.

Dilated integers form an ordered group for the cartesian
indices into a d-dimensional array represented in Morton order
[1]. Figure 1 illustrates the Morton order and the use of dilated
integers as its cartesian indices. With an extra high-order bit,
they also suffice for casts from cartesian to/from Ahnentafel
indices [2]. The amount of dilation, called d-dilation, varies
with the dimension d of the represented array. Morton or-
der is used to index arrays in applications from computer
vision and graphics, cartography and geographical information
systems, volumetric analyses such as axial tomography (CAT
scans), and the conventional matrix computations of scientific
computing. An array in Morton order can be conveniently
decomposed as a 2%-ary tree whose subtrees have contiguous
addresses; such locality minimizes page and cache misses.
Practically, d = 2 for matrices and quadtrees, and d = 3
for three-dimensional aggregates and octrees.

A comfortable programming paradigm to take advantage of
such locality uses recursion on 2¢ blocks of each array/operand
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to descend those trees [3], [4]. When the base case is reached
(well above 1 x 1, typically a 32 x 32 block) all of it resides
in cache. More importantly, its larger and larger enveloping
blocks fit into L2, L3, RAM, swapping disk, and so forth up
the memory hierarchy—to include communication of blocks
among both shared-memory and distributed co-processors. The
programmer need not worry about which size lands where.
This implicit mapping of memory has been called “cache-
oblivious” because she can ignore details of block size, cache
lines, and memory capacity [5]; all these are local minutiae
anyway. Whichever blocks fit will reside in L2 cache for
a good while, with subblocks rolling into L1 repeatedly;
meanwhile, translation-lookaside buffer (TLB) misses seem to
disappear [6]. This style enhances portability of code that no
longer needs to be retuned to specific memory architecture.

As these array indexings become better used for their high
performance—particularly in the context of cache-oblivious
matrix processing—their conversions to and from ordinary
integer representations become important. They are essential
manifestations, for instance, of the common abstractions from
generic programming [7]. Like the I/O conversions of IEEE
floating-point numbers, however, their use really should be
infrequent, and be displaced by efficient computation within
that type. Nevertheless, unlike the decimal/float conversions
[8], [9], knowledge of the details of these algorithms now
seems a prerequisite for the acceptance of the type into
common use, particularly in the face of lore identifying that
conversion as an obstacle [5, p. 288], [10, §4.1], [11, §4.1].

In order to hasten its promulgation we offer eight
algorithms—two conversions in each direction for d = 2 and
d = 3—to suit specific architectures. In all cases the conver-
sion is fast, faster than a random access into an array which
is their common run-time context. On current processors,
table lookup is shown to be the faster for repeated castings.
For sequential access, however, efficient implementations of
the additive operators are available directly on both dilated
integers and their cousins, masked integers [12], [13]. So, C++
iterators can be even faster than inline conversions for cartesian
indexing into Morton-ordered matrices.

Section III, below, uses table lookup to solve these prob-
lems; Section IV uses register-local operations. Section IV-D
uses an arbitrary d as d-ary and (d — 1)-ary recurrences, and
Section V describes our timings and offers conclusions. New
contributions are the halving of tables necessary for contrac-
tions in Section III, new multiplication-based algorithms in
Section IV-D, the generalized d-ary and (d—1)-ary recurrences
in Section IV-D, and Section V’s demonstration that table
lookup is faster on current RISC processors.
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Fig. 1. Morton-order indexing of a 16 X 16 matrix. As this block-recursive
W order extends across the plane, the dilation of integer 13 indexes the entire
fourteenth row, and the doubled dilation of integer 14 indexes the whole
fifteenth column. The transposed Morton-Z order is also available.

II. DEFINITIONS.

Informally, 2-dilating an integer interleaves one 0 bit be-
tween all the meaningful bits in the binary representation of
an integer. As a simple example, consider i = 2% — 1 =
111111115 = FFy¢. Its 2-dilation, denoted 7 and read “i
dilated,” is 01010101010101012 = 555516, written 0X5555
in the C language. Similarly, if j is OXFO, then 7" is 0X5500
and, again notationally, 7 = 27" = 0xAA0O; see Figure 1 for
an example of their use as row and column indices.

Notation 2.1: Let w
be the number of bits in a (short) word.

Notation 2.2: Let ¢, be a quaternary digit.

Notation 2.3: Let o, be an octal digit.

Each g, can alternatively be expressed as q¢ = 2i¢ + jo where
i¢ and j, are bits. Each o, can alternatively be expressed as
o¢ = 4iy + 250 + k¢ where iy, jo, and k, are bits.

Cartesian indices are here limited to w or fewer bits; Morton
indices and 2-dilated integers have 2w bits. The restriction,
w = 16, can be relaxed for 64-bit architectures although,
frankly, dense matrices don’t often have orders exceeding the
65,535 that it provides. If necessary, these algorithms are easily
generalized to larger w.

Definition 2.1: [2] The root of a d-dimensional array has
Morton-order index 0. A subarray (block) at Morton-order
index ¢ is either an element (scalar), or it is composed of
24 subarrays, with indices 29 +0,2% +1,...,2% + (27— 1)
at the next level.

For d = 2 the indexing of a 16 x 16 matrix is illustrated in
Figure 1. At each level of the recurrence the four quadrants
are labeled northwest, southwest, northeast, and southeast,
respectively. This yields the I order, to meet the conventions
of scientific computation where matrices are tall rather than
wide. Computer graphics, where images are wider than they
are tall, uses the transposed Z order, available by exchanging
southwest and northeast just above, and using 7 and 7 to
index rows and columns.

Theorem 2.1: [1] The Morton index into a matrix is
S qedt = 25 it + ]g4 and corresponds
to the cartesmn index for oW i = Y, 'i¢2¢ and column
7= F k2t
Concatenated quaternary digits, above, index the nested quad-
rants of a matrix; octal digits, below, index nested octants of
a 3D array.

Theorem 2.2: [2] The Morton index into a 3- dimensional
array is Y, "oi8t = 4507, Vi8l + 22@ o Je8

k¢8z and corresponds to the cartesian index for row ¢ =

w 1 o 2% column j = >, ! ;,2¢ androd k = Py 01 k2t

These theorems reflect the so-called “bit interleaving” [15],
[16], [1], also described in the book [17, pp. 105-110].
The purpose of the algorithms below is t0 convert between
the binary representations of ¢ = >, 132¢ and of 7 =

"~ 01 727, i.e. the dilation of integers.

The following two sections define four functions each, for
casting ordinary integers to and from 2-dilated and 3-dilated
integers using table lookup and word-width arithmetic. The
former functions run in about w/8 steps (on tables of 28
entries), but the latter use roughly lgw steps. Even with w
growing to 32, addressing a square matrix of order 4 - 107,
these proportions are about the same. Section IV-D offers two
more functions for even wider dilations.

III. CONVERTING VIA TABLE LOOKUP.

The following algorithms are conversions and inverse con-
versions (dilations and contractions) from integers to 2-
dilations: S5~ "2t = S0 g4’ with inline instructions.
The first casting conversions use table lookup. They require a
vector of 256 entries, either short integers or bytes; its aligned
footprint in an L1 cache is very small, and the inline code is
short.

For the first pair of algorithms, assume that d = 2, thus
spreading bits apart by one, that the dilated integers are 32 bits
wide, that ordinary integer indices are 16 bits wide, and that all
integers are unsigned. Their generalization is straightforward
for 64-bit indexing into large arrays. Generalizations to d = 3
follow.

The table for 2-dilation of Algorithm 1 appears as Figure 2
[18], [19]; it is composed of 256 short integers, occupying
twice the necessary bits but avoiding final operations to mask
out alternating bits from them. Those extra operations are

illustrated in Algorithm 3 for 3-dilation.
Algorithm 1:

inline unsigned int dilate_2(unsigned short x){
return dil ate_tab2[ OxFF & x ]

| (dilate_tab2] (OxFFFF & x) >>8 ] <<16);

}
Algorithm 2:
inline unsigned short undilate_2(unsigned int x){
return undil ate_tab2[ OxXFF & ((x>>7) |x) ]
| (undilate_tab2[ OXFF &(((x>>7) |x) >>16)]
<< 8);

}
To invert a dilation, the dilated integer is split and folded

into a single pattern, byte by byte, which then indexes a
table (Figure 3) to recover its contraction. This folding halves
the fetches from others’ tables [18], [19]. Algorithms 1-4
use bitwise inclusive-or | to sum bit patterns. Alternatives
are simple addition + and bitwise exclusive-or ~ because the
patterns are bitwise disjoint.

Algorithms 3 and 4 use the precomputed vector of 256
bytes in Figure 4, instead of two: one of shorts and another
of bytes. The algorithms are written for 3-dilations of 16-bit
short integers to 32-bit integers, and vice versa.
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const unsigned short int dilate_tab2[256] = {

0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, O0x1115,
0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, O0x1155,
0x1400, 0x1401, 0x1404, 0x1405, 0x1410, O0x1411, 0x1414, 0x1415,
0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
0x4100, 0x4101, 0x4104, 0x4105, 0x4110, O0x4111, 0x4114, O0x4115,
0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
0x4440, O0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
0x5100, 0x5101, 0x5104, 0x5105, 0x5110, O0x5111, 0x5114, 0x5115,
0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555

Fig. 2. Vector of 256 dilated short integers, each of which 2-dilates the byte that indexes it for Algorithm 1.

const unsigned char undilate_tab2[256] = {
0x00, 0x01, 0x10, Ox11, 0x02, 0x03, 0x12, 0x13, 0x20, 0x21, 0x30, 0x31, 0x22, 0x23, 0x32, 0x33,
0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17, 0x24, 0x25, 0x34, 0x35, 0x26, 0x27, 0x36, 0x37,
0x40, 0x41, 0x50, 0x51, 0x42, 0x43, 0x52, 0x53, 0x60, 0x61, 0x70, Ox71, 0x62, 0x63, 0x72, 0x73,
0x44, 0x45, 0x54, 0x55, 0x46, 0x47, 0x56, 0x57, 0x64, 0x65, 0x74, 0x75, 0x66, 0x67, 0x76, Ox77,
0x08, 0x09, 0x18, 0x19, O0xO0A, 0x0B, Ox1A, 0x1B, 0x28, 0x29, 0x38, 0x39, 0x2A, 0x2B, 0x3A, 0x3B,
0x0C, 0x0D, 0x1C, 0x1D, O0xOE, OxOF, Ox1E, Ox1F, 0x2C, 0x2D, 0x3C, 0x3D, 0x2E, 0x2F, 0x3E, 0x3F,
0x48, 0x49, 0x58, 0x59, O0x4A, 0x4B, Ox5A, 0x5B, 0x68, 0x69, 0x78, 0x79, 0x6A, 0x6B, 0x7A, 0x7B,
0x4C, 0x4D, 0x5C, 0x5D, O0x4E, Ox4F, Ox5E, Ox5F, 0x6C, 0x6D, 0x7C, 0x7D, Ox6E, 0x6F, OXx7E, Ox7F,
0x80, 0x81, 0x90, 0x91, 0x82, 0x83, 0x92, 0x93, 0xA0, 0xAl, 0xBO, OxB1, 0xA2, 0xA3, 0xB2, 0xB3,
0x84, 0x85, 0x94, 0x95, 0x86, 0x87, 0x96, 0x97, 0xA4, 0xA5, 0xB4, 0xB5, 0xA6, 0xA7, 0xB6, 0xB7,
0xQ0, 0xC1, 0xD0, 0xD1, 0xC2, 0xC3, 0xD2, 0xD3, O0xEO, OxE1l, OxFO, OxF1, OxE2, 0XxE3, 0xF2, OxF3,
0xC4, 0xC5, 0xD4, 0xD5, 0xC6, 0xC7, 0xD6, OxD7, OxE4, OxE5, OxF4, OxF5, OxE6, 0XxE7, 0xF6, OxF7,
0x88, 0x89, 0x98, 0x99, O0x8A, 0x8B, Ox9A, 0x9B, 0xA8, 0xA9, 0xB8, 0xB9, 0xAA, 0xAB, 0xBA, 0xBB,
0x8C, 0x8D, 0x9C, 0x9D, O0x8E, 0x8F, Ox9E, Ox9F, 0xAC, 0xAD, 0xBC, 0xBD, O0xAE, 0xAF, OxBE, OxBF,
0xC8, 0xC9, 0xD8, 0xD9, O0xCA, 0xCB, OxDA, OxDB, OxE8, OxE9, OxF8, 0xF9, OXEA, OXEB, OXFA, OxFB,
0xCC, 0xCD, 0xDC, 0xDD, O0xCE, O0xCF, OxDE, OxDF, O0xEC, OxED, OxFC, OxFD, OxEE, OxEF, OxFE, OxFF

IE

Fig. 3. Vector of all possible bytes, each indexed by the folding of its respective 2-dilated integer for Algorithm 2.

const unsigned char dilate_tab3[256] = {
0x00, 0x01, 0x08, 0x09, 0x40, 0x41, 0x48, 0x49, 0x02, 0x03, 0x0A, Ox0B, 0x42, 0x43, 0x4A, 0x4B,
0x10, 0x11, 0x18, 0x19, 0x50, 0x51, 0x58, 0x59, 0x12, 0x13, 0x1A, 0x1B, 0x52, 0x53, 0x5A, 0x5B,
0x80, 0x81, 0x88, 0x89, 0xC0, 0xCl, OxC8, 0xC9, 0x82, 0x83, 0x8A, 0x8B, 0xC2, 0xC3, 0xCA, 0xCB,
0x90, 0x91, 0x98, 0x99, 0xDO, 0xD1, OxD8, 0xD9, 0x92, 0x93, 0x9A, 0x9B, 0xD2, 0xD3, 0xDA, 0xDB,
0x04, 0x05, 0x0C, 0xOD, 0x44, 0x45, 0x4C, 0x4D, 0x06, 0x07, OxOE, OxOF, 0x46, 0x47, Ox4E, Ox4F,
0x14, 0x15, 0x1C, 0x1D, 0x54, 0x55, 0x5C, Ox5D, 0x16, 0x17, Ox1E, Ox1F, 0x56, 0x57, Ox5E, Ox5F,
0x84, 0x85, 0x8C, 0x8D, 0xC4, 0xCh, 0xCC, OxCD, 0x86, 0x87, Ox8E, 0x8F, 0xC6, 0xC7, 0xCE, OxCF,
0x94, 0x95, 0x9C, 0x9D, 0xD4, 0xD5, OxDC, OxDD, 0x96, 0x97, Ox9E, Ox9F, 0xD6, 0xD7, 0xDE, OxDF,
0x20, 0x21, 0x28, 0x29, 0x60, 0x61, 0x68, 0x69, 0x22, 0x23, 0x2A, 0x2B, 0x62, 0x63, 0x6A, 0x6B,
0x30, 0x31, 0x38, 0x39, 0x70, 0x71, 0x78, 0x79, 0x32, 0x33, 0x3A, 0x3B, 0x72, 0x73, 0x7A, Ox7B,
0xAO0, OxAl, OxA8, OxA9, OxEO, OxEl, OxE8, OXE9, 0xA2, 0xA3, OxAA, OxAB, 0xE2, 0xE3, OxEA, OxEB,
0xBO0, 0xB1, 0xB8, 0xB9, 0xFO, OxF1, OxF8, OxF9, 0xB2, 0xB3, 0xBA, 0xBB, 0xF2, 0xF3, 0xFA, OxFB,
0x24, 0x25, 0x2C, 0x2D, 0x64, 0x65, 0x6C, Ox6D, 0x26, 0x27, Ox2E, Ox2F, 0x66, 0x67, OXx6E, Ox6F,
0x34, 0x35, 0x3C, 0x3D, 0x74, 0x75, 0x7C, Ox7D, 0x36, 0x37, Ox3E, Ox3F, 0x76, 0x77, OXx7E, Ox7F,
0xA4, OxA5, OXAC, OXAD, OxE4, OxE5, OXEC, OXED, 0xA6, 0xA7, OXAE, OxAF, OxE6, 0xE7, OXEE, OXEF,
0xB4, 0xB5, 0xBC, 0xBD, 0xF4, OxF5, OxFC, OxFD, 0xB6, 0xB7, OxBE, OxBF, 0xF6, 0xF7, OxFE, OxFF

s

Fig. 4. Vector of all 256 bytes, each of which 3-dilates the byte that indexes it, and each indexed by the folding of its respective 3-dilated integer for both
Algorithms 3 and 4.
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Algorithm 3:
inline unsigned int dilate_3(unsigned short x){
return ((
((dilate_tab3[ (OXFFFF & x) >>8] )<<24)
| dilate_tab3[ OxXFF & x ]

) * 0x010101) & 0x49249249;

}
Algorithm 4:

inline unsigned short undilate_3(unsigned int x){

return dilate_tab3[OxFF & ((((x>>8) | x) >>8)

X
| (dilate_tab3[OxFF & ((((x>>8) | x) >>8)
| x) >>24)] <<8);
}

Just as Algorithm 2 halves the space of Algorithm 1
(Figure 3 vs. 2), the next theorem nearly halves their total
space once again.

Theorem 3.1: The tables of bytes required for Algorithms 3
and 4 coincide.

Proof:  [Suggested by a referee] A table entry effects
a dilating/folding permutation, P, of the bit at an individual
position, 0 < ¢ < 8, to position (3-i) mod 8, and it so
permutes all eight bits in a single lookup. This permutation
is its own inverse because P(P(i)) = (3-3-¢) mod 8 = i
mod 8 = i. ]
A similar proof applies for any d-dilation and permuting table
of 2P different p-bit integers, such that d> mod p = 1. For
example, one table of 256 bytes also suffices for 5-dilation
and contraction, though computations like the next sections’
are faster.

IV. CONVERSION WITHOUT TABLE LOOKUP.

Conversion can also be done entirely within the processor
without the cache impact of table lookup. A review of existing
approaches follows, based on shifts and masking, which leads
to new ones based on integer multiplication. This section
concludes by considering the abstract case for all d. Discussed
first are d-undilation algorithms for d = 2, 3.

As before, consider the case where the dilated integer is
contained in a w-bit (32-bit) word. The w limit constrains
the number of significant digits in the undilated integer to
s = |w/d]. As shown in several cases below, abstract multi-
plication generates high-order overflow bits that are ignored.

Notation 4.1: Let s denote the number of significant dilat-
able bits in an undilated integer.

A. Shift-Or Algorithms

Merkey presents straight-line codes based on an algorithm
by Stocco and Schrack [20], [19], that use repeated shift—
or operations and masks for conversion between normal and
dilated integers. They also can be found without citation
among sample codes in machine manuals [21, pp. 136-139,
184-185]. Instances of the shift-based 2-undilation and 2-
dilation algorithms for s = 16 are shown in Figure 5. Each
algorithm works in four rounds, where a round comprises
three operations: a shift and two bitwise operations. Merkey
presents a variant that performs one shift and three bitwise
operations per round, but works equally well with superscalar
instructions. Another round is necessary for w = 64, s = 32.

Figure 5 illustrates the whole family of algorithms. In
undi late_2 there, for instance, each round coalesces pairs
of groups from the previous round; that is, that algorithm
performs “binary coalescing.” Unnumbered here because it
is replaced below, it uses a mask to remove the redundant
“middle muddle” that results from reflexive bit merges. It
collapses the dilation in only [lg s] rounds.

B. Undilation via Multiplication

With fast integer multiplication the shift-ors in a round
of the undilation algorithm might be reduced to a single
multiplication that implements them. When a constant factor
has only a few bits set, its multiplication might be better
replaced by inline shift-adds at compile time, or (even if
a variable) decoded by the processor to shift-adds at run
time. For example, multiplications by integers like 3 or 17
that have only two bits set in their binary representation
can be implemented by a single shift-add. In writing such
a multiplication we intend it to allow such an implementation
if faster. Indeed, we have seen compilers that enforce it
(sometimes slowing the code). Faster multipliers or relatively
slower barrel shifters might favor the multiply as coded.

The multiplication is safe here because the interven-
ing/dilating zero bits absorb any carries from the implied
addition within the middle muddle, that is about to be masked
off anyway. Since any dilated integer has a sparse set of
significant bit positions, it is safe to implement the shift-ors of
similar undilations using multiplication. For instance, 2- and
3-undilation can be implemented as follows:

Algorithm 6:
inline u_short undilate_2(u_int t){

t =(t * 3) & 0x66666666;
t = (t * 5) & 0x78787878;
t = (t * 17) & Ox7FS807F80;

t (t * 257) & Ox7FFF8000;
return ((u_short) (t >> 15));

Algor}ithm 7:
inline u_short undilate_3(u_int t){
t (t * 0x00015) & OxOE070381;
t (t * 0x01041) & OxOFF80001;
t (t * 0x40001) & OxOFFCO000;
return ((u_short) (t >> 18));

The moderately experienced programmer will recognize the
constant factors in Algorithm 6 as successors of powers-of-
powers-of-2 (Fermat primes even), and so we express them
as decimal numbers. In fact and as derived in Section IV-D,
in Round ¢ the factor is composed of 2 one bits, separated
by %Zi — 1 zero bits. In Algorithm 7 they are presented
as hexadecimal numbers, revealing their similarly regular bit
patterns: one bits are separated by %3i —1 zero bits in Round 3.

Algorithm 6 mimics Figure 5’s undilate_ 2, with the
difference that the partial results shift to the left as rounds
proceed because the products are emulating right shifts. For
example, its first statement is mimicked almost directly by
the the assignmentt = (t * 3) & 0x66666666 in Algo-
rithm 6, except for that shift. Because of it, a cumulative
correcting shift is necessary in the return value.
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inline u_short undilate_2(u_int t) {
t = (t ] (t > 1)) & 0x33333333;
t = (t | (t >> 2)) & OxOFOFOFOF;
t = (t ] (t >> 4)) & OxO0FFOOFF;
t = (t | (t >> 8)) & 0x0000FFFF;
return((u_short) t);
}
Fig. 5.

Algorithm 5:

inline u_int dilate_2(u_short t) {
uintr =t;
r = (r | (r << 8)) & OxO00FFOOFF;
r =(r | (r << 4)) & O0xOFOFOFOF;
r =(r | (r << 2)) & 0x33333333;
r = (r | (r << 1)) & 0x55555555;
return(r);

}

Inline algorithms described by Merkey for 2-dilation and 2-undilation. u_int and u_short are assumed to be typedef’ed to unsigned int

and unsigned short, respectively [20], [19]. The left one remains unnumbered because it is replaced by Algorithm 6, above.

In summary, Algorithm 6 requires 9 operations, and Algo-
rithm 7 requires 7. For 64-bit dilated indices, an extra round
is needed by both algorithms, raising the instruction counts to
11 and 9 respectively. See Table I for comparisons.

C. Dilation

Algorithm 5 stands as our processor-local algorithm for
2-dilation. Multiplication, alone, cannot replace its shift-
or operations because it introduces carry bits whose ef-
fects survive the subsequent masking. For example, one is
tempted to substitute t = t*257 & mask for its first state-
mentt = (t | (t << 8)) & nmsk, but that fails, e.g. at
t = 257, because of the carry that shifts into the 2° bit of
the product. Indeed, we are not aware of any multiplication-
based approach to 2-dilation that uses fewer instructions than
the shift-based approach.

The multiplication-based approach, however, can be used
to 3-dilate an integer via “binary splitting” with fewer instruc-
tions than a shift-based binary-splitting algorithm.

Algorithm 8:

inline u_int dilate_3(u_short t) {
uintr =t;
r = (r * 0x10001) & OxFFOOOOFF;
r = (r * 0x00101) & OxOFOOFOOF;
r = (r * 0x00011) & 0xC30C30C3;
r = (r * Ox00005) & 0x49249249;
return(r);

}

As before, the constant factors in Algorithm 8 follow a pattern
that can be inferred from their hexadecimal presentation: one
bits are separated by 2°~% — 1 zero bits at Round 4. This
algorithm delivers a binary splitting pattern of partial results:
at the end of each round, there is a maximum group size,
which changes as 8, 4, 2 and then 1.

Whereas Algorithm 8 needs as many rounds as a shift-based
approach, each round requires just two instructions, multiply
and mask, that might become the shift-based algorithms’ three.
Thus, dilating for d = 3 and s = 10 takes 8 instructions rather
than 12, and for 64-bit dilated integers it would require only
10.

Although a “ternary split” could perform 3-dilation in
fewer rounds, such an approach is inferior for both the
multiplication- and shift-based approaches. Multiplication fails
because of the presence of undesirable carries. As before, shift-
based approaches would also have an excessive number of
operations per round, more than nullifying any reduction in
the number of rounds. However, as the next section shows,
multiplication implements ternary split well for 4-dilation and,
in general, (d — 1)-ary split does well for wider d-dilations.

D. Even Wider Dilations

The case of arbitrary d > 1 and s > 1 is now addressed.
Specifically, how can one derive the “magic” constants above
and how is one convinced of the correctness of these algo-
rithms? (Those constants are denoted b,c,y, z below, sub-
scripted for dilation d and the round 7.) In the arbitrary case, s
is subject only to the condition that 1 < s < |w/d], where w
denotes the natural word width of the processor. The general
algorithms follow:

Algorithm 9:

DILATE(t, s, d) (where d > 2)
1) r—t
2) fori=1,2,...,[log;_;s]| do
r— (r X bg;) AND yq ;.
3) return r.
Algorithm 10:
UNDILATE(t, s, d)
1) r—t
2) fori=1,2,...,[log,s]| do
r— (r X cqi) AND z4,.
3)) a—d(s—1)+1;
4) return |[r/2°7%|.

When d > 2, the multiplication-based algorithms use
2[log,_, s] instructions for d-dilation, and for any d > 2,
2[log, s| + 1 instructions for d-undilation. The bases of these
logarithms lead to the terms (d— 1)-recursion and d-recursion.
Compared with the shift-based algorithms’ bound of 3[log, s]
instructions, the multiplication-based algorithms use far fewer
instructions, particularly when d becomes large, due to the
linearity of d in the base of the logarithm. (Table I presents
exact counts for practical values of d and s.)

Consider now the correctness of the algorithms and the
values of b, c,y, and z.

Notation 4.2: Let z,, , denote Zg;é 24 for integers p, q >
1.

The binary expansion of z,, has p 1s, with each pair of
successive 1s separated by exactly ¢ — 1 zeros, and with the
rightmost bit equal to 1.

The correctness of the undilation Algorithm 10 is implied
by an induction on two invariants. They determine what the
constants cq; and z4 ; should be. The initial/base case is used
below as if it occurred at “the end of” a null Round 0:

1) For all rounds, the leftmost bit of 7 stays in the same
bit position, i.e. position d(s — 1) + 1.

2) At the end of Round 7 for ¢ = 0,1, ... there are groups
of consecutive significant digits of size d’, with the
rightmost group possibly smaller if s is not a power
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[ Strategy | Alg. Dilation Undilation d = 2 for Matrices
Table Lookup fetch shift | mask fetch shift | mask Table Lookup Shift Multiply
d=2: 1,2 2 2 3 2 2 4 Processor Compiler Dilate | Undilate | Dilate | Undilate
d=23: 34 2 21 31 2 4 5 Version Alg.1 Alg. 2 Alg. 5 Alg. 6
Processor-local multiply | shift | mask || multiply | shift | mask Itanium gcc 34 2.64 4.65 9.66 4.65
d=2: 5,6 0 4 8 4 1 4 Itanium icc 8.1 3.11 5.11 10.12 8.12
d=3: 8,7 4 0 4 3 1 3 Opteron gcc 4.1.1 1.05 2.57 6.08 4.54
TABLE I Pentium4 gcc 3.4.6 4.04 6.55 15.17 10.85
Pentium-M | gcc 3.3.6 3.01 4.14 8.37 7.96
INSTRUCTION COUNTS FOR UNDILATION AND DILATION, FOR PRACTICAL POWERS §cc 333 108 305 239 155
ALGORITHMS USING TABLE LOOKUP, SHIFT-BASED, AND Xeon gcc 3455 106 648 1518 1045
MULTIPLICATION-BASED ALGORITHMS. d=3
Measured in average Table Lookup Multiply
processor cycles. Dilate | Undilate | Dilate | Undilate
. . Alg. 3 Alg. 4 Alg. 8 Alg. 7
of d. Each group is separated from the one before it by Ttanium gcc 34 768 6.65 765 6.65
d*(d — 1) zero bits. Ttanium iccs.l || 1012 | 812 8.12 8.12
. . T . y Opteron cc4.1.1 3.10 5.05 5.19 2.99
st P g
It is easy to verify that the multlphcatlop constant for the 741 Pentiumd | goc 34.6 || 10.81 3356 1776 373
round, cg ;+1, should be x4 (q—1)q:. This constant can be more Pentium-M | gcc 3.3.6 5.02 483 861 5.56
than w bits long but, by the properties of modular arithmetic, POWERS | gcc 333 || 4.88 491 8.04 2.98
only the low-order w bits of any constant are necessary for Xeon gce 345 || 1071 849 1394 | 1368
TABLE 11

the result to be correct. For instance, when d = 3, s = 10 and
w =32, c33 = w315 = 2% 4+ 2'® + 1 = 0x1000040001, a
37-bit value. However, the constant 0x40001 in Algorithm 7
is just the low-order 32 bits of c3 3.

Algorithm 9, d-dilation for d > 2 in ¢ = [log,_; s] rounds,

has invariants:

3) For all rounds, the rightmost bit of 7 stays in position
0.

4) At the end of Round i, for ¢ = 0,1,...,t, there are
groups of consecutive significant digits of size (d—1)*~7,
plus possibly one (the leftmost) group of smaller size if
s is not a power of (d — 1). Each group is separated
from the one before it by (d — 1)!~**! blank bits.

Therefore, one round of d-dilation reduces the maximum
size of a group of consecutive significant digits by a factor
of (d — 1), which may be viewed as a (d — 1)-way split.
Figure 6 illustrates why this works. As it shows, one can use
a multiplication to create (d — 1) adjacent copies of a block
of (d — 1)7 contiguous significant bits. From these adjacent
copies, one can extract the appropriate contiguous blocks of
size (d — 1)7~!, which are spaced exactly (d — 1)/ bits apart,
as required by Invariant 4. The multiplication constants are
given by bd,i = T, (d—1)t—i+1-

V. TIMINGS AND CONCLUSION

Algorithms 1-8 have been tested on PowerPCs G4 and
G5, Pentiums 2 and 4, Xeons, an Itanium, Athlons, Opterons,
and an IBM POWERS. Timings were taken for repeated runs
with the small tables of Algorithms 1-4 preloaded in cache,
a reasonable assumption when they are being used often, as
in a loop. (The alternative of condemning cache after every
test, to simulate rare random conversions, is too stringent.)
All are very fast. Algorithms 1-2 are consistently faster than
Algorithms 5-6. Algorithms 3—4 compare differently to 8—7 on
different machines. For wider dilations, d > 3, unpacking the
table entries becomes tedious and the direct, multiplication-
based algorithms shine.

"Multiplication by 0x010101 in Algorithm 3 is not counted here.
Depending on your processor, it may be faster as the constant multiplication,
or as 2 shifts and 2 additions.

AVERAGE TIMES FOR THE ALGORITHMS MEASURED IN PROCESSOR
CYCLES ON DIFFERENT MACHINES.

Table I compares the operation counts for the eight principal
algorithms. The trade-off between fetch and multiplication is
apparent. Table II compares the running times measured in
clock cycles for these algorithms, run on several machines.
The indicated C compilers and versions were used only with
option -03.

This paper presents several results advancing the use of
dilated integers for indexing Morton-ordered matrices. First,
it is an introduction to those structures and how simply they
deliver block-locality with conventional cartesian indexing.
Second, it reintroduces efficient processor-based algorithms
that should be more widely known, and establishes new
time- and space-efficient table-based alternatives. Of course,
either could be displaced by hardwired bit shufflers. Third, it
generalizes the former algorithms with d-ary and (d — 1)-ary
recurrences for the general case.

Expansion of the memory hierarchy and the advent of
chip multiprocessors create a need for arrays with highly
local access within any cache-resident block. These algorithms
allow dilated integers, as well as methods for direct arithmetic
on them [12], help deliver that locality with ordinary cartesian
indexing on ordinary hardware.
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