
Chapter 1

Introduction to Daisy

Daisy is a list processing language with primitive operations for symbolic
processing. Daisy is a language of expressions. Its interpreter reduces the
graph representation of an expression to a value. If the interpreter reduces
an expression E to a value v then v is said to be E's value.

1.1 Numerals and Arithmetic

The simplest expression is a number. An integer appears as a sequence
of decimal digits, possibly with a minus-sign. Some examples are 597,
-32, and 0. There is also a oating-point representation, which is indi-
cated by a decimal point and possibly an exponent. Numerals 124.0 and
3.333333e-01 are both expressions of the same number.

The value of a number is that same number, up to equivalent spellings.
For instance, 597 has value 597; 0 has value 0; and 124.0 has value
1.240000e+02, the latter being the cannonical spelling used in output.

Daisy has a collection of arithmetic operations that apply to numbers
One of these is inc, the increment-operation. The expression

inc:55

applies inc to the integer 55. Its value is 56, one more than 55. Similarly,
inc:-3 has value -2. Incrementing does not alter the argument; inc:N
creates a new number representing N + 1: Other numeric operations used
in this section are

dcr Decrement; for instance, dcr:5 has value 4 and dcr:0 has value -1.

neg Negate; for instance, neg:19 has value -19.
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add Add; for instance, add:[3 2] yields the sum 5 of 3 and 2.

mpy Multiply; for intance, mpy:[3 2] has value 6, and mpy:[-3 7] has
value -21.

In the examples above, an expression may appear wherever there is a num-
ber. The expression inc:neg:19 yields -18 because inc is applied to -19.
Writing add:[inc:5 neg:2] is like writing add:[6 -2]; its value is 4. Sim-
ilarly, mpy:[4 add:[dcr:3 17]] yields 76, representing 4 � ((3� 1) + 17):

1.2 List expressions

The arguments above to add and mpy, forms like

[ 3 2 ]

[ inc:5 neg:2 ]

[ 4 add:[ dcr:3 17 ] ]

are list expressions. If E0; E1; : : : ; En are Daisy expressions, then the
expression

[E0 E1 � � � En ]

has the list value

[ v0 v1 � � � vn ] ;

where each vi is the value of Ei: The empty list [ ] has value [ ] and is
called Nil. The list expression [1 23 -7] yields [1 23 -7] because each
of the element-expressions is a number. Here are more examples:

Expression Value

[ 3 2 ] [ 3 2 ]

[ inc:5 neg:2 ] [ 6 -2 ]

[ dcr:3 17 ] [ 2 17 ]

[ 4 add:[ dcr:3 17 ] ] [ 4 19 ]

[ inc:2 neg:2 ] [ 3 -2 ]

[ 12 [inc:2 neg:2] 99 ] [ 12 [ 3 -2 ] -5 ]

Lists are represented as binary records whose two �elds are its head and
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its tail. These are citations (or \pointers") to other objects:

List representation is discussed further in later sections. The separator `!'
is used when a list's tail is explicitly given.

Expression Value

[ 5 ! inc:neg:6 ] [ 5 ! -5 ]

[ [inc:2 neg:2] ! 99 ] [ [ 3 -2 ] ! 99 ]

The list expression

[E ! E0 ]

yields the value
[ v ! v0 ]

of values for E and E0: That is, [E ! E0 ] expresses the cell

Daisy's parsing and display primitives suppress cascading dot-notation when
lists' tails are lists. Suppose U; V; and W are expressions whose values are
u; v; and w respectively.

Expression Value Appears as

[ ] [ ] [ ]

[W ] [w ! [ ]] [w ]

[V W ] [ v ! [w ! [ ] ]] [ v w ]

[U V W ] [u ! [ v ! [w ! [ ]] ]] [u v w ]
...

...
...

The same convention is used in list expressions. For [U V W ], one may

write
[U ! [V ! [W ! [ ]] ]]
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1.3 Literal Symbols

A literal is a symbol, such as train or orange. Like numbers, literals are
atomic data; they have no structure. A sequence of characters surrounded
by double-quotes forms a literal quotation, whose value is the literal with
the same spelling. For instance, the expression

"train"

has value
train

Similarly,

Expression Value

"cars" cars

"trucks" trucks

"things that go" things that go

[ "things that go"] [ things that go]

[ "things" "that" "go"] [ things that go]

The third example above shows the space character incorporated in the

literal's spelling. The ` ' does not appear when the name is displayed.
Though things that go appears in three parts because of the spaces, it
is an atomic symbol. The list expressions

[ "things that go"]

and
[ "things" "that" "go"]

have values that look the same, but these are di�erent structures: the �rst
is a one-element list

things that go

and the second is a three-element list

things that go
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1.4 De�nitions

In mathematical notation, one might de�ne the multiplication of a pair by
a scalar as

s
 [n1; n2]
def
= [s � n1; s � n2]

This formula says what the symbol `
' stands for by showing its function
on a con�guration of variables. An analogous Daisy de�nition is expressed
like this:

ScalePair =

\[S [N1 N2]] . [ mpy:[S N1] mpy:[S N2] ]

If I is a literal and E is an expression, the form

I = E

assigns E's value to the name I: The name ScalePair plays the role of the
symbol `
'; Daisy has no provisions for in�x notation or special characters.
The form

\ X . E

is called a function expression. Assigning a function to a name is like
making a procedure de�nition. X is a formal argument (or parameter)
and the body E may be any expression. ScalePair's formal argument is
[S [N1 N2]]. When ScalePair is applied, S, N1, and N2 are bound to
(or associated with) the corresponding components of the argument. The
function's body is evaluated as though occurances of S, N1, and N2 had been
replaced by their bindings. For instance, ScalePair:[3 [-2 7]] binds S
to 3, N1 to -2, and N2 to 7. It is as though ScalePair's body had become

[ mpy:[3 -2] mpy:[3 7] ] :

Recall that mpy is the multiplication operation, so the resulting value is
[-6 21].

The textual substitution of pieces of an actual argument for correspond-
ing identi�ers is called symbolic expansion. The Daisy interpreter does
not actually work this way; instead, it develops bindings in a data struc-
ture. Even so, the resulting value is almost always the same, and one
often reasons about programs in this manner. Here is a sketch of how
ScalePair:[3 [-2 7]] is actually interpreted.

1. The literal ScalePair is evaluated. Since it has been assigned, its
value is the function expressed as

\[S [N1 N2]] . [ mpy:[S N1] mpy:[S N2] ]
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2. The argument [ 3 [ -2 7] ] is evaluated to yield [ 3 [ -2 7] ].

3. The formal argument [ S [ N1 N2]] is bound to the actual argument
[ 3 [ -2 7 ]]. The association is retained in a data structure called
an environment.

4. The expression [mpy:[S V1] mpy:[S V2]] is interpreted. Occurances
mpy are resolved to the primitive multiply-operation. Occurances of
S, V1, V2 are resolved their bindings as established in step (3). This
yields the result [-6 21].

1.5 Recursive programs

A more general function for scalar multiplication applies to vectors of ar-
bitrary length:

s
 [n1; n2; : : : ; nn]
def
= [s � n1; s � n2; : : : ; s � nn]

A Daisy version is

ScaleVector = \[S V] .

if:[ nil?:V

[]

[ mpy:[S head:V] ! ScaleVector:[S tail:V] ]

]

The nil? operation tests whether its argument is the empty list; head and
tail retreive the �elds of a list. To understand the Daisy de�nition, one
must know that vectors are represented as lists of numbers. This was more
explicit in the ScalePair de�nition. ScaleVector multiplies each number
in V by the scalar quantity S, producing a list of products, hence another
vector.

The if is Daisy's conditional operation.

if:[ p u v ]

returns u where p is true and v where p is false. In ScaleVector, p is the
value of the expression nil?:V; u is the value of []; and v is the value of
the list expression

[ mpy:[S head:V] ! ScaleVector:[S tail:V] ]



1.6. BINDING FORMS 7

Symbolically expanded, ScaleVector:[3 []] is

if:[ nil?:[]

[]

[ mpy:[3 head:[]] ! ScaleVector:[3 tail:[]] ]

]

The expression nil?:[] has value T, the result of a true test. Hence, the
conditional expression reduces to

if:[ T [ ] [ ? ! ? ]]

and if returns []. Since the test was true, it doesn't matter what the
second alternative value is.

The second alternative in ScaleVector's body involves a recursive call;
ScaleVector:[3 [2]] expands to

if:[ nil?:[2]

[]

[ mpy:[3 head:[2]] ! ScaleVector:[3 tail:[2]] ]

]

Since [2] is not Nil, if chooses

[ mpy:[3 head:[2]] ! ScaleVector:[3 tail:[2]] ]

which simpli�es to

[ mpy:[3 2] ! ScaleVector:[3 []] ]

This list's head has value 6, and its tail has value [], as was just shown.
Hence, the result is the list [6 ! []], or [6] according to the `!' convention.
Similarly, ScaleVector:[3 [1 2]] expands to

[ mpy:[3 1] ! ScaleVector:[3 [2]] ]

and simpli�es to [3 6]. ScaleVector:[3 [0 1 2]] yields [0 3 6].
And so on. The recursion in this example is achieved through assignment,
whose global e�ect makes the name ScaleVector an indirect reference to
a program, even within that program's body.

1.6 Binding Forms

An equivalent de�nition of ScaleVector, below, uses the binding form let

to give names to V's head and tail.
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ScaleVector = \[S V] .

let:[ [N ! Ns]

V

if:[ nil?:V

[]

[ mpy:[S N] ! ScaleVector:[S Ns] ]

]

]

The form
let:[X E E0 ]

binds the formal argument X to the value of E for an evaluation of expres-
sion E0: The brackets `[' and `]' must be used. In ScaleVector,

X is [N ! Ns]

E is V

E0 is if:[ nil?:V

[]

[ mpy:[S N] ! ScaleVector:[S Ns] ]

]

Binding [N ! Ns] to V associates the identi�er N with V's head and Ns

with V's tail. It is as though one were saying \Wherever you see `N', read:
`head:V'." Though they are not exactly equivalent, this use of let is like
the auxiliary de�nition of Phantom below.

ScaleVector = \[S V].

if:[ nil?:V

[]

Phantom:[S V]

]

Phantom = \[S [N ! Ns]].

[ mpy:[S N] ! ScaleVector:[S Ns] ]

Phantom just serves to identify the components of V. The let makes the
same association locally.

A let-expression develops bindings from the surrounding scope; The
form

rec:[X E E0 ]

develops recursive bindings for the identi�ers in X: As with let, it is im-
portant that rec's argument be surrounded with brackets, not angles. The
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variation of ScaleVector below locally de�nes a recursive procedure, LOOP,
that multiplies each element of a list by S.

ScaleVector = \[S V] .

rec:[ LOOP

\[N ! Ns] .

[ mpy:[S N] ! if:[ nil?:Ns [] LOOP:Ns ] ]

if:[ nil?:V [] LOOP:V ]

]

A nil?-test guards each call to LOOP, so it is never applied to an empty
vector. The duplicate occurances of

if:[ nil?:? [] LOOP:? ]

could be abstracted to a function:

ScaleVector = \[S V] . |

rec:[ [ LOOP HELP ] |

[ \[N ! Ns] . [mpy:[S N] ! HELP:Ns] | LOOP defn

\Ns . if:[ nil?:Ns [] LOOP:Ns ] | HELP defn

] |

HELP:V |

]

which function goes with which name. Both let and rec group formal pa-
rameters their binding expressions seperately. This version of ScaleVector
recursively binds [LOOP HELP] to a pair of function expressions [L H ]; it
could be read as a mutually recursive system of de�nitions,

LOOP = \[N ! Ns] . [ mpy:[S N] ! HELP:Ns ]

HELP = \Ns . if:[ nil?:Ns [] LOOP:Ns ]

However, this system of equations is not the same as a pair of surface
assignments. First, the occurance of S in LOOP's de�nition acquires its
binding from ScaleVector's formal argument. Second, the names LOOP

and HELP retain their values only in the scope of the rec expression.

1.7 Function values

The locally de�ned LOOP, just above, maps a multiplication operation over
a list of numbers. Generalizations of such functions are useful. At the same
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time, a multiplication-mapping function is not a very broad generalization,
although it might be contemplated anyway. A more general mapping is
developed in two steps below. The �rst is to identify as Scale a multiply-
by-S function.

ScaleVector = \[S V] .

let:[ Scale

\M . mpy:[S M]

rec:[ [ LOOP HELP ]

[ \[N ! Ns]. [ Scale:N ! HELP:Ns ]

\Ns. if:[ nil?:Ns [] LOOP:Ns ]

]

HELP:V

]

]

The Scale function depends on a binding for S. Inheritence of bind-
ings is lexical. This means that identi�ers capture bindings according to
language structure. The `S' in \M.mpy:[S M] captures its binding from
ScaleVector's formal argument, [S V], because that is the closest point|
in a hierarchical sense|that S occurs in a formal argument. Similarly, the
`Scale' in LOOP gets its value from the surrounding let binding.

LOOP maps Scale over the list V. The desired generalization, call it
MapVector, comes in moving LOOP outside ScaleVector.

ScaleVector = \[S V] .

let:[ Scale

\X . mpy:[S X]

MapVector:[ Scale V ]

]

MapVector = \[F V] .

rec:[ [ LOOP HELP ]

[ \[N ! Ns] . [ F:N ! HELP:Ns ]

\Ns . if:[ nil?:Ns [] LOOP:Ns ]

]

HELP:V

]

Since MapVector is outside ScaleVector's scope, Scalemust now be passed
as an argument. The only purpose of the let in ScaleVector is to name
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the once-occuring multiply-by-S function. One would likely omit it and
instead de�ne

ScaleVector = \[S V]. MapVector:[ (\N.mpy:[S N]) V ]

The parentheses around the function expression (\N.mpy[S N]) are for
emphasis and are not required. Until this example, function expressions
have occured at \special" places in de�ning and binding forms. However,
functions may appear anywhere; and in particular, in argument lists.

Now suppose that a vector is represented as a list of number-literal
pairs, such as

[ [5 trucks] [2 cars] [0 boats] [1 airplanes] [9 taxis] ]

De�ne a function that translates numbers to literals:

HowMany = \M. \[N T].

if:[ eq?:[N 0] ["no" T]

eq?:[N 1] ["one" T]

eq?:[N 2] ["a couple of" T]

lt?:[N M] ["a few" T]

["many" T]

]

The new primitives are numeric tests: eq? tests for equality and lt? is a
less-than test. The if operation allows successive tests.

if:[ p0 v0 p1 v1 � � � pn vn vn+1 ]

returns the �rst vi whose test value pi is true. Should none of the tests be
true, if returns vn+1:

HowMany has the form \M.\[N T].E. It takes a number, M and returns
a function from pairs to pairs. For instance, HowMany:5 symbolically ex-
pands to a function giving an English description of size depending on the
inherited binding for the number M|5 in this case. So the argument 5, in
e�ect, specializes HowMany to the function shown below.

\[N T]. if:[ � � � lt?:[N 5] ["a few" T] � � � ]

Thus,

(HowMany:5):[3 "cars"] has value [a few cars] and

(HowMany:5):[5 "trains"] has value [many trains]
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The parentheses above are needed because without them, application would
be done from right to left. That is, the form F :G :X applies F to G :X;

according to the default precedence. The revision to ScaleVector is

ScaleVector = \[S V] . MapVector:[ HowMany:S V ]

MapVector is unchanged. Under these de�nitions,

ScaleVector:[ 6 [ [5 "trucks"] [2 "cars"] [0 "boats"]

[1 "airplanes"] [9 "taxis"] ]

]

evaluates to

[ [a few trucks] [a couple of cars] [no boats]

[one airplanes] [many taxis]

]

1.8 Data recursion

Let us consider one last generalization of scalar multiplication, to in�nite
sequences:

s
 [n1; n2; � � � ]
def
= [s � n1; s � n2; � � � ]

The ScaleVector function already implements this speci�cation, and in�-
nite sequences can be represented in Daisy. For example, a list of increasing
integers, [ 0 1 2 � � � ] can be developed in two ways. A recursive function
de�nition,

Integers = \N . rec:[ F

\M . [ M ! F:inc:M ]

F:N

]

de�nes F to concatenate M to the list of all its successors (Recall that inc
is the increment-operation.):

Integers:0 = F:0

= [0 ! F:inc:0]

= [0 ! F:1]

= [0 ! [1 ! F:inc:1 ] ]

= [0 1 ! F:2 ]

= [0 1 ! [2 ! F:inc:2 ] ]

= [0 1 2 ! F:3 ]

...
= [0 1 2 � � � ]

whose value is = [0 1 2 � � � ]
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The same result is obtained if, instead of de�ning a function recursively,
the list itself is recursively de�ned. Below, the list L is described in terms
of itself.

Integers = \N .

rec:[ Z

[ N ! MapVector:[inc Z] ]

Z

]

MapVector is the same as before; it applies inc to each element of the list
Z. Reasoning symbolically,

Integers:0= Z

= [0 ! MapVector:[inc Z] ]

= [0 ! MapVector:[inc [0 � � � ] ] ]

= [0 ! [1 ! MapVector:[inc tail:[0 ! [1 � � � ]] ] ]]

= [0 1 ! MapVector:[ inc [1 � � � ] ] ]

= [0 1 ! [2 ! MapVector:[ inc tail:[1 ! [2 � � � ]] ] ]]

= [0 1 2 ! MapVector:[ inc [2 � � � ] ] ]

...
= [0 1 2 � � � ]

whose value is
[0 1 2 � � � ]

The expression ScaleVector:[3 Integers:0 ] yields the list

[ 0 3 6 9 12 15 18 21 � � � ] :

Should it be used only on nonterminating lists, MapVector could be stream-
lined by omitting its termination test.

MapVector = \[F Ns] .

rec:[ LOOP

\[N ! Ns] . [ F:N ! LOOP:Ns ]

LOOP:Ns

]

1.9 Daisy's Construction Functionals

There is a primitive operation in Daisy that does the work of MapVector:
map takes a function F an returns a function which maps F over a list. A
function which takes functions to functions is called a functional . The map
operation can be speci�ed by a Daisy de�nition:
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map = \F.

rec:[ LOOP

\L.

let:[[H ! T] L

if:[ nil?:L

[]

[F:H ! LOOP:T]

]]

LOOP

]

LOOP is de�ned within the scope of map's function binding, so the value of
F is determined once map is applied to something. Then, where (map:F)

is applied to a list LOOP does the mapping. Of course, the primitive map

operation runs more e�ciently, but its general behavior is identical.

The version of ScaleVector shown below binds F to a multiplier that
takes its arguments one at a time, a transformation known as currying .
Thus, \F:S, amultiply-by-S function, is mapped over the sequence of values,
Vs.

ScaleVector = \[S Vs] .

let:[ F

\X. \Y. mpy:[X Y]

(map:(F:S)):Vs

]

Daisy has a number of other functionals for mapping functions over struc-
tures. The most general of these is called fc. It applies takes a list of
functions to an \array of arguments." An expression of the form

(fc:[F ! F 0 ]) : [ [E0 ! E
0
0 ]

[E1 ! E
0
1 ]

...
]

is like the expression

[ F:[E0 E1 � � � ] ! (fc:F 0):[E0
0 E0

1 � � � ]]

Here are some examples:
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This expression is like Value

(fc:[add add]):[

[ 1 2 ]

[ 3 4 ] ]

[ add:[1 3]

add:[2 4] ]
[4 6]

(fc:[mpy mpy add]):[

[ 1 2 3 ]

[ 4 5 6 ] ]

[ mpy:[1 4]

mpy:[2 5]

add:[3 6] ]

[4 10 9]

The following version of ScaleVector uses fc to map a sequence of mpys

across two sequences of numbers:

ScaleVector = \[S V] .

rec:[ Ss [ S ! Ss]

rec:[ Ms [ mpy ! Ms]

(fc:mpy):[ Ss V ]

]]

The identi�er Ms is recursively bound to the list [mpy ! Ms], making
[mpy mpy � � � ]. Similarly, Ss expands to [S S � � � ]. Hence, an expansion
of the expression ScaleVector:[3 [0 1 2]] gives

[ mpy mpy mpy � � �]:[
[ 0 1 2 ]

[ 3 3 3 � � �] ]

The fc functional develops an application along each column, and also
provides an implicit nil?-test for termination. The form above is essentially

[ mpy:[0 3] mpy:[1 3] mpy:[2 3] ]

with the result [0 3 6], as wanted.

This fc version of ScaleVector is the most e�cient of all the versions
because its execution does not involve the repeated creation of function
environments.1. For this reason and others, the use of data recursion and
construction functionals is prevalent in Daisy programming.

1However, if a curried version of mpy were provided as a primitive in Daisy, the version

of ScaleVector using map would be best of all
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1.10 Indeterminate Lists

An expression of the form

set:[E0 E1 � � � En ]

evaluates to a list
[ v00 v10 � � � vn0 ]

where each vi0 is the value of one of the E's. That is, the set-expression
speci�es the elements of a list but not their order. The ordering is de-
termined through concurrent evaluation of the individual elements. The
earlier an element-expression yields a value, the earlier that value appears
in the resultant ordering. The expression

set:[ add:[2 3] "truck" inc:5 ]

yields one of the values [5 truck 6], [truck 5 6], [6 5 truck], [5 6 truck],
[truck 6 5], or [6 truck 5]. The most likely result is [truck 6 5].
Evaluating "truck" is easiest; evaluating add:[2 3] is hardest; and the
di�erences are signi�cant.

However, the ordering is unpredictable when comparable, non-trivial
expressions are involved. The following function returns the message Msg

after a count-down.

DELAY = \[N Msg] . if:[ zero?:N

Msg

DELAY:[dcr:N Msg]

]

Zero? is a test-for-0, and dcr is the decrement-operation. Successive eval-
uations of the expression

set:[ DELAY:[100 "A"] DELAY:[100 "B"] DELAY:[100 "C"] ]

yield various permutations of A, B, and C.
The following variation of the HowMany function, introduced earlier,

gives some uncertainty to its outcome:

HowMany = \M. \[N T].

rec:[ GUARD

\[P V] . if:[ P V GUARD:[P V] ]

head:set:[

GUARD:[eq?:[N 0] ["no" T] ]
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GUARD:[eq?:[N 1] ["one" T] ]

GUARD:[eq?:[N 2] ["a couple of" T] ]

DELAY:[add:[-2 N] ["a few" T] ]

DELAY:[M ["many" T] ]

]

]

HowMany

returns the head of an concurrently ordered list; it chooses from �ve
alternative descriptions of N. Unlike before, it is indeterminate which al-
ternatives might be obtained for certain values of N. The function GUARD

returns a value V provided its test P is true; otherwise, GUARD loops forever
and thus fails to return anything. Should GUARD fail to return a value, that
alternative cannot be choosen by HowMany. For instance, when N is 1, the
choice "a couple of" is impossible. With this new de�nition, and with
ScaleVector de�ned as

ScaleVector = \[S V] . MapVector:[ HowMany:S V ]

the expression

ScaleVector:[ 6 [ [5 "trucks"] [2 "cars"] [0 "boats"]

[1 "airplanes"] [9 taxis]

]

]

produced the following values on six sucessive attempts

[ [a few trucks] [a couple of cars] [no boats]

[one airplanes] [a few taxis] ]

[ [a few trucks] [a couple of cars] [no boats]

[many airplanes] [a few taxis] ]

[ [a few trucks] [a couple of cars] [no boats]

[many airplanes] [a few taxis] ]

[ [a few trucks] [a few cars] [no boats]

[one airplanes] [many taxis] ]

[ [a few trucks] [many cars] [no boats]

[one airplanes] [many taxis] ]

[ [many trucks] [a couple of cars] [no boats]

[one airplanes] [many taxis] ]
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Chapter 2

Using Daisy

A single display character is sometimes placed in a box for emphasis. When
it is necessary to show non-graphical control codes, it is done by placing a
mnemonic for the code in the box. The mnemonics used most frequently
are

EOT end-of-transmission (control `D')
ETX host interrupt (control `C')
BEL audible character (control `G')
NL new line (control `J' in unix)

The true location of the Daisy program varies with di�erent instalations.
The name Daisy may be an alias for that object, or it may be located in
a default directory-search path. In unix systems, aliasing is accomplished
by a command of the form

alias Daisy DaisyObject

where DaisyObject is the true directory location.
The Daisy command has six optional arguments. Of these, `m' and

`i' are generally useful, and `s' is sometimes used to explore concurrent
programs. The options `n', `t', and `f' are used in development.

-m This option sets the bound on the list space. Is default value is
100,000. Entering

Daisy -m 500000

directs DSI|Daisy's underlying list processing system|to allocate
500,000 cells of heap space. If the number entered exceeds the amount
of physical memory available, DSI allocates as much as it can.

19
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-i This option names a source �le to be taken as input before interaction
begins. The default is a �xed �le called Daisy.d. Announcements
are sometimes posted on this �le. Typing

Daisy -i FileName

initially directs input to the �le FileName.

-s This option sets the upper bound on the multitasking granularity. It
should be followed by a number beteen 1 and 255.

-n This option sets the lower bound on the multitasking granularity. It
should be followed by a number beteen 1 and 255.

-t This option sets levels and regions of implementation tracing. It is
not used in programming

-f This option names a �le for tracing and diagnostic output. It is not
used in programming

2.1 Invoking Daisy

Below is the display of an interactive session with Daisy. System utterences
are shaded, and new-line characters occur as indicated by line breaks.

Daisy

Daisy (DSI V4R0(beta)) 5/26/92.

[#]

& EOT [#]

DSI(002) 11/4/86

The symbol stands for the host's prompt; the Daisy command invokes
Daisy. This program �rst issues a banner stating its version and release
date. The �rst value displayed is [#]; it is the result of reading an empty
�le. The `-i' option is used to redirect initial input to a host �le. Suppose
that the �le greetings contains the text

"Hello, there."
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Directing initial input to this �le is done like this:

Daisy greetings

Daisy (DSI V4R0(beta)) 5/26/92.

[Hello, there]

& EOT [#]

DSI(002) 11/4/86

&

The ampersand, `&', is Daisy's prompt. Once this prompt is raised, interac-
tion with the Daisy interpreter is in progress. In both of the sessions above,
the operator types the EOT character in response to the �rst prompt. Daisy
displays the list [#] and terminates.

The interactive interpreter produces a list of values corresponding to the
expressions entered by the operator. This list is displayed on the operator's
terminal screen, along with prompts and echoed input. The EOT character
terminates input, the interpreter's response is [ #] because no expressions
are entered by the operator. The one-element list [ #]|one might expect
[]|is due to properties of Daisy's scanning and parsing primitives. Here
is another, longer Daisy session.

Daisy

DSI(002) 11/4/86

[#]

& 11
[11

& +121 -123321
121 -123321

& "bus"
bus

& ["bus" 5]"
[bus 5]

& EOT ]

DSI(002) 11/4/86

Let us again dissect the terminal's display; it has three interleaved parts.
The operator has typed a sequence of expressions. These are incorporated
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in a list,

[ 11 NL +121 -123321 NL "bus" NL ["bus" 5] NL ] :

There is no di�erence in representation between this \top level" list and list
expression ["bus" 5] it contains. Evaluation of this list's elements yields

[ 11 NL +121 -123321 NL bus NL [bus 5] NL ] :

Finally, there is a sequence of prompts raised by the terminal handler when
input is expected.

These distinct character streams appear concurrently on the terminal
screen. In particular, the �rst character issued by interactive Daisy is a `['
after the operator's �rst new-line|it opens the list of interpreted values|
and the last character it issues is a closing `]'.

2.2 Getting Out of Daisy

To terminate an interactive session with Daisy, one normally types an end-
of-transmission character in response to Daisy's prompt. This is illustrated
in the �rst examples above. Abnormal termination typically occurs in one
of three ways. Daisy can exhaust its space of available cells; interpretation
may diverge, or fall into a loop; the operator may displayed an nontermi-
nating answer.

In the fragment below, the operator asks for the value of \X; where
X = X + 1:" This is a divergent expression.

& rec:[ X inc:X X ]

BEL DSI abort; GC -- no free space

Memory Dump [`y']?

Exit

DSI(002) 11/4/86

To the memory-dump query, the operator types a new-line (or anything
but `y') to say \No." The DSI system issues a BEL character each time it
invokes storage reclamation. On most terminals, this character produces a
sound. Below, the operator tests whether the literal X is an element of the
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nonterminating list [0 1 2 � � � ].

& in?:[ "X"
& rec:[ N
& [0 ! [add*]:[[1*] N]]
& N ]
& ]

BEL BEL BEL BEL
ETX

The storage consumed in interpretating this divergent expression is all re-
cycled. The succession of BEL signals would continue inde�nately, but the
operator types the host's interrupt, ETX , to kill the Daisy program. Control
resumes at the host command level.

There are divergent expressions that consume no storage. An example
is in?:[ "X" [0*] ], which tests for the presence of the literal X in a cyclic
list of zeros.

& in?:[ "X" [0 *] ]

|nothing{happens| ETX

Interruption is also the only recourse when Daisy is asked to display a
nonterminating structure. Below, the operator asks for an unending list of
zeros and ones, and must interrupt to regain control.

& rec:[ L [0 1 ! L] L ]
[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 ETX

2.3 Input and Output

The Daisy expression

evlst:prsis:scnis:dski:File
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reads a Daisy source �le. File is a literal that spells the name of a host text
�le. Suppose the �le defns contains the following text.

idy = ^\x.x | An identity function

xps = [idy *] | Transposes rectangular structure

|

EX0 = ^[[a b c] | For testing.

[d e f]] |

Below, this �le is read by the operator.

Daisy

DSI(002) 11/4/86

[#]

& evlst:xparses:scans:dski:"defns"
[[idy

xps

EX0

]

& EX0
[[a b c] [d e f]]

& xps:EX0
[[a d] [b e] [c f]]

&

The result of the �rst expression, the list

[idy NL xps NL EX0 NL ] ;

reects three assignments|the value of an assignment command being lit-
eral assigned. The following �le, call it initial, is popular.

Load = \File. evlst:pris:scnis:dski:File
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This de�nes Load to be a function that loads a Daisy �le; thus, it saves a
little typing:

Daisy -i initial

DSI(002) 11/4/86

[Load]

& Load:"defns"
[[idy

xps

EX0

]

&

In Daisy's logical view, a �le is a list. Suppose the �le showme contains
the following text.

[16 ["red" "trucks"]]

The dski operation creates a list of characters corresponding to the text in
a host �le.

&dski:"showme"
[[ 1  6  [ " r e d "  " t r u c k s " ] ]

]

Each element of this list is a literal atom, with a single-character display
name. Included in the list are any spaces and new-lines that occur in the
showme �le. The space characters, ` ' don't appear in the actual display.
The `1' and `6' are literal characters, not numerals.

The scans operation builds a list of atoms and literal quotations from a
list of characters. For instance, the character sequence [ � � � " r e d " � � � ]
is incorporated as a quotation [ � � � "red" � � � ]; and [ � � � 1 6 � � � ] is in-
corporated as the numeral [ � � � 16 � � � ].

& scans:dski:"showme"
[[ 16 [ "red" "trucks" ] ]

]

Other elements of the atom-list are character symbols [ and ] and NL ,
of meaning in parsing. The resulting list, then, is

[ [ 16 [ "red" "trucks" ] ] NL ]
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The xparses operation builds a list of expressions from the atoms:

& xparses:scans:dski:"showme"
[[16 ["red" "trucks"]]

]

The result above is a two-element list, containing a list expression and
a new-line character. The evlst operation takes an expression-list and
returns of list of values.

& evlst:xparses:scans:dski:"showme"
[[16 [red trucks]]

]

The value list also includes a new-line.
The console operation establishes a kind of channel to the operator's

key board, producing a list of literal characters corresponding to the op-
erator's key strokes. In other respects, it is just like dski. Its argument
is a literal prompt, which is displayed when input is expected. Usually,
once the prompt is raised, the host retains control until the next new-line
is entered. Console terminates its list where the operator enters an EOT .
In the following fragment, xparses develops a sequence of atoms from key
board input.

& xparses:scans:console:"?? "
[?? She tried and she tried
She tried and she tried

?? but her wheels would not turn
but her wheels would not turn

?? EOT ]

The dsko operation places text on a host �le. It expects a list [FileName Characters],
whose �rst element, a literal, names the output �le and whose second ele-
ment, a list of characters, is the text to be placed there. The expression

dsko:["there" ["A" "B" "D"]]

has places the text ABC on a �le named there. The value [] is returned
after all the text has been written, at which time, the �le is also closed.

The screen operation is like dsko, except that it displays text on the
operator's terminal. For instance,

& screen:["A" "B" "C"]
ABC[]

&
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Here, screen displays the text ABC and then returns [].
The text arguments to dsko and screen must be character lists, such

as those created by dski and console. The issue operation takes an
arbitrary structure and expands it to a stream of characters.

& issue:["track" 17]
[[ t r a c k  1 7 ]]

&

Issue's result is the list

[ [ t r a c k  1 7 ] ] ;

including the list delimiter characters `[' and `]'.
Beginning programmers often resort to screen and dsko to achieve out-

put. However, since �le output and screen display are e�ects, their casual
use is not regarded as applicative style. At the same time, good applicative
methods for input and output are not well understood and continue to be
a subject of language research. The example below is not o�ered as an
example of good style. The expression entered by the operator creates two
concurrent instances of output to the screen.

& Daisy -s 2
[#]

[& set:[screen:issue:"IS THERE AN ECHO IN HERE?"
& screen:console:"??"]
[??hello
IhSe lTlHoE

??out
RoEut

A??there
tN heECreHO

?? EOT IN HERE?[] []]

The command argument \-s 2" lowers the multitasking granularity, in
order to exaggerate the e�ect. Two applications of screen are placed in
a multiset. The value of the expression is the list [[] []], but neither
instance of screen returns its [] until it has displayed all its text. The �rst
screen displays the characters of a literal produced by issue. The second
screen echos console input to the prompt \??". The display e�ects overlap
as an order is developed for the multiset.

About the same e�ect would appear on a �le if dsko were used in place
of screen.
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2.4 Errors

Below, the operator enters an erroneous expression

& taxicab
|ubi:taxicab|

&

What appears as |ubi:taxicab| is an error-value, or erron. It says, \The
identi�er taxicab is unbound." The occurance of an error does not trap
to top level or anything like that; the erron merely records the occurance.
In the fragment below, an error occurs within a list expression.

& [ inc:N "cars"]
[|nn0/ubi:N| cars]

&

The pre�x `nn0' says \A nonnumeric operand;" inc expects a numeral.
The `/' might be read as \due to," so the whole message is \A nonnumeric
operand, due to an unbound identi�er, N." Error messages are built from
a �xed set of message fragments, explained in [the section about Errons].

Daisy's parsing operation develops its own system of error messages.
These are abbreviated explanations of where parsing fails. The examples
below illustrate some e�ects of syntax errors during interaction.

& [1 2 3]
|val/[nnn@`]'|

& [A.B]
|val/..[i@`.'| |ubi:B|

|val/@`]'|

&

Here is what happens: �rst, parsing builds a list from the key board input.
The list, if displayed, would appear as

[ |<nnn@`]'| NL |..[i@`.'| B |@`]'| NL � � � ]

The operator �rst enters an unbalanced list expression. The message

|[nnn@`]'|

says that (1) the parser recognizes an openning `[', followed by three nu-
merals, indicated by `nnn'. The su�x @`]' indicates that parsing fails at
the character `]'.
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Parsing always resumes just beyond the detected syntax error with no
attempt at recovery. Next, the operator enters a new-line and then types
[a.b]. This leads to a sequence of three values. The �rst,

|..[i@`.'| ;

indicates that parsing failed at a `.' after noting an openning `[' and one
literal (indicated by the `i').

Parsing resumes after the period, to produce the literal B.

After the `B' parsing fails again at the `]', now regarded as an unbalanced
delimiter because of the intervening syntax error.

In turn, this list is evaluated to yield

[ |val/[nnn@`]'| NL

|val/..[i@`.'| |ubi:B| |val/@`]'| NL

� � � ]

The pre�x `val/' says that an attempt was made to evaluate the parser's
errons. The third erron says that the successfully parsed literal B is un-
bound.

Daisy's treatment of errors is exploratory. Though an erron's text is
occasionally illuminating, it is often enough just to see where an error
arises. Most programmers say that they get their debugging clues from
the su�x of an error message. This is particularly true for parsing errors,
where the su�x shows the character at which the failure occurs. Here is a
quiz: �nd the syntax error reported in the following Daisy session.

&MapVector = \[F V].
& rec:[ [LOOP HELP]
& [ \[N ! Ns]. [F:N ! HELP:Ns]
& \Ns. if:[ nil?:Ns [] LOOP:Ns ]
& ]]
|val/i=\l.i:[l[ff@`]'| |val/@`]'|&

&

Reading from the right, a `]' does not balance an opening `['. Here is the
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correspondence between the �rst erron's text and the progress in parsing.

i ) MapVector

= ) =

\ ) \

l ) [F V]

. ) .

i ) rec

: ) :

[ ) [

l ) [LOOP HELP]

[ ) [

f ) \[N ! Ns]. [F:N ! HELP:Ns]

f ) \Ns. if:[ nil?:Ns [] LOOP:Ns ]

@`]' ) ]

2.5 Queries

Diagnostic messages are sometimes issued by the underlying system. Most
often seen are messages about host input/output status. In the example
below, the operator mistakenly calls for input from a nonexistent �le.

Daisy -i nonesuch

DSI(002) 11/4/86

query: [H] Can't put in.

|scn/dvc/|

&

The message
query: [H] Can't put in

reports the failure to open the nonesuch �le. This message is output di-
rectly to the operator's terminal; it is not part of the interpreter's output.
All such messages begin with the text `query:' and may be ignored. The
input failure is also recorded in the erron |scn/dvc|, which reports a scan-
ning error, due the failure of a device handler.
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Daisy operations

An operation is a primitive information-processing procedure provided by
the Daisy interpreter, its underlying list-processing system, or the imple-
mentation host. Operations are grouped according what kinds of arguments
they expect and results they produce. The convention used in describing
operations gives the expected form of actual arguments and results. Here
is an example, describing the add operation:

add : [N1 N2 ] �! N3

Addition. Numeral N3 represents the sum of numbers N1 and
N2; that is, N3 = N1 +N2:

The �rst line states that an application of add expects the argument
to be a list [N1 N2 ] of two numbers, and yields a number, N3: This is
followed by a brief description of add. The variables denote references to
number objects. The clause \N3 = N1+N2" is intuitive. The add operation
sums binary �elds in the objects N1 and N2 and places the result in a new
object, N3:

Add is a binary arithmetic operation. Related operations are sub, mpy,
div, rem, and, or, and xor. These are grouped in a subsection entitled
Binary Arithmetic, whose introduction describes what properties they
share. For example, none of these operations requires an argument of length
two. If add is given a three-number list, it sums the �rst two.

3.0.1 Kinds of Values

Distinct variables are used for di�erent kinds of values, according to the
table below. These types are usually reiterated in descriptions. The variable

31
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V is used for values of arbitrary structure or kind.

Types in descriptors

B { T or []

N { a numeral L { a list C { a character
I { a literal A { an atom E { an expression

V { a value

An atom can be a directive, a number, or a literal. Nil is also an atom.
A character C is just a literal with a single-character print name. A

box (e.g. A , NL , etc.) is often used to emphasize characters. The boxes
contain mnemonics when the character is not a display code.

A uniform list of inde�nate length is indicated by [V0 � � � Vn ] or
[V0 V1 � � � ]. The latter objects are sometimes called streams.

3.0.2 Objects

Daisy's underlying list processing system maintains a heap of uniformly
sized cells in three formats. A cell can hold zero, one, or two citations; the
rest of the cell is binary data. A citation

t

has a one of seven distinct tags and also holds a reference to an object
(unless it is a directive; see below). A nullary cell looks like

The shading indicates binary data. Daisy does not use this kind of cell [as
of release 4]. A unary cell looks like

tN

The tag `N' indicates a unary cell citation. The cited object represents a
Daisy numbers. What appears as 42 is a citation to a cell holding the binary
representation of the constant 42. A number's tail-citation is a constant,
void.

tN 42
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The tag `E' also indicates a unary cell citation. The cited object represents
an erron, or error-value, whose binary content is usually a sequence of
character codes.

a b c dE

Hence, objects of this kind are depicted as A binary cell contains two
citations,

??y
�!

and represent Daisy's composite structures. Four tags, `I' (identi�er), `L'
(list), `A' (application), and `F' (function), cite binary cells. The cell

t�! A B

represents an identi�er object, a list object, an application object, or a
function object, depending only on the tag t in the citation. There can be
di�erenly tagged citations to the same object.
Nil is an identi�er object. It's head, hsh, has the structure of a literal, and
thus appears as `#'; but hsh is distinct from the literal # .

nil � I �! I??y
nil

hsh �
I �! E??y

hsh

# � � � nil

A directive is a citation whose content is binary data, and not the
address of an object. The tag `D' indicates a directive. indicates that the
content of the citation is binary data and not the address of another cell.
A binary cell whose head is a directive looks like this

D �!

The constant void in the tail-�eld of a number is a directive.

3.0.3 Attributes of Operations

There are three entities that can be associated with every operation, a
name, an encoding, and an implementation. The encoding is a directive,
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used in interpretation to transfer control to the program segment that im-
plements the operation. Operation's names are established by assigning
the appropriate directive to a literal identi�er. For example, there is a pro-
cedure that, given a list of two numbers, creates the number representing
their sum. This procedure is invoked by the interpreter when it applies
the addition directive, add. Should this constant be displayed, it appears
as some number with a `.' pre�x (e.g. .72). Initially, add is assigned (i.e.
globally bound) to the literal add. The assignment establishes a structure

I �I �! E??y
add

a d d � nil

Where I is the unique instance of add in the list space.

3.0.4 Tests

Values B are the results of tests. The notion of a test is that it answers
a question about its argument. Tests are used in conditional expressions
to select among alternative; however, the if-operation accepts any value
in the position of a test. The value [] is interpreted as false. Anything
else is interpreted as true. Hence, any expression can serve for predication.
Daisy's test-operations return the literal T when their answer is a�rmative.

3.0.5 Arithmetic Operations

An arithmetic operation tests or manipulates numbers. Each number con-
tains a 32-bit �eld of binary information, which is displayed as a signed
integer using a two's complement interpretation. The variables N denote
cells containing a binary constants,

N � N�! n void

Host primitives are used to manipulate the �eld containing n within such
cells. There is no provision for arithmetic overow; the result is a number
with a with a truncated binary value.

Arithmetic operations cannot be applied to non-numbers. Operand val-
idation is shared by related operations; for instance, binary operations like
add, sub, mpy, and div use the same validation routine. A validation er-
ror, produces a non-numeric-argument erron, but does not report which
operation was to be applied.
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3.0.6 Reference Operations

Reference operations fall into three categories, although there is some over-
lap. The �rst has to do with the logical view of symbolic data in Daisy
programming, which distinguishes atoms (literals and numbers) and com-
posite lists.

3.0.7 Character Manipulation

A second set of reference operations is oriented toward text processing.
Characters are not a special type, they are simply literals with the prop-
erty of having a single-letter name. However, auxiliary information is as-
sociated with characters and used by the parsing and display operations.
This collection of operations gives access to this information.

3.0.8 Object Manipulation

This third set of reference operations directly addresses the underlying rep-
resentation of Daisy objects. In particular, they provide means to build
and explore program representations.

3.0.9 Interface Operations

An interface operation applies to the host input-output system, providing
a translation between Daisy's logical view of a device as a list of characters
and the host's representation as a bu�er.

3.0.10 Special Operations

Operations, such as let, which invoke evaluation take the implicit environ-
ment as a oparand. In this sense, they are part of the Daisy language.
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3.1 Arithmetic Tests

Each unary test expects a numeral as an argument; it the argument is not a
numeral, the application is erroneous. In particular, the argument cannot
be a list: zero?:<5> is erroneous and not merely false. The expression
should be zero?:5.

The binary tests perform comparisons on the numeric �elds in two nu-
merals. The comparison operations expect lists whose �rst two elements
are numerals. There is no further validation of argument structure. For
example, each of the following expressions returns the same value:

eq?:<X Y> eq?:<X Y *> eq?:<X Y Z> eq?:<X Y ! Z>

zero? :N �! B

Test for Zero. If N is 0 the result is true; otherwise it is [].

one? :N �! B

Test for One. If N is 1 the result is true; otherwise it is [].

neg? :N �! B

Test for negative. If N is negative the result is true; otherwise it
is [].

pos? :N �! B

Test for positive. If N is non-negative the result is true; otherwise
it is [].

EXAMPLES

N zero?:N one?:N neg?:N pos?:N

-2 [] [] true []

-1 [] [] true []

0 true [] [] true

1 [] true [] true

2 [] [] [] true
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lt? : [N1 N2 ] �! B

Less-than. If N1 is less than N2 the result is true; otherwise it is
[].

le? : [N1 N2 ] �! B

At-most. If N1 is less than or equal to N2 the result is true;
otherwise it is [].

eq? : [N1 N2 ] �! B

Numeric equality. If N1 is numerically equal to N2 the result is
true; otherwise it is []. There is also an operation same?, which
tests either reference or numeric equality.

ne? : [N1 N2 ] �! B

Numeric inequality. If N1 is numerically unequal to N2 the result
is true; otherwise it is []; ne? inverts the eq? test.

ge? : [N1 N2 ] �! B

At-least. If N1 is greater than or equal to N2 the result is true;
otherwise it is []; ge? inverts the le? test.

gt? : [N1 N2 ] �! B

Greater-than. If N1 is greater than N2 the result is true; otherwise
it is []; gt? inverts the lt? test.

EXAMPLES

V lt?:V le?:V eq?:V ne?:V ge?:V gt?:V

[0 1] true true [] true [] []

[0 0] [] true true [] true []

[1 0] [] [] [] true true true



38 CHAPTER 3. DAISY OPERATIONS

3.2 Unary Arithmetic

These operation expects a single numeral; if the argument is not a numeral,
the application is erroneous. In particular, the argument cannot be a lists.
inc:[5] is erroneous; the expression should be inc?:5.

neg :N1 �! N2

Negate. N2 represents the negation of N1; that is N2 = �N1:

sgn :N �! -1 or 1

Sign projection. If N is negative, the result is -1; otherwise it is 1.
In Daisy, sgn is (\N. if:[ neg?:N -1 1 ]).

inc :N1 �! N2

Increment. N2 represents a number one greater N1; that is N2 =
1 +N1: In Daisy, inc is (\N. add:[1 N]).

dcr :N1 �! N2

Decrement. N2 represents a number one less than N1; that is N2 =
N2 � 1: In Daisy, dcr is (\N. add:[-1 N]).

inv :N1 �! N2

Invert. The binary �eld in N2 is the bit-wise complement of that
in N1; that is N2 = N1:

The second column of examples below reects the two's complement in-
terpretation of binary �elds used in Daisy's display primitives. An inverted
binary zero is the two's complement representation of -1.

EXAMPLES

N neg:N inv:N inc:N dcr:N

5 -5 -6 6 4

-3 5 2 -2 -4

0 0 -1 1 -1
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3.3 Binary Arithmetic

These operations invoke host arithmetic primitives on the numeric �elds in
two numerals. The result is a new numeral holding the result. There is no
validation of argument structure beyond the �rst two numerals. For exam-
ple, the expressions add:[X Y], add:[X Y *], add:[X Y Z], and add:[X Y ! Z]

each sums the values of X and Y:

add : [N1 N2 ] �! N3

Add. Numeral N3 represents the sum of numerals N1 and N2; that
is, N3 = N1 +N2:

sub : [N1 N2 ] �! N3

Subtract. Numeral N3 represents the di�erence of numerals N1 and
N2; that is, N3 = N1 �N2:

mpy : [N1 N2 ] �! N3

Multiply. Numeral N3 represents the product of numerals N1 and
N2; that is, N3 = N1 � N2:

div : [N1 N2 ] �! N3

Divide. Numeral N3 represents the integer quotient of numerals
N1 and N2; that is, N3 = N1 �N2:

NOTE [March 11, 1996]: Division by zero causes abnormal termina-
tion via a host exception. This an implementation error and will be
corrected.

rem : [N1 N2 ] �! N3

Remainder. Numeral N3 represents the remainder on division of
N1 by N2: That is, N1 = (N1 �N2) � N2 +N3:
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EXAMPLES

L add:L sub:L mpy:L div:L rem:L

[3 2] 5 1 6 1 1

[-3 5] 2 -8 -15 0 -3

[5 -3] 2 8 -15 -1 2

[0 7] 7 -7 0 0 0

[2 3] 5 -1 6 0 2

Operations div and rem give the integer quotient and remainder. The func-

tion \M. \N. add:[ mpy:[ M div:[N M] ] rem:[N M] ] is equivalent to
(\M.\N.M) provided M is not zero.
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3.4 Binary \Logic" Operations

The bit-logical operations are faithful to a 1 = true interpretation. Thus,
7 would serve as a mask for the three low-order bits of a binary �eld.

or : [N1 N2 ] �! N3

Logical-or. The numeric �eld in numeral N3 contains the bit-wise
\logical or" of �elds in N1 and N2: That is, N3 = N1�N2; where for
bits a and b; a� b = 0 just when both a and b are 0.

and : [N1 N2 ] �! N3

Logical-and. The numeric �eld in numeral N3 contains the bit-wise
\logical and" of �elds in N1 and N2: That is, N3 = N1 � N2; where
for bits a and b; a� b = 1 just when both a and b are 1.

xor : [N1 N2 ] �! N3

Exclusive-or. The numeric �eld in numeral N3 contains the bit-
wise \exclusive or" of �elds in N1 and N2: That is, N3 = N1 
 N2;

where for bits a and b; a
 b = 1 just when a 6= b:

EXAMPLES

L and:L or:L xor:L

[1 1] 1 1 0

[1 0] 0 1 1

[0 1] 0 1 1

[0 0] 0 0 0

[7 5] 5 7 2

[15 5] 5 15 10
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3.5 Reference Tests

This collection of reference operations maintains the abstract view of Daisy's
symbolic data space of atoms and lists. There is some intersection with the
set of object manipulation operations described later.

nil? :V �! B

Test for Nil. If the argument is [] the result is true; other-
wise []. The nil? operation reverses the sense of a test; that is
if:<P E E0> is like if:< nil?:P E0 E> .

isNML? :V �! B

Test for a numeral. The result is true if the argument is a numeral.
See the section on Tag Tests.

isLtrl? :V �! B

Test for a literal. The result is true if the argument is a literal
symbol. This means that V is an identifer object whose head is an
erron (serving as a print name).

isAtm? :V �! B

Test for an Atom. The result is true if the argument is a directive,
Nil, a literal, or a numeral. Otherwise, isAtm? returns [].

isLST? :V �! B

Test for a list. The result is true if the argument is a list. See the
section on Tag Tests.

same? : [U V1 � � � Vn ] �! B

Reference equality. The result is true if object U is are either truely
identical (i.e. the same citation) or numerically equal some Vi: The
same? operation is normally used as a binary comparison.
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EXAMPLES

V nil?:V isNML?:V isLtrl?:V isAtm?:V isLST?:V

[] true [] [] true []

17 [] true [] true []

red [] [] true true []

[red car] [] [] [] [] true

There is a unique literal with any given spelling; so two occurances of a
literal symbol are identical in the sense that they display the same reference.
Lists do not enjoy this property. Two occurances of an expression such as
[E ! E0] produce distinct list objects, which fail a same? test.

Expression Value Reason

same?:<"bob" "bob"> true The literal bob is unique.

same?:<X X> true Environments give unique bindings.

same?:<<> <>> true Nil is unique.

same?:<5 inc:4> true same? tests numeric equality.

same?:<<5> <5>> [] List values are not unique.
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3.6 List Processing Operations

Most of the operations in this section manipulate list structure. A few are
more general but involve related manipulations. The surface syntax of lists
reects their internal representation as binary records with two citations
(or \pointer �elds"); these are called the list's head and tail.

head : [V1 ! V2 ] �! V1

Head of a list. If the argument is a list, the result is that list's head.

tail : [V1 ! V2 ] �! V1

Tail of a list. If the argument is a list, the result is that list's tail.

cons : [V1 V2 ] �! [V1 ! V2 ]

List constructor. In Daisy, cons is (\[V V']. [V ! V']).

any? : [V0 V1 � � � ] �! [Vi Vi+1 � � � ]

Locate a non-Nil element. The any?-operation returns the greatest
su�x of its argument headed by a non-Nil element. In e�ect,

any? = \L. let:[ [E ! L']

L

if:] nil?:L ]]

nil?:E any?:L'

L

]

]

all? : [V0 V1 � � � ] �! B

Test for no null elements. The all? operation returns true if none
of the argument's elements is Nil. In Daisy,

all? = \L. let:[ [E ! L']

L

if:] nil?:L "T"

nil?:E ]]

any?:L'

]

]
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in? : [U [V0 V1 � � � ]] �! B

Membership Test. The in? operation tests whether V is an element
of the list [V0 V1 � � � ]. In Daisy,

in? = \[U L]. let:[ [V ! L']

L

if:] nil?:L ]]

same?:[U V] "T"

in?:]U L']

]

]

if : [ T0 V0 T1 V1 � � � ] �! Vi

Conditional operation. The alternative Vi corresponding to the
�rst a�rmative test value Ti is returned. Any value other than [] is
a�rmative. Where the argument has an odd lenght, the last value is
returned should all the tests fail. Hence,

if:[T0 E0 T1 E1 E2 ] is like if:[T0 E0 if:[T1 E1 E2 ] ]

Given a two-way conditional, if2:[ ? ? ? ], Daisy's if is speci�ed
as

if = \[T V0 ! L] .

let:[ [ V1 ! L' ]

L

if2:] T V0

if2:] nil?:L' V1

if:L

] ]

]

3.6.1 OBSOLETE Remarks

Using the construction functional, one could also specify in? as

in? = \[U L]. any?:(fc:[same? *]):[ L [U *] ]

The most accurate speci�cation is

in? = \[E L]. same?:[E ! L]
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because of the way same? extends. In fact, same? and in? use one imple-
mentation and di�er only in how they establish their operands.

The if-expression is not a special form in Daisy, but has the same
intuitive behavior of conditionals. Only tests and the selected alternatives
are computed. This behavior is a byproduct of list construction. The
following functions de�ne a two-way selector.

Predicate = \V. if:] nil?:V tail head ]

if2 = \[V1 V2 V3]. (Predicate:V1):[ V2 ! V3 ]

The primitive if occurs only in the de�nition of Predicate (read: pred-��-
kayt, v), which coerces a value to one of the list access operations head or
tail.

Since if is an operation, it can be used in functionals; if Ps, Cs, and As

are lists, [if *]: [Ps Cs As] yields a sequence of values selected by the
elements in Ps.

EXAMPLES
Assume [N M] is bound to [0 1]

Expression Value

if:[ nil?:N "A" "B" ] B

if:[ zero?:M "A"

one?:M "B"

"C"

]

B

add:[ if:[ zero?:N 5 7]

if:[ zero?:M 8 9]

]

14

if:[ if:[ neg?:N

neg?:M

pos?:M

]

"A"

"B"

]

A

[if *]:[ [ zero?:N pos?:N neg?:N ]

[ "A" "B" "C" ]

[ "D" "E" "F" ]

]

[A B F]
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3.7 Object Manipulations

The operations described in this section test and manupulate objects in
Daisy's underlying data space. This list processing system maintains a
heap of uniformly sized cells in three formats. A cell can hold zero, one,
or two citations; the rest of the cell is binary data. A citation,t!, has a
one of seven distinct tags and also holds a reference to an object (unless it
is a directive; see below).

The introduction discusses the underlying representation of objects in
Daisy's underlying data space. Briey, objects are of uniform size in two
formats, unary and binary (the nullary format is not used). Unary ob-
jects may be cited as numerals or as errons. Binary objects may be cited
as indenti�ers, lists, applications, or functions. How an object is cited is
determined by a tag, located with the reference to the object.

TagOf :V �! N

Numeric value of a tag. The binary value of a tag is given in
the table below. These values are subject to change. Should one
want to use the numeric value of a tag (this is not recommended)
it is safer to compute it, perhaps assigning the value a name. For
instance, the expression TagOf:^"anything" gives the value of the
tag \identi�er".

TAG VALUES [as of version 4]

tag 0 1 2 3 4 5 6�

symbol DCT NML FTN IDE LST APL ERR

citation D�! N�! F�! I �! L�! A�! E�!

�Errons cannot be manipulated
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3.8 Tag Tests

isDCT? :V �! B

Test for a directive. The result is true when V is a directive.

isNML? :V �! B

Test for a numeral. If the result is truewhen V cites a numeral,

V � N�! n void

isLST? :V �! B

Test for a list-object. The result is true when V cites a binary
object with tag L,

V � L�! W W 0

List cells represent list expressions and list values in Daisy interpre-
tation.

isAPL? :V �! B

Test for a application-object. The result is truewhen V cites a
binary object with tag A,

V � A�! W W 0

Application cells represent application expressions Daisy interpreta-
tion.

isFTN? :V �! B

Test for a function-object. The result is truewhen V cites a binary
object with tag F,

V � F�! W W 0

Function cells represent function expressions and function closures in
Daisy interpretation.
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isIDE? :V �! B

Test for a identi�er-object. The result is truewhen V cites a binary
object with tag I,

V � I �! W W 0

Identi�er cells represent literals and quotations in Daisy interpreta-
tion.

isERR? :V �! B

Test for an identi�er-object. If the result is never true, but may
be []when the argument is not an erron. That is, isERR? serves no
useful purpose. Manipulation of errons by a Daisy program|even
to test for their presence|is by �at erroneous. Errons are unary
cells containing a sequence of characters. For example, the erron
|ubi:RED| is represented as

E�! u b i : E�����!R E D � nil

The \print name" of a literal is indistiguishible from an erron. The
literal RED looks like

RED � I �! E??y
void

R E D � nil

The isLtrl? operation tests for this structure.
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3.9 Tag Coercions

Each of the operations below returns a value of the kind indicated if possi-
ble. Often, the result is simply a di�erently tagged citation to the argument.
Such coercions are erroneous if they fail to preserve storage classi�cations;
for instance, a list cannot be cited as a numeral.

asDCT :V �! D

Cite as a directive. The result D is a directive, provided V is a
directive or a numeral; it is erroneous to apply asDCT to anything
else. If V cites a numeral, D has its binary content.

asNML :V �! N

Cite as a numeral. The result N is a numeral, provide V is a
numeral or a directive; it is erroneous to apply asNML to anything
else. If V is a directive, a numeral is created containing its binary
value.

asIDE :V �! I

Cite as an identi�er. If V is a binary-object citation, I is a reference
to the same object with tag `I'. Otherwise, application of asIDE is
erroneous.

asLST :V �! L

Cite as a list. If V is a binary-object citation, L is a reference to
the same object with tag `L'. Otherwise, application of of asLST is
erroneous.

asAPL :V �! A

Cite as an application. If V is a binary-object citation, A is a
reference to the same object with tag `A'. Otherwise, application of
of asAPL is erroneous.

asFTN :V �! F

Cite as a function. If V is a binary-object citation, F is a reference
to the same object with tag `F'. Otherwise, application of of asAPL
is erroneous.

asERR :V �!M

Error. The resultM is the erron |tag/| unless V is itself an erron,
in which case, V is returned. See the section titled Errons.
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3.9.1 Remarks

The table below shows what tag coercions are permitted. Conversion be-
tween numerals and directives is allowed. Coercions among binary objects
are allowed.

 ��������Coercion ��������!

DCT NML IDE LST APL FTN ERR

DCT ok ok err err err err err
NML ok ok err err err err err
IDE err err ok ok ok ok err
LST err err ok ok ok ok err
APL err err ok ok ok ok err
FTN err err ok ok ok ok err
ERR err err err err err err err

The range of possible directives (24-bit unsigned binary) is smaller than

the range possible numerals (32-bit 2's complement). In asDCT, a numeral's
high-order bits are truncated to make D. In asNML, a directive is 0-extended
to make N :

Coercions among identi�er, list, application, and function citations do
not create new objects. The result is citation with the appropriate tag. For
example, suppose the V cites a list cell

V �L�! W W 0

Then the application asIDE:V returns an identi�er-citation, I;

V � L�!

I �

I??y
W W 0

and similarly for asFTN, asLST, and asAPL. A binary citation's tag deter-
mines how the cited object is displayed.
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Expression Value

asLST:["A" "B"] [A B]

asAPL:["A" "B"] A:B

asFTN:["A" "B"] \A.B

asIDE:["A" "B"] |?I|

In the fourth example, the erron |?I| is generated by the issue operation

because no syntax is associated with identi�ers having this structure.



54 CHAPTER 3. DAISY OPERATIONS

3.10 Access to Composite Objects

The head and tail operations are restricted to list objects. They include
a test on the tag of their argument. Two less sensitive versions omit this
test. These can be used to access constituents of non-list cells.

_hd :V �! V 0

Head of a composite object. The _hd operation returns the citation
V 0 whenever V has the form

V �t�! V 0 ?
:

Since tag-insensitive access operations are used to retrieve bindings
from environments, _hd is (\[H ! T]. H) but could also be imple-
mented as (\V. head:asLST:V).

_tl :V �! V 0

Tail of a composite object. The _tl operation returns the citation
V 0 whenever V has the form

V �t�! ? V 0
:

Since tag-insensitive access operations are used to retrieve bindings
from environments, _tl is (\[H ! T]. T) and is approximately im-
plemented as (\V. tail:asLST:V).

3.10.1 Remarks

The operations head and tail do ordinary list access and include a vali-
dation that the argument is a list. Since they omit any such test, _hd and
_tl are slightly faster. In addition, _tl retreives the tail of any object that
has one, including numerals and errons.

One can use tag coercion to get at the components of non-list objects.
The coercions also document intent. The following program fragment re-
treives the formal argument of a function object.

FormalArgument = \F.

if:[ isFTN?:F

head:asLST:F

"mistaken function-access"

]
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In this de�nition, an explicit test con�rm that F is a function cell. At
the same time, there is a lot of redundant tag checking by head and asLST.
Since it is assured that F is a binary object, one might as well write

FormalArgument = \F. ;

if:[ isFTN?:F ; Hence, F is binary

_hd:F ;

"mistaken function-access"

] ;

note[March 11, 1996]: Use of _hd and _tl in environment look-up leads
to some ba�ing Daisy bugs. For example, the expression

(\[H!T].T):5

returns the void directive because numerals have tail-citations. Even more
inscrutable are assignment e�ects, through which global function bindings
end up in environments. More sensitive binding retrieval is under consid-
eration.
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3.11 Characters

Daisy characters are simply those literals with a single-character display
names. The character A is the literal cell

A �I �! E??y
void

A � � � nil

Chr? :V �! B

Character test. The Chr? operation returns true if its argument is
single-character literal.

ChrAsNml : C �! N

Character's numeric code. If the argument is a character, ChrAsNml
builds a numeral, N ; holding the binary value of its display code.

NmlAsChr :N �! C

Convert a numeral to a character. If the argument is a numeral, C
cites the character whose display code is equal to the seven low-order
bits of N 's binary content.

EXAMPLES

Expression Value

Chr?:[] []

Chr?:"RED" []

Chr?:"R" true

Chr?:5 []

Chr?:"5" true

ChrAsNml:"5" 53

NmlAsChr:82 R

NmlAsChr:338 R
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3.12 Character Classi�cation

Parsing, scanning, and display operations employ an internal classi�cation
of host character codes. Though this classi�cation cannot be altered by
Daisy programs, tests against it are permitted. The classi�cations are ex-
plained in descriptions of scan and parse and summarized in Figures ? and
?. There is no test operations for Scanning Escape (the back-quote charac-
ter ` ), Literal quote (the double-quote character " ), Comment (the bar
character | ), or Sign (the characters + and - ).

ScnSPC? : C �! B

Space-character test. The result is true if C is classi�ed as a space
character (spc in Figure ?; see also scan). The spaces are  and
HT .

ScnDGT? : C �! B

Digit-character test. The result is true if character C's is a digit
(dgt in Figure ?; see also scan). The digits are 0 , 1 , 2 , 3 , 4 ,
5 , 6 , 7 , 8 , and 9 .

ScnLFA? : C �! B

Alpha-character test. The result is true if character C is alphabetic
(lfa in Figure ?; see also scan). The alphabetic characters are A

through Z and a through z .

ScnNON? : C �! B

Neutral-character test. The result is true if character C is classi�ed
as neutral (non in Figure ?; see also scan). The neutral characters
are # , % , & , ' , , , / , ; , @ , _ , and ~ .

ScnSYM? : C �! B

Symbol-character test. The result is true if character C is classi�ed
as a symbol (sym in Figure ?; see also scan). Symbols have an aux-
iliary classi�cation, of meaning in parsing. The symbols are control
characters NL , VT , FF , and CR ; and display characters ! , $ , ( ,
) , * , . , : , 5 , < , = , > , [ , \ , ] , ^ , { , and } .

ScnCTL? : C �! B
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Control-character test. The result is true if character C is classi�ed
as control (ctl in Figure ?; see also scan). The control codes are

NUL SOH STX ETX ENQ ACK BEL BS SO SI DLE DC1 DC2

DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US DEL
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3.13 Sequencers

Certain programs require a degree of control over the order of evaluation.
In particular, programs that manage external events (input and output)
may need to defer using a list until one of its �eld is known to be present.
The sequencing operations provide a crude form of control over order of
evaluation.

crc_hd :V �! V

Coerce-head. The argument, normally a list, is returned once its
head is present.

crc_hd = \L. let:[ [H ! T] L if:[ H L L ] ]

crc_tl :V �! V

Coerce-tail. The argument, normally a list, is returned once its tail
is present.

crc_tl = \L. let:[ [H ! T] L if:[ T L L ] ]

seq : [V0 V1 � � � Vn ] �! Vn

Sequencer. The last element of the list argument is returned with
all preceding elements having been made present. In Daisy,

seq = ^\L. let:[ [H ! T] crc_hd:L if:[ nil?:T H seq:T ] ]

3.13.1 Remarks

The crc_hd and crc_tl operations act as identity functions, but access
the head and tail of their arguments before returning them. The expres-
sions same?:[X crc_"hd:X] and same?:[X crc_"tl:X] always return
truewhere the accessed �elds are de�ned. That is, if 
 is a divergent ex-
pression, then <
 E > has a value but crc_hd:<
 E > does not, and
similarly for crc_tl.

Since the if operation uses its �rst argument, it can be used to get
the e�ect of crchd and crctl, as illustrated in the descriptions above. An
alternative speci�cation exploits the fact application forces the argument
to be present before invoking a function:

crc_hd = ^\L. (\X.L):_hd:L

crc_tl = ^\L. (\X.L):_tl:L
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The following program has been used as a tracing facility:

Trace = ^\Message. \Value.

seq:[ screen:issue:Message

Value

]

The value of (Trace:["X is " X]) acts as an identity operation but dis-
plays [X is value] on the terminal when it is applied. The sequencers
are needed to address certain problems in event coordination, but this is
not one of them. Trace, whose only purpose is an (output) e�ect, is not an
applicative construct. On the other hand, instrumentation of applicative
programs is subject of current research. See, for example, \Debugging in
Applicative Languages," by O'Donnell and Hall (Indiana University Com-
puter Science Department Technical Report No. 223, 1987).

A more stylistic example is the problem of merging two streams of data
in a timely fashion, where the requirement is that an item in a stream exists
before it is selected. The Merge de�ned below is not timely because it does
not guarantee timeliness.

Merge = ^\[As Bs].

head:{ [ head:As ! Merge:[Bs tail:As] ]

[ head:Bs ! Merge:[As tail:Bs] ]

}

The list [ head:As ! Merge:[Bs tail:As] ] can exist before head:As

produces a value. To assure the presence of an item before committing its
use, one could instead de�ne

Merge = ^\[As Bs].

head:{ crc_hd:[ head:As ! Merge:[Bs tail:As] ]

crc_hd:[ head:Bs ! Merge:[As tail:Bs] ]

}
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3.14 Interface Operations

Input to and output from Daisy are done by host-interface operations, that
produce and consume lists of characters. The input operations are console
and dski; output is done by screen and dsko. console and screen ef-
fect the interactive operator's terminal; dski and dsko e�ect the host �le
system.

console : I �! [ C0 C1 � � � ]

Interactive input. The literal I is displayed as a prompt for input
from the operator's keyboard (stdin in unix). The result is the
list of characters corresponding to key strokes. Several instances of
console can be in e�ect. An input channel is terminated by typing
EOT (control `D'). In the case that EOT is the only thing typed the
list that results is [ EOT ] .

screen : [ C0 C1 � � � ] �! []

Interactive output. The characters in the argument are displayed on
the operator's terminal screen (stdout in unix). Nil is returned after
the entire argument has been displayed. That is, screen does not
terminate until it has consumed all of the elements of the character
stream.

dski : I �! [ C0 C1 � � � ]

File input. The literal I names a host text �le. The result is the
list of characters read from that �le.

dsko : [ I[ C0 C1 � � � ] ] �! []

File output. The literal I names a host text �le. This list of
characters, [ C0 C1 � � � ]; is written to that �le. Dsko returns Nil
after the entire list has been written.

3.14.1 Remarks

Abstractly, peripheral I/O is bu�ered directly in Daisy's list-space. In
implementation, the host-interface operations copy from host bu�ers into
lists. Synchronization with host bu�ers depends, in part, how the host pro-
cesses peripheral I/O. With terminals in normal mode, the host withholds
input in order to process line-editing characters (back-space, line-delete,
etc.). Hence, key board input is not presented to Daisy until a new-line
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is processed. Even in \raw" modes, host I/O is synchronous by default.
Asynchronous version of the interface operations are in development.
The host text �le

Looking for that

fatal error?

Read your listing

on the stair.

is represented in Daisy as the list

[ L o o k i n g f o r t h a t NL

HT f a t a l e r r o r ? NL

R e a d y o u r l i s t i n g NL

HT o n t h e s t a i r . ]

In some cases the EOT character occurs at the end of such a list. A program
that echo's terminal input could be written as follows. Daisy output is
shaded; operator input is not. The ampersand is Daisy's top-level prompt.

&Parrot = ^\P.screen:console:P
Parrot

&Parrot:"??"
??abc
abc

??def
def

?? EOT []

&

The list produced by console is

[ a b c NL d e f NL ]

which includes the two carriage-returns entered by the operator, An in-
stance of console terminates its list when it encounters the EOT (control-
`D') code form the key board.
Screen

displays this list. The occurance of prompts ?? reects the host's bu�er-
ing of input through new-line entries. The prompts are raised as screen
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catches up with console. Nil, the value of the expression Parrot:"??", is
displayed once output is exhausted.

A program that records terminal input on a �le F could be written as
follows.

&Tap = ^\F. dsko:[F console:F]
Tap

&Tap:"IN" INLooking for that

IN HT fatal error?
INRead your listing

IN HT on the stair.

IN EOT []

&

Tap records console input on a �le, using the �le's name as a prompt. Since
dsko does not terminate until it has consumed its argument, Tap retains
control until the F-channel to the keyboard is terminated. The host �le `IN'
records console input, which may subsequently be read using dski:

&dski:"IN" [L o o k i n g  f o r  t h a t

HT f a t a l  e r r o r ?

R e a d  y o u r  l i s t i n g

HT o n  t h e  s t a i r .]

&

Dski

returns a list of characters corresponding to what was written to the
�le. The e�ect of the screen operation is a display of these characters

&screen:dski:"IN"
Looking for that

HT fatal error?

Read your listing

HT on the stair.[]

&

The structures returned by console and dski are indistiguishible from
other values. They can be manipulated by Daisy programs, including those
primitives for parsing and scanning.
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3.15 Text Generation

issue :V �! [ C0 C1 � � � ]

Generate text. The issue operation produces a character stream
spelling the value V : The result can be used by interface operations.
There are some structures that issue cannot spell. the sequence
`|I?|' is issued for identi�er cells having no print name. The pre�x
`\=?=' is appended to function closures.

note [March 11, 1996]: revisions to issue are in progress, bringing it closer
to the xparse and scan operations.

V issue:V

BLUE [ B L U E ]

[51 X] [ [ 5 1  X ] ]

\A.<A> [ \ A . < A > ]

MORE TO COME
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3.16 Scanning

Scanning is the translation of a sequence of characters, such as would be
produced by an interface operation, into atomic symbols. In this section
the term text refers to a list

[ C0 C1 � � � ] :

It is easiest to think of each Ci as a character, although the scanning oper-
ations accept any object in these places.

scan : [ C0 C1 � � � ] �! [A Cj Cj+1 � � � ]

Scan text. The scan operation incorporates the pre�x of text
into the atomic object A and appends it to the su�x beyond A's
spelling. Non-characters are accepted as though they were symbols.
That is, if V is not a character, then scan:[V C1 C2 � � � ] returns
[V C1 C2 � � � ]. The scan operation also develops literal quotations.
It is erroneous if scan's argument is Nil. Other boundary conditions
arise when the argument contains nothing to incorporate; the details
are discussed in the remarks below.

scans : [ C0 C1 � � � ] �! [A0 A1 � � � ]

scan

iterated. The scans operation applies scan to successive su�xes,
producing a sequence of atoms from a sequence of characters. Here
is an approximate speci�cation:

scans = ^\Characters .

let:[ [Atom ! Suffix] scan:Characters

let:[ Atoms if:< nil?:Suffix <> scans:Suffix >

< Atom ! Atoms >

]]

3.16.1 Remarks { Scanning Details

Scanning is done according to a classi�cation of characters described below.
Briey,

� When scan encounters a digit or sign it builds a numeral.
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� When scan encounters a neutral character, such as a letter, it builds
a literal.

Scan

� it accepts as symbols those characters that have meaning in parsing.

Scan

� accepts as a symbol any object other than a character.

� �When scan encounters the delimiter " , it builds a literal quotation.

Figure ? gives the character classi�cation with respect to scanning. The
classi�cations are

Class Meaning Remark

END end of text EOT

CMT comment |

SIC escape `

SPC space , HT

SGN sign + and -

SYM symbols e.g. [ , :

DGT digit 0 through 9

LFA alphabetic A � � � Z and a � � � z

NON annotation neutral display codes, e.g. %

CTL contol neutral contol codes

The operations, ScnCTL?, ScnSPC?, ScnDGT?, ScnLFA?, ScnNON?, and

ScnSYM? test characters according to this classi�cation.

Spaces

scan:[ space ! L ] �! scan:L

Blanks and tabs are skipped. \Vertical" spaces (e.g. NL and FF ) are
classi�ed as symbols. scan:[  � � �  ] returns the value [#]. The `#' is
Nil's head, which scan sees as a symbol.
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Comments

scan:[ | � � � NL ! L ] �! [ NL ! L ]

When it encounters the comment delimiter, | , scan advances to the next
new-line and returns it as a symbol.

End-of-Text

quadscan:[ C0 � � � Cn EOT ! L ]
�
�! scan:[ C0 � � � Cn ]

scan:[ spc � � � spc EOT ! L ] �! [ NL ]

When scan encounters EOT , it is as though the list were Nil at that
point. Scanning tests for EOT only after the spelling of an atom; if the
pre�x leading to EOT contains nothing but spaces and comments, scan
introduces a new-line symbol.

Normally, EOT characters do not occur in text. The Daisy input oper-
ations, dvci and console, usually terminate text with Nil, although they
introduce an EOT in certain pathalogical conditions. Also, the host's escape
mechanism can be used to force an EOT into input text.

Symbols

scan:[ symbol ! L ] �! [ symbol ! L ] Characters classi�ed as symbols

have meaning in parsing and are accepted as literals. For example,

scans:< "[" "r" "e" "d" "!" "c" "a" "b" "]" � � � >

yields [ [ red ! cab ] � � � ].

Numerals

scan:[ digit � � � digit ! L ] �! [N ! L ]
scan:[ + digit � � � digit ! L ] �! [N ! L ]
scan:[ - digit � � � digit ! L ] �! [N ! L ] When it encounters pre-

�x of digits, possibly with a leading sign character, scan builds a numeral,
N representing the decimal integer expressed by the digits. For example,

scan:[ 1 5 8  A � � � ]

yields [ 158  A � � � ]. The �rst three characters are incorporated as a
numeral 158.
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Literals

scan:[ letter � � � nonletter ! L ] �! [ I nonletter ! L ]

When the leading character is neutral, the pre�x of text is incorporated as
a literal, I; whose print-name is that pre�x. For example,

scan:[ R E D C A R � � � ]

yields [RED  c a r � � � ]. The �rst three characters are incorpo-
rated as a literal, RED.

The leading character can be an alphabetic character or an annotation
character; the signs + and - are accepted when they are not followed by
digits. The literal's spelling stops with a space, a comment, EOT , punctu-
ation, or parsing symbol.

The back-quote ` serves as an escape in literal formation. Any follow-
ing character is treated as neutral. For instance,

scan:[ A ` * ! L]

produces a list whose head is the literal spelled `A*'.

Literal quotation

scan:[ " C0 � � � Cn " ! L ] �! [ I ! L ] Any pre�x of text surrounded

by double-quotes " is incorporated as a literal quotation. " and ` must
be preceded by an escape. For instance,

scan:[ " ` " S a y , ` ` X . ' ` " " ! L ]

produces a quotation of the literal spelled "Say, `X.'" (including the dou-
ble quotes).

Non-character Text

scan:[V ! L ] �! [V ! L ] A non-character object in scan's argument

is treated as a symbol. That is, non-characters are accepted as they are.
However, such objects are ignored when they occur between quotation de-
limiters.
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3.17 Parsing

Parsing is the translation of a sequence of tokens, such as would be produced
by the scans operation, into an internally represented Daisy expression. It
is easiest to think of a token as an atom (a literal or numeral), but Ti can
be anything. The parsing operations accept non-atomic objects as neutral
literals.

parse : [ C0 C1 � � � ] �! [ E0 E1 � � � ]

xparses

� scans. The parse operations is (\Ts. xparses:scans:Ts). It
is retained from previous releases of Daisy. In future releases, this
will be the xparse operation.

xparse : [ T0 T1 � � � ] �! [ E Tj Tj+1 � � � ]

Parse text. The parse operation incorporates the pre�x of text
into an expression object E : The result is a list whose head is E and
whose tail is the su�x of text beyond E 's spelling. For example,

parse:< "\" "n" "." "G1" ":" "n" "A" "B" "C" >

returns the list [ \n.G1:n A B C], whose �rst element is a func-
tion expression. It is erroneous if parse's argument is Nil.

xparses : [ T0 T1 � � � ] �! [ E0 E1 � � � ]

parse

iterated. The xparses operation applies xparse to successive suf-
�xes, producing a sequence of expressions from the sequence of tokens.
Here is a partial speci�cation in Daisy.

xparses = ^\Tokens .

let:[ [Exp ! Suffix]

xparse:Tokens

let:[ Exps

if:< nil?:Suffix <> xparses:Suffix >

< Expression ! Expressions >

]]
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3.17.1 Remarks|Parsing Details

If the argument contains nothing to parse, parse returns the list [#],
where the # displays Nil's head. An example of such an argument is
[ NL � � � NL ].

The tokens of interest in parsing are those single-letter symbols of sig-
ni�cance in Daisy's surface syntax.

Symbols Purpose

NL VT FF CR ( ) precedence

^ Value quotation

\ . Function expression

: Application expression

< > List expression

[ ] List expression

{ } List expression

! Dot notation

* Cyclic tail

= Assignment expression

$ Strictness annotation

Figure ? shows the correspondence between Daisy's surface language ex-

pression representations. The function of parsing is to create expression
objects.

parse:[ T0 : T2 T3 � � � ]

yields a list [E T3 � � � ] whose head, E ; cites the application of T1 to T2:
That is, the result looks like

L�! A??y
L�����! T3 L�����!� � �

E ! T1 T2

Parsing is by recursive descent, with single-token look-ahead for in�x sym-
bols such as : . Look-ahead is inhibited by occurances of vertical carriage
control characters such as NL . This is done for the sake of interaction.

parse:[ inc : NL 255 � � � ]
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develops an application of inc to 255, so the result appears as [inc:255 NL � � � ],
while the expression

parse:[ inc NL : 255 � � � ]

stops looking for a colon at the new-line; and thus returns

[ inc NL : � � � ]

In other words, the second parse application accepts the literal inc as the
expression E .

MORE TO COME
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3.18 Special Operations

The operations in this section must be regarded as special forms because
their invokation involves manipulation of the implicit environment object.

val : E �! V

Evaluate.

The result is the value of expression E using the environment in e�ect
at the point of invokation.

MORE TO COME

evlst : [ E0 E1 � � � ] �! [V0 V1 � � � ]

val

iterated..

In Daisy,

evlst = \L.

let:[ [H ! T]

L

if:< nil?:L

<>

same?:<T L>

<val:H *>

<val:H ! evlst:T>

>

]

MORE TO COME

let : [X E1 E2 ] �! V

Lexical binder.

MORE TO COME

rec : [X E1 E2 ] �! V

Recursive binder.

MORE TO COME
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fix : [X E ] �! V

Recursive binder.

MORE TO COME
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[

]REFERENCE (a) { Daisy Operations

Daisy Operations
(by group)

Types in descriptors

B { T or []

N { a numeral L { a list C { a character
I { a literal A { an atom E { an expression

V { a value

Arithmetic Tests zero?:N �! B . . . . . . . . . . . . . . Test for Zero

one?:N �! B . . . . . . . . . . . . . . . . Test for One

neg?:N �! B . . . . . . . . . . . . . . Test for negative

pos?:N �! B . . . . . . . . . . . . . . Test for positive

lt?: [N1 N2 ] �! B . . . . . . . . . . . . . . Less-than

le?: [N1 N2 ] �! B . . . . . . . . . . . . . . At-most

eq?: [N1 N2 ] �! B . . . . . . . . . . . Numeric equality

ne?: [N1 N2 ] �! B . . . . . . . . . . Numeric inequality

ge?: [N1 N2 ] �! B . . . . . . . . . . . . . . . At-least

gt?: [N1 N2 ] �! B . . . . . . . . . . . . . Greater-than

Unary Arithmetic neg:N1 �! N2 . . . . . . . . . . . . . . . . . Negate

sgn:N �! -1 or 1 . . . . . . . . . . . . . Sign projection

inc:N1 �! N2 . . . . . . . . . . . . . . . . Increment

dcr:N1 �! N2 . . . . . . . . . . . . . . . Decrement

inv:N1 �! N2 . . . . . . . . . . . . . . . . . Invert
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Binary Arithmetic add: [N1 N2 ] �! N3 . . . . . . . . . . . . . . . . Add

sub: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Subtract

mpy: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Multiply

div: [N1 N2 ] �! N3 . . . . . . . . . . . . . . . Divide

rem: [N1 N2 ] �! N3 . . . . . . . . . . . . . Remainder

Binary Logic or: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Logical-or

and: [N1 N2 ] �! N3 . . . . . . . . . . . . . Logical-and

xor: [N1 N2 ] �! N3 . . . . . . . . . . . . . Exclusive-or

Reference Tests nil?:V �! B . . . . . . . . . . . . . . . . Test for Nil

isNML?:V �! B . . . . . . . . . . . . Test for a numeral

isLtrl?:V �! B . . . . . . . . . . . . Test for a literal

isAtm?:V �! B . . . . . . . . . . . . . Test for an Atom

isLST?:V �! B . . . . . . . . . . . . . . Test for a list

same?: [U V1 � � � Vn ] �! B . . . . . . . . Reference equality

List Processing head: [V1 ! V2 ] �! V1 . . . . . . . . . . . Head of a list

tail: [V1 ! V2 ] �! V1 . . . . . . . . . . . . Tail of a list

cons: [V1 V2 ] �! [V1 ! V2 ] . . . . . . . . List constructor

frons: [V V 0 ] �! L . . . . . . . . . . Multiset constructor

any?: [V0 V1 � � � ] �! [Vi Vi+1 � � � ] . Locate a non-Nil element

all?: [V0 V1 � � � ] �! B . . . . . . Test for no null elements

in?: [U [V0 V1 � � � ] ] �! B . . . . . . . Membership Test

if: [ T0 V0 T1 V1 � � � ] �! Vi . . . . . Conditional operation

Object Manipulation TagOf:V �! N . . . . . . . . . . . Numeric value of a tag



76 CHAPTER 3. DAISY OPERATIONS

Tag Tests isDCT?:V �! B . . . . . . . . . . . . Test for a directive

isNML?:V �! B . . . . . . . . . . . . Test for a numeral

isLST?:V �! B . . . . . . . . . . . . Test for a list-object

isAPL?:V �! B . . . . . . . . . Test for a application-object

isFTN?:V �! B . . . . . . . . . . Test for a function-object

isIDE?:V �! B . . . . . . . . . . Test for a identi�er-object

isERR?:V �! B . . . . . . . . . Test for an identi�er-object

Tag Coercion asDCT:V �! D . . . . . . . . . . . . . Cite as a directive

asNML:V �! N . . . . . . . . . . . . . Cite as a numeral

asIDE:V �! I . . . . . . . . . . . . Cite as an identi�er

asLST:V �! L . . . . . . . . . . . . . . . Cite as a list

asAPL:V �! A . . . . . . . . . . . Cite as an application

asFTN:V �! F . . . . . . . . . . . . . Cite as a function

asERR:V �!M . . . . . . . . . . . . . . . . . Error

Access to Composite Objects _hd:V �! V 0 . . . . . . . . . . Head of a composi

_tl:V �! V 0 . . . . . . . . . . . Tail of a composite object

Character Manipulation Chr?:V �! B . . . . . . . . . . . . . . . Character t

ChrAsNml: C �! N . . . . . . . . . Character's numeric code

NmlAsChr:N �! C . . . . . . Convert a numeral to a character

Character Classi�cation ScnSPC?: C �! B . . . . . . . . . . . . Space-character t

ScnDGT?: C �! B . . . . . . . . . . . . Digit-character test

ScnLFA?: C �! B . . . . . . . . . . . . Alpha-character test

ScnNON?: C �! B . . . . . . . . . . . Neutral-character test

ScnSYM?: C �! B . . . . . . . . . . . Symbol-character test

ScnCTL?: C �! B . . . . . . . . . . . Control-character test
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Sequencing crc_hd:V �! V . . . . . . . . . . . . . . . Coerce-head

crc_tl:V �! V . . . . . . . . . . . . . . . Coerce-tail

seq: [V0 V1 � � � Vn ] �! Vn . . . . . . . . . . . Sequencer

Interface Operations console: I �! [ C0 C1 � � � ] . . . . . . . . Interactive input

screen: [ C0 C1 � � � ] �! [] . . . . . . . . Interactive output

dski: I �! [ C0 C1 � � � ] . . . . . . . . . . . . . File input

dsko: [ I[ C0 C1 � � � ]] �! [] . . . . . . . . . File output

Text Generation issue:V �! [ C0 C1 � � � ] . . . . . . . . . . Generate text

Scanning scan: [ C0 C1 � � � ] �! [A Cj Cj+1 � � � ] . . . . . . Scan text

scans: [ C0 C1 � � � ] �! [A0 A1 � � � ] . . . . . scan iterated

Parsing parse: [ C0 C1 � � � ] �! [ E0 E1 � � � ] . . . . . xparses� scans

xparse: [ T0 T1 � � � ] �! [ E Tj Tj+1 � � � ] . . . . . Parse text

xparses: [ T0 T1 � � � ] �! [ E0 E1 � � � ] . . . . . parse iterated

Special Operations val: E �! V . . . . . . . . . . . . . . . . . Evaluate

evlst: [ E0 E1 � � � ] �! [V0 V1 � � � ] . . . . . . val iterated.

let: [X E1 E2 ] �! V . . . . . . . . . . . Lexical binder

rec: [X E1 E2 ] �! V . . . . . . . . . . Recursive binder

fix: [X E ] �! V . . . . . . . . . . . . Recursive binder
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[

]REFERENCE (b) { Daisy Operations

Daisy Operations
(by group)

Types in descriptors

B { T or []

N { a numeral L { a list C { a character
I { a literal A { an atom E { an expression

V { a value

add: [N1 N2 ] �! N3 . . . . . . . . . . . . . . . . Add

all?: [V0 V1 � � � ] �! B . . . . . . Test for no null elements

and: [N1 N2 ] �! N3 . . . . . . . . . . . . . Logical-and

any?: [V0 V1 � � � ] �! [Vi Vi+1 � � � ] . Locate a non-Nil element

asAPL:V �! A . . . . . . . . . . . Cite as an application

asDCT:V �! D . . . . . . . . . . . . . Cite as a directive

asERR:V �!M . . . . . . . . . . . . . . . . . Error

asFTN:V �! F . . . . . . . . . . . . . Cite as a function

asIDE:V �! I . . . . . . . . . . . . Cite as an identi�er

asLST:V �! L . . . . . . . . . . . . . . . Cite as a list

asNML:V �! N . . . . . . . . . . . . . Cite as a numeral

Chr?:V �! B . . . . . . . . . . . . . . . Character test

ChrAsNml: C �! N . . . . . . . . . Character's numeric code

console: I �! [ C0 C1 � � � ] . . . . . . . . Interactive input

cons: [V1 V2 ] �! [V1 ! V2 ] . . . . . . . . List constructor

crc_hd:V �! V . . . . . . . . . . . . . . . Coerce-head

crc_tl:V �! V . . . . . . . . . . . . . . . Coerce-tail

dcr:N1 �! N2 . . . . . . . . . . . . . . . Decrement

div: [N1 N2 ] �! N3 . . . . . . . . . . . . . . . Divide

dski: I �! [ C0 C1 � � � ] . . . . . . . . . . . . . File input
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dsko: [ I[ C0 C1 � � � ]] �! [] . . . . . . . . . File output

eq?: [N1 N2 ] �! B . . . . . . . . . . . Numeric equality

evlst: [ E0 E1 � � � ] �! [V0 V1 � � � ] . . . . . . val iterated.

fix: [X E ] �! V . . . . . . . . . . . . Recursive binder

frons: [V V 0 ] �! L . . . . . . . . . . Multiset constructor

ge?: [N1 N2 ] �! B . . . . . . . . . . . . . . . At-least

gt?: [N1 N2 ] �! B . . . . . . . . . . . . . Greater-than

head: [V1 ! V2 ] �! V1 . . . . . . . . . . . Head of a list

_hd:V �! V 0 . . . . . . . . . . Head of a composite object

if: [ T0 V0 T1 V1 � � � ] �! Vi . . . . . Conditional operation

in?: [U [V0 V1 � � � ] ] �! B . . . . . . . Membership Test

inc:N1 �! N2 . . . . . . . . . . . . . . . . Increment

inv:N1 �! N2 . . . . . . . . . . . . . . . . . Invert

isAPL?:V �! B . . . . . . . . . Test for a application-object

isAtm?:V �! B . . . . . . . . . . . . . Test for an Atom

isDCT?:V �! B . . . . . . . . . . . . Test for a directive

isERR?:V �! B . . . . . . . . . Test for an identi�er-object

isFTN?:V �! B . . . . . . . . . . Test for a function-object

isIDE?:V �! B . . . . . . . . . . Test for a identi�er-object

isLST?:V �! B . . . . . . . . . . . . Test for a list-object

isLST?:V �! B . . . . . . . . . . . . . . Test for a list

isLtrl?:V �! B . . . . . . . . . . . . Test for a literal

isNML?:V �! B . . . . . . . . . . . . Test for a numeral

isNML?:V �! B . . . . . . . . . . . . Test for a numeral

issue:V �! [ C0 C1 � � � ] . . . . . . . . . . Generate text

le?: [N1 N2 ] �! B . . . . . . . . . . . . . . At-most

let: [X E1 E2 ] �! V . . . . . . . . . . . Lexical binder

lt?: [N1 N2 ] �! B . . . . . . . . . . . . . . Less-than

mpy: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Multiply

ne?: [N1 N2 ] �! B . . . . . . . . . . Numeric inequality

neg?:N �! B . . . . . . . . . . . . . . Test for negative

neg:N1 �! N2 . . . . . . . . . . . . . . . . . Negate

nil?:V �! B . . . . . . . . . . . . . . . . Test for Nil

NmlAsChr:N �! C . . . . . . Convert a numeral to a character
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one?:N �! B . . . . . . . . . . . . . . . . Test for One

or: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Logical-or

parse: [ C0 C1 � � � ] �! [ E0 E1 � � � ] . . . . . xparses� scans

pos?:N �! B . . . . . . . . . . . . . . Test for positive

rec: [X E1 E2 ] �! V . . . . . . . . . . Recursive binder

rem: [N1 N2 ] �! N3 . . . . . . . . . . . . . Remainder

same?: [U V1 � � � Vn ] �! B . . . . . . . . Reference equality

scans: [ C0 C1 � � � ] �! [A0 A1 � � � ] . . . . . scan iterated

scan: [ C0 C1 � � � ] �! [A Cj Cj+1 � � � ] . . . . . . Scan text

ScnCTL?: C �! B . . . . . . . . . . . Control-character test

ScnDGT?: C �! B . . . . . . . . . . . . Digit-character test

ScnLFA?: C �! B . . . . . . . . . . . . Alpha-character test

ScnNON?: C �! B . . . . . . . . . . . Neutral-character test

ScnSPC?: C �! B . . . . . . . . . . . . Space-character test

ScnSYM?: C �! B . . . . . . . . . . . Symbol-character test

screen: [ C0 C1 � � � ] �! [] . . . . . . . . Interactive output

seq: [V0 V1 � � � Vn ] �! Vn . . . . . . . . . . . Sequencer

sgn:N �! -1 or 1 . . . . . . . . . . . . . Sign projection

sub: [N1 N2 ] �! N3 . . . . . . . . . . . . . . Subtract

TagOf:V �! N . . . . . . . . . . . Numeric value of a tag

tail: [V1 ! V2 ] �! V1 . . . . . . . . . . . . Tail of a list

_tl:V �! V 0 . . . . . . . . . . . Tail of a composite object

val: E �! V . . . . . . . . . . . . . . . . . Evaluate

xor: [N1 N2 ] �! N3 . . . . . . . . . . . . . Exclusive-or

xparses: [ T0 T1 � � � ] �! [ E0 E1 � � � ] . . . . . parse iterated

xparse: [ T0 T1 � � � ] �! [ E Tj Tj+1 � � � ] . . . . . Parse text

zero?:N �! B . . . . . . . . . . . . . . Test for Zero



3.18. SPECIAL OPERATIONS 81

[

]REFERENCE (c) { Daisy Operations

Arithmetic Operations

add:[N1 N2 ] ! N3 add N3 = N1 +N2

sub:[N1 N2 ] ! N3 subtract N3 = N1 �N2

div:[N1 N2 ] ! N3 divide N3 = N1 �N2

mpy:[N1 N2 ] ! N3 multiply N3 = N1 � N2

rem:[N1 N2 ] ! N3 remainder N3 = N1 � (N1 �N2) � N2

inc:N ! N 0 increment N 0 = N + 1

dcr:N ! N 0 decrement N 0 = N � 1

neg:N ! N 0 negate N 0 = �N

inv:N ! N 0 invert N 0 = N

sgn:N ! N 0 sign N 0 =

�
1; if N � 0
-1; if N < 0

and:[N1 N2 ] ! N3 binary-and N3 = N1 �N2

or:[N1 N2 ] ! N3 binary-or N3 = N1 �N2

xor:[N1 N2 ] ! N3 exclusive-or N3 = N1 
N2

zero?:N ! B is-zero? N = 0 ?

one?:N ! B is-one? N = 1 ?

neg?:N ! B negative? N < 0 ?

pos?:N ! B positive? N � 0 ?

lt?:[N1 N2 ] ! B less-than N1 < N2 ?

le?:[N1 N2 ] ! B at-most N1 � N2 ?

eq?:[N1 N2 ] ! B equal N1 = N2 ?

ne?:[N1 N2 ] ! B unequal N1 6= N2 ?

ge?:[N1 N2 ] ! B at-most N1 � N2 ?

gt?:[N1 N2 ] ! B greater-than N1 > N2 ?

lt?:[N1 N2 ] ! B less-than N1 < N2 ?
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Chapter 4

Errons

There are no provisions in Daisy to handle erroneous or excep-
tional conditions. A detected error produces a distinguished
value, called and erron, which records the occurance. Errons are
simply a class of values produced by the Daisy interpreter. They
appear as messages, surrounded by `|' characters. A typical ex-
ample is

|ubi:RED| ;

which says, \RED is an unbound identi�er."
Errons cannot be manipulated by Daisy programs. In interpre-

tation, they are treated like discovered divergences, or detected
instances of the \unde�ned" value. That is, the presence of an er-
ron is treated as though the value were ?; where that makes sense.
Any program attempting to manipulate an erroneous/unde�ned
a value, becomes erroneous/unde�ned itself.

The displayed text is diagnostic, and errons accumulate text
as their use propagates. For example, if N is unbound, then the
expression if:[RED "stop" "go"] is also erroneous, and would pro-
duce the erron

|ifP/ubi:RED|

The `/' can be read as, \due to." The message above says, \If
has an invalid predication, due to the unbound identi�er, RED."
An erron is represented as a sequence of unary cells,

E�! i f P / E�����!u b i : E�����!

RED � I �! E??y
void

R E D � nil

83



84 CHAPTER 4. ERRONS

A literal's name is simply an erron in a distingished position,
as illustrated above. The expression (\[X].X):"RED" evaluates to
RED's head or the erron |RED|.

The messages accumulates three-letter pre�xes, noting com-
pound errors. The �rst section below explains these pre�xes.
The �nal su�x can be nothing, the name of a literal, or a syntax-
erron (discussed below), depending on the circumstances. The
errouneous expression inc:[5] evaluates to

|nn0/| ;

while inc:"RED" yields

|nn0/RED| :

In both cases, the pre�x `nn0' reports a nonnumeric argument|
inc expects a numeral. The text `RED' is incorporated because a
literal's name enjoys a compatable representation, while a struc-
ture, such as [5] is not readily rendered into message text.

Daisy's parsing operations develop a language of syntax errons,
described in the second section below. In interactive program-
ming, these values are conveyed in the expression stream to the
interpreter.
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4.1 Pre�xes

|all| Erroneous list (all?).

The argument to the all? operation either is not a list, or
contains an erron.

|any| Erroneous list (any?).

The argument to the any? operation either is not a list, or
contains an erron.

|arg| Invalid formal argument.

The formal argument of a function contains something other
than literals and lists. A common cause is the mistaken
use of angle delimiters in a function expression. For ex-
ample, the expression (\[X].X):[5] produces |arg/X|. Per-
haps (\[X].X):[5] was intended; [X] is represented as
an application and cannot be used as a formal argument.
However, its occurance is not discovered by the parser; it
is detected during interpretation. The message su�x often
records the name of identifer whose binding is sought.

note[March 11, 1996]: This error can also arise if locating a
binding requires more than 255 successive tail-operations.
This is due to a known problem in implementation, which is
noted for revision.

|chr| Non-character operand.

The operand to one of the character manipulation opera-
tions is not a character. The operation involved is one of
Chr?, ChrAsNml, ScnCTL?, ScnSPC?, ScnDGT?, ScnLFA?, ScnNON?,
or ScnSYM?. In Daisy, characters are simply literals whose
name consists of a single character code. The Chr? opera-
tion tests for this condition.

|cmp| Erroneous comparison (same? or in?).

The same? and in? operations use the same primitive test for
reference equality. The comparison has failed because one
of the operands is an erron.
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|crc| Invalid coercion.

The operand to one of asDCT, asNML, asFTN, asAPL, asLST, or
asIDE either is either erroneous or invalid. An operand is
invalid when changing the tag of its citation would violate
a storage classi�cation. The table below shows what coer-
cions are permitted (See also the reference operations in the
Section Operations).

 �������Coercion �������!

DCT NML IDE LST APL FTN ERR

DCT ok ok err err err err err
NML ok ok err err err err err
IDE err err ok ok ok ok err
LST err err ok ok ok ok err
APL err err ok ok ok ok err
FTN err err ok ok ok ok err
ERR err err err err err err err

|dfn| Invalid assignment.

The operand to the assignment operation must have the form

[ Identi�er ! Value ]

This erron results if thing assigned is not an identi�er. It is
not the result of a syntax error, which would develop a pars-
ing erron of the form |...@`='|. The `dfn/' pre�x is due to a
poorly constructed assignment command. Use of the assign-
ment mechanism is not recommended. Strongly. There is no
assurance that any manner of assignment will be supported
in future versions of the language.

|dvc| Device error.

This pre�x indicates a problem at the host input-output in-
terface. The operation involved is one of console, dski, dsko,
or screen. The conditions that raise the `dvc/' pre�x are
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an erroneous operand or failure to open the host �le. For
example, if F is unbound, the expression dski:F has value

|dvc/ubi:F| ;

and if no �le named F exists, dski:"F" has value

|dvc| :

In the latter case, the DSI system also issues a diagnostic
query:

query: [H] Can't put in

A similar query-message is displayed when there is any prob-
lem with actual input or output.

|evl| Non-list argument (evlst).

The evlst operation is speci�ed as

evlst = ^\L.

if:[ nil?:L

[]

isLST?:L

[ val:head:L ! evlst:tail:L]

"otherwise"

ERROR
]

This pre�x reports that evlst has reached the point ERROR
above.

|f-c| Construction error

When a list is applied, the construction functional expects
the argument to have the form

[L0 L1 � � � Ln ] ;

where each Li is a list. The `f-c' pre�x indicates that a an
invalid structure is detected prior to invoking transposition
(See the `xps' pre�x). Either the argument itself is not a list,
or in the case that a cyclic list is applied, L0 is not a list.
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|ftn| Erron applied.

An error has occurred in the function part of an application.
If F is unbound, the expression F:[5] evaluates to

|ftn/ubi:F|

|hd?| Invalid head-access

This pre�x is developed by the primitive list processing sys-
tem. It indicates an attempt to access the head of an object
that does not have a \head" �eld. The operand may be a
directive. If not, the object cited may be an erron, a print-
name, or a numeral. The `hd?' pre�x arises when the _hd

operation is used instead of head. The more primitive _hd

is used for environment look-up; hence this pre�x usually
reects a mismatch between formal arguments and actual
arguments. For example, the expression (\.[X].X):5 yields
a |hd?| erron because X is bound to 5's nonexistent head.

note [March 11, 1996]: The addition of more veri�cation in
environment look-up is under consideration

|ifA| Invalid alternative (if).

The operand to the if operation does not have the expected
structure,

[ p0 v0 p1 v1 � � � pn vn vn+1 ]

This pre�x says nothing about the selected alternative, vi:
For example, if N is unbound, the expression if:[[] 5 N] has
value |ubi:N|; if does not verify the value it chooses. The
`ifa' arises if encounters something other than a list, as in
the expression if:"A".

note [March 11, 1996]: An expression like if:[[] X] returns
Nil's head, #.

|ifP| Erroneous predication (if).

One of the tests, pi; in if's argument,

[ p0 v0 p1 v1 � � � pn vn vn+1 ] ;

is an erron.
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|ld?| Invalid access

This pre�x is equivalent to \hd? or tl?."

|lst| Erron in list-expression.

The implicit operation associated with delimiters `[' and `]'
has encountered an erron. This pre�x is unlikely to occur
unless a program is used to build the o�ending expression.
Below, LSTdct is assigned the directive associated with the
list primitive. LSTexp builds a list expression; for instance,
LSTexp:^[a b c] builds the expression [a b c].

LSTdct = head:asLST:^[anything]

LSTexp = ^\L. asAPL:[LSTdct ! L]

Now, if X is unbound, LSTexp:[X "Y"] yields [|ubi:X| Y].
It is impossible to obtain such a form via Daisy's parsing
operations. Should this expression be evaluated, say by
val:LSTexp:[X "Y"], the result is

[ |lst/ubi:X| |ubi:Y| ]

The `lst' pre�x records the error in expression formation.

|opn| Invalid operation code.

A directive is applied, for which no primitive operation is
associated. This condition does not arise in casual program-
ming; it is the result either of a mistaken program-building
program, or the mistaken use of directives as data values
(This is not recommended). The expression (asDCT:66):5

yields 6 because the .66 directive encodes the inc operation
[as of March 11, 1996]. The expression (asDCT:200):5 yields
the erron |opn| because there is no operation whose en-
coding is .200.

|nla| Non-list operand ( head or tail ).

The operand to the head or the tail operation is not a list.
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|nn0| Non-numeric operand.

The operand to a unary arithmetic operation is not a nu-
meral, or the second operand to a binary arithmetic opera-
tion is not a numeral.

In the �rst case, the error occured in the applying dcr, inc,
inv, neg, neg?, NmlAsChr, one?, pos?, sgn, or zero?.

The second case involves one of add, and, div, eq?, ge?, gt?,
lt?, le?, mpy, ne?, or, rem, sub, or xor.

The error is also raised when the operand to the %settrc

operation (used in implementation development) is invalid.

|nn1| Non-numeric operand.

The second operand to a binary arithmetic operation is not
a numeral. The error involves one of the operations add, and,
div, eq?, ge?, gt?, lt?, le?, mpy, ne?, or, rem, sub, or xor.

|prb| Invalid numeric probe.

The o�ending expression involves the application of a nu-
meral. Either the applied numeral is outside the range from
0 to 16777215, or the argument is not a list, or the probe
exceeds the length of the argument. The upper limit of
16777215 (224 � 1) on numeric probes is imposed for com-
patability with certain data representations.

|prs| Invalid argument (parse, xparse, xparses).

The parse, xparse and xparses operations expect an argu-
ment of the form

[ v0 v1 � � � ] :

This pre�x results when a non-list tail is encountered, or
when some vi is an erron.
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|sam| Invalid argument (same? or in?).

The same? operation expects an argument of the form

[u v0 v1 � � � vn ] :

It returns T if u is identical to any of the values vi: The
expression in?:<u L > is like same?:<u ! L >. The `sam' pre�x
arises when the argument is discovered to have a di�erent
structure.

|scn| Invalid argument (scan, scans).

The argument to the scan or scans operation is not a list.

|sc0| Invalid text (scan, scans).

The scanning operations expect an argument of the form

[ v0 v1 � � � vn ] :

This pre�x results when a non-list tail is encountered, or
when some vi is an erron.

|sc1| Erroneous text (scan, scans).

This pre�x indicates that an erron is discovered in the scanned
text.

|seq| Invalid argument (seq).

The seq operation expects an argument of the form

[ v0 v1 � � � vn ] :

The `seq' pre�x arises when the argument is discovered to
have a di�erent structure.

|tag| Invalid citation.

The operand to one of nil?, isLtrl?, isAtm?, isDCT?, isNML?,
isFTN?, isAPL?, isLST?, or isIDE? is erroneous.
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|tl?| Invalid tail-access

This pre�x is developed by the primitive list processing sys-
tem. It indicates an attempt to access the tail of an object
that does not have a \tail" �eld. The operand is a direc-
tive because all other objects used by Daisy have tails. The
`tl?' pre�x arises when the _tl operation is used instead
of tail. The more primitive _tl is used for environment
look-up; hence this pre�x often reects a mismatch between
formal arguments and actual arguments. Since almost every
object has a tail, `tl?' isn't often seen. One example is the
expression (\.[X Y ! Z].Z):"A" returing the tail of A's tail.
Assuming A is unassigned, its tail is the void directive; thus
the result is the erron |tl?|.

note [March 11, 1996]: The addition of more veri�cation in
environment look-up is under consideration

|trj| Invalid trajectory.

A trajectory represents the path locating the binding of an
indenti�er in the environment. Since this is an internally
generated representation [as of March 11, 1996], this pre-
�x indicates an implementation error and not a programming
error.

|ubi:| Unbound identi�er.

An identi�er has no binding|or associated value|in the
evaluation environment. Where the identi�er is a literal its
name is incorporated as a su�x. For example, in an empty
environment, the expression [1 green toad] evaluates to

[ 1 |ubi:green| |ubi:toad|]

|val| Value-of-erron.

The argument to the val operation is erroneous. This pre�x
typically arises when a syntax error has occurred on input.
Parsing produces an erron reporting the bad syntax, which
is passed through to interpretation. For instance, if the op-
erator types `[1 2 3]', the response is

|val/[nnn@`]'| ;
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indicating an error in evaluation, due to the occurance of
an unbalanced `]' (See the section below on syntax errons).
Mistaken use of angle delimiters in binding forms is an-
other cause for this pre�x. If X is unbound, the expression
let:[X 5 X] yields

|val/ubi:X|

because let's actual argument is

[ |ubi:X| 5 |ubi:X|]

Often, the form let:[X 5 X] was intended.

|xps| Transposition error.

When a list is applied, the construction functional expects
the argument to have the form

[L0 L1 � � � Ln ] ;

where each Li is a list. This structure is implicitly trans-
posed, and the `xps' pre�x indicates a problem detected
during this phase of construction. It means that a non-list
is encountered at the surface structure in transposition; for
instance, a form like

[(\x.x)*]:[[1 2] ! BAD]

yields

[ [ 1 ! |xps/ubi:BAD|] [ 2 ! |xps/xps/ubi:BAD|]]

when BAD is unbound. As above, it is usually the case that
the argument holds an erroneous value. See also the pre�x
`f-c'.

4.2 Syntax Errons

The parse and parses operations develop a language of errons
reporting syntax errors. They record the parsing state to the
point that the error is detected. The su�x of a parsing erron
typically looks like

||@`c'| ;
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where c is the character at which parsing fails. For example,
the expression xparse:[ "]" ] yields the erron |@`]'| because
`]' is an unbalanced right-hand delimiter. However, there are
cases where the point of failure is not a character. When parsing
fails at an erron, the erron's text is appended. For example, the
expression xparse:[ BAD ] produces the erron

|..@/ubi:BAD|

When parsing fails at a form, a letter designates the failure. For
example, the expression xparse:["\" "X" 5] produces the erron

|.\@n|

because a numeral, indicated by `n', is seen where a `.' is expected
after the X. Here and below, a lower-case letter reports a non-
character object, either some unexpected input or a partial result.

Indicator Object

d a directive
n a numeral
m an erron
i an identifer object
l a list object
a an application object
f a function object

The leading text records the state of parsing up to the point of

failure. Let o be `d', `n', `m', `i', `l', `a', or `f'; and let c be the
point of failure.
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Message Explanation

.|@`c' Message �ll

..|@`c' Message �ll

...|@`c' Message �ll

^|@`c' Error in value quotation

(|@`c' Error in parenthesization

o:|@`c' Error in application's argument

\|@`c' Error in formal argument
\o.|@`c' Error in function body

[|@`c' Error before matching ` � � � ]'
[|@`c' Error before matching ` � � � ]'
{|@`c' Error before matching ` � � � }'
!|@`c' Error after a `!'

@`=' Error (nonliteral) before `='
o=|@`c' Error after an `='

Some parsing errons are illustrated below.

Input text Erron Note

. |@`.'| 1

[. |...[@`.'| 2

^. |...^@`.'| 3

^[. |..^[@`.'| 4

[a !. |.[i!@`.'| 5

(. |...(@`.'| 6

\[x. |.\[i@`.'| 7

\x.[a. |...\i.[i@`.'| 8

^\x.[a. |..^\i.[i@`.'| 9

f:[a. |i:[i@`.'| 10

NOTES

1. It is an error for a `.' to occur anywhere other than between
the formal argument and body of a function expression. This
fact is used in the remaining examples.
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2. The error is an unbalanced `['; the leading periods are �ll
characters in parsing errons.

3. This example shows an error in quotation.

4. This example shows an error in forming a quoted list. In
general, the parser develops a message showing what forms
are in progress at the point of an error.

5. Here, an error occurs in forming the tail of a list expression.

6. Here, an error within parentheses.

7. Here, the error is in the formal argument of a function ex-
pression.

8. Here, the error is in the body of a function expression. The
`i' in the message indicates that the function's formal argu-
ment is an identi�er.

9. This is the same error as in Example 8, but the function is
also quoted.

10. The error is in the argument part of an application expres-
sion. The `i' indicates that the function part is an identi�er.

The purpose below is to show what class of object is cre-
ated for kinds of Daisy expressions. The description of the
parse operation and the section on Daisy interpretation give
details of expression representation.

Input text Erron Note

[ 2 . |..[n@`.'| 11(a)

[ A . |..[i!@`.'| 11(b)

[ ^A . |..[i!@`.'| 11(c)

[ (A) . |..[a!@`.'| 11(d)

[ F:X . |..[a!@`.'| 11(e)

[ \X.X . |..[f!@`.'| 11(f)

[ [A] . |..[l!@`.'| 11(g)

[ [A] . |..[a!@`.'| 11(h)

[ {A}. |..[a!@`.'| 11(i)

[ [] . |..[i!@`.'| 11(j)
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NOTES

11. In each case the error is in the formation of a list expression,
but the error occurs after an element-expression has been
successfully parsed.

(a) The numeral 2 is indicated by `n'.

(b) The literal A is indicated by `i'; literals are represented
in identifer cells.

(c) Both value and literal quotations are also forms of iden-
ti�cation; hence, the quotation ^A is indicated by an `i'.

(d) A parenthesized expression is a form of application and
is indicated by an `a'.

(e) The application expression f:a is indicated by an `a'.

(f) The function expression \X.X is indicated by an `f'.

(g) The list expression [x] forms a true list object, indicated
by an `l'.

(h) The form [x] is headed by an application cell, applying
the implicit list opertation. Thus, this form is indicated
by an `a'.

(i) As in case (h), the form {x} abbreviates application of
the implicit set operation. It too is indicated by an `a'.

(j) Nil is an identi�er|hence the `i'|and the forms [] and
{} are resolved to Nil during parsing.



98 CHAPTER 4. ERRONS

Errons
||any/|| Erroneous list ( all? ).
||any/|| Erroneous list ( any? ).
||arg/|| Invalid formal argument.
||chr/|| Non-character operand.
||cmp/|| Erroneous comparison ( same? or in? ).
||crc/|| Invalid coercion.
||dfn/|| Invalid assignment.
||dvc/|| Device error.
||evl/|| Non-list argument ( evlst ).
||f-c/|| Construction error
||ftn/|| Erron applied.
||hd?/|| Invalid head-access
||ifA/|| Invalid alternative ( if ).
||ifP/|| Erroneous predication ( if ).
||ld?/|| Invalid access
||lst/|| Erron in list-expression.
||opn/|| Invalid operation code.
||nla/|| Non-list operand ( head or tail ).
||nn0/|| Non-numeric operand.
||nn1/|| Non-numeric operand.
||prb/|| Invalid numeric probe.
||sam/|| Invalid argument ( same? or in? ).
||scn/|| Invalid argument ( scan, scans ).
||seq/|| Invalid argument ( seq ).
||scn/|| Invalid argument ( parse, xparse, xparses ).
||sc0/|| Invalid text ( scan, scans ).
||sc1/|| Erroneous text ( scan, scans ).
||tag/|| Invalid citation.
||tl?/|| Invalid tail-access
||trj/|| Invalid trajectory.
||ubi:|| Unbound identi�er.
||val/|| Value-of-erron.
||xps/|| Transposition error.
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Syntax Errons

Syntax Erron Indicators

Indicator Object

d a directive
n a numeral
m an erron
i an identifer object
l a list object
a an application object
f a function object

Parsing Messages
star is one of the indicators above.

Message Explanation

.| Message �ll

..| Message �ll

...| Message �ll

^| Error in value quotation

(| Error in parenthesization

?:| Error in application's argument

\| Error in formal argument
\?.| Error in function body

[| Error before matching ` � � � ]'
<| Error before matching ` � � � >'
{| Error before matching ` � � � }'
!| Error after a `!'

@`=' Error (nonliteral) before `='
?=| Error after an `='
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Chapter 5

Daisy Interpretation

In the Daisy Language Description, evaluation and application
are speci�ed as functions

V : (E � �) ! V

A: (�� V � V ) ! V

over expressions E; environments �; and values V: Programs VALUE
and APPLY implement functions

VALUE : (RE �R�) ! V

APPLY : (R� � V � V ) ! V

over representations, RE of expressions and R� of environments, in
the space of Daisy values. Where possible, same structures are
used as those of the actual Daisy interpreter. However, there are
two cases where the actions of interpretation cannot be expressed
in Daisy:

Daisy programs cannot manipulate errons, or erroneous val-
ues. There is no test for their presence, and no operations
for composing and decomposing them. VALUE represents er-
rons as lists. In addition, only a few of Daisy's primitive
operations are addressed in the program, and the rest are
implemented by linking to the actual interpreter. Conse-
quently, it is possible for the meta-interpreter to generate
\live" errons. In other words, the treatment of errors is
synthetic and partial.

101
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Similarly, the representation of function closures involves in-
formation �elds that cannnot be accessed through Daisy op-
erations. Closures are also given synthetic representations.

The �rst parts below detail the representation of Daisy expres-
sions, environments, and closures in the value space. These com-
prise the base types for the evaluation program that follows. Here
is an outline of the program presented in this section

1. details expression representation and illustrates how pro-
grams can be built in Daisy.

2. shows how environments are represented and develops func-
tions EXTEND, BINDING, and LOOKUP to manipulate them:

3. deals with function closures, de�ning functions isCLOSURE?,
asCLOSURE, and exCLOSURE to test, compose, and decompose
them.

4. deals with (synthetic) errons, de�ning functions isERROR?

and asERROR to test for and create them.

5. presents an interpreter, built on the previously developed
representations. The main programs are

(a) VALUE, an evaluation function is described in Section 5.1.
An elementary help function, VOID? is also de�ned.

(b) APPLY, the application function, is described in Section
5.2.

(c) LIST, which distributes VALUE over list expressions, is de-
scribed in Section 5.4.

6. Application is further decomposed into

(a) asOPN, which models Daisy operations including the spe-
cial primitives let, rec, fix, and val. asOPN has a number
of trivial help functions, including tests LSTdct?, SETdct?,
and IDYdct?; and argument validation functions CHKN and
CHKNxN. These are developed in Section 5.3.

(b) PROBE, which describes the application of numerals.

(c) LISTFUNCTIONAL, which, together with functions HEADs and
TAILs describe the construction functional.
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VALUE, APPLY, and LIST are the core interpretation functions. The
function asOPN deals with Daisy operations, as well as the special
primitives val, let, rec, and fix. PROBE and LISTFUNCTIONAL show
the functional interpretation of applied numerals and lists.

5.1 Expression Representation (Figure A)

The Daisy language is a spelling out of expression representations.
It is analogous to the s-expression notation of Lisp, and these lan-
guages di�er because of di�erences in the underlying objects.

In this section, capitalized italic variables stand for syntactic
expressions and caligraphic variables stand for citations to their
expression objects: if E is an expression then E is a reference to
the object representing E. The underlying objects are nullary,
unary and binary cells, which are discussed further in the Daisy
Operations section. Briey, a citation is a reference to an object,
together with a tag that classi�es that object. The tags indicate
both storage classi�cation and an interpretation. A cell is of �xed
size, containing binary data and zero, one, or two citations.

A numeral, N , is a unary cell containing N 's binary value:

N : N�! n void

The value n conforms to the host's integer format, a 32-bit two's
complement quantity.

An erron is a sequence of unary message cells. The erron |ubi:Daisy|

looks like

M: E�! u b i : E�����!D a i s E�����!y � � � nil

That is, the binary contents are interpreted as characters, with �

being the nul code.

All textual occurances of a literal I, such as TRUCK, resolve to a
unique citation to a structure like

I: I �! E??y
void

T R U C E�����!K � � � nil
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I's head is a sequence of unary message cells, holding the display
name right-�lled with �s. In isolation, the display name is an
erron. I's tail is an assigned value, if it has one, or the directive
void.

Composite expression objects cannot be distinguished by their
content. They di�er only how they are cited.

1. The application expression E :E0 is a binary citation:

A: A�! E E 0

The function expression \X .E is a binary citation:

F : F�! X E

The pure list expression [E ! E0 ] is a binary citation:

L: L�! E E 0

2. The constant nil refers to a unique cell with the form:

nil = I �! hsh nil

Nil's head is an identifer object that displays as `#', although
this object is distinct from the the literal # :

hsh = I �! E??y
hsh

# � � � nil

3. The pure list expression [E ] is equivalent to [E ! [ ]]:

Both expressions are incorporated as

L�! E nil

Both [E0 E1 ] and [E0 ! [E1 ]] are incorporated as

L�! E0 L�����! E1 nil
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and so on. The expression [E *] reects a cyclic list object

L�! E ?

The list expression [E0 ! E1 ] is incorporated as though it
had been written lst:[E0 ! E1 ], where lst is a special direc-
tive. That is, the form is represented as an application:

A�! lst L�����! E0 E1

Similarly, a multiset expression set:[E0 ! E1 ] is incorpo-
rated as

A�! set L�����! E0 E1

Both [ ] and set:[ ] are represented by nil, but angle
and brace delimiters do not have a pure dot-notation. The
expression [E0 ! <E1 >] develops the structure

A�! lst L�����! E0 A??y
lst L�����! E1 nil

while the expression [E0 E1 ] is incorporated as.

A�! lst L�����! E0 L�����! E1 nil

Though these two objects have the same value, interpreta-
tion of the latter is faster.

4. The parenthesized expression (E ) is represented as an
application:

A�! idy E

The constant idy is a directive for the identity operation,
but is also recognized in parsing and display as indicating
parentheses.
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5. Quotations are represented as identi�er objects. In inter-
pretation, they look like assigned literals because they have
something other than void in their tails. The literal quotation
" c0 � � � cn" is incorporated as

Q: I �! lqte I

where I cites the literal spelled `c0 : : : cn'. The value quota-
tion ^ E is incorporated as

Q: I �! vqte E

Parsing and display recognize the directive lqte as indicating
that Q's tail should appear surrounded by double-quotes;
and vqte as indicating that Q's tail should appear preceeded
by a caret.

5.1.1 Building expressions

Expressions are built and decomposed with tag coercion opera-
tions. The following assignments name the relevant directives, lst,
set, lqte, and vqte by extracting them from representative forms.
This is done to avoid dependence on internal constants, which are
subject to change.

|

| These assignments name special directives

|

&LST = head:asLST:^[anything]

&SET = head:asLST:^{anything}

&LQTE = head:asLST:^"anything"

&VQTE = head:asLST:^^anything

With these constants, the following expressions build expres-
sion objects. Assume expressions X; E; E0; : : : ; En have values
x; e; e0; : : : ; en:
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Expression Value

asFTN:[X ! E ] \x . e

asAPL:[E0 ! E1 ] e0 : e1

asIDE:[ &IQTE ! I ] "i"

asIDE:[ &VQTE ! E ] ^e

[E0 � � � En ] [ e0 � � � en ]

asAPL:[ &LST E0 � � � En ] < e0 � � � en >

asAPL:[ &SET E0 � � � En ] < e0 � � � en >

The expression [] builds Nil; that is, writing `[]' is exactly

like writing `[]'. An value that displays as `[]' is gotten by
asAPL:[&LST ! []].

An easier way to construct expressions is to use the xparse

operation, which accepts nonatomic values as neutral symbols.
The operation concatenates the incorporated pre�x of a symbol
stream to the ensuing su�x, so that the head of xparse's result
is the desired form. As above, assume the subexpressions on the
left return expression objects. The examples below illustrate how
to build composite forms (See also the description of xparse).

Expression Value

xparse:[ "^" E � � � ] [ ^e � � � ]

xparse:[ E0 ":" E1 � � � ] [ e0 : e1 � � � ]

xparse:[ "\" X "." E � � � ] [ \x . e � � � ]

xparse:[ "[" E0 ! E1 "]" � � � ] [ [ e0 ! e1 ] � � � ]

xparse:[ "[" E0 � � � En "]" � � � ] [ [ e0 � � � en ] � � � ]

xparse:[ "[" E "*" "]" � � � ] [ [ e *] � � � ]

xparse:[ "[" E0 � � � En "]" � � � ] [ [ e0 � � � en ] � � � ]

xparse:[ "{" E0 � � � En "}" � � � ] [ set:[ e0 � � � en ] � � � ]

Literal quotations are developed by the scan operation, not the
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parser. The expression asIDE:[ &LQTE ! I ] forms the quotation
" I " of the literal I.

5.2 Environment Representation

Recall that environments are modeled as functions from literals
to values, extended according to

�
h
v

I

i
(J) =

�
v; if I = J

�(J); if I 6= J

�
h
[u ! v ]

[X ! Y ]

i
(J) = �

h
v

Y

ih
v

X

i
(J)

�
h v

[]

i
(J) = �(J)

This association is represented by a list

R: L�! F A

F is called the formal environment; it contains all bound identi-
fers. A is the actual environment; it contains all identi�er bindings.
Extending an environment adds separately to both parts. If R;

above, represents � then �
h v
X

i
looks like

R0 �! L??y
L�����! V A

X F

The function EXTEND, on the next page, builds this structure. The
function BINDING implements �( I ); looking up I in the environ-
ment structure. LOOKUP returns that value in the actual environ-
ment which is in the same position as I in the formal environment.
If I does not occur in F, the value V is returned. BINDING sets V

to be an erron, reporting that the sought identi�er is unbound.
For instance, if the literal WRONG is unbound, then BINDING returns
|ubi:WRONG|. The function asERROR, which models erron creation,
is de�ned later in Section 4. The search is head-�rst; that is, an
occurance of I in F's head takes precedence over an occurance in
F's tail. The outcome is erroneous if the formal argument con-
tains something other than lists and literals. See also, Techinal
Note ?.2{1.
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|

| EXTEND:[Formal, Value, Environment] --] Environment

| Environment: [Formals ! Actuals]

|

EXTEND = \[X V R] .

let:[ [F ! A]

R

[ [X ! F] ! [V ! A] ]

]

|

| BINDING:[Literal, Environment] --] Value

|

BINDING = \[I R]. LOOKUP:[I R asERROR:["ubi:" I] ]

|

| LOOKUP:[Literal, Environment, Value] --] Value

| Environment: [Formals ! Actuals]

|

LOOKUP = \[ I [F ! A] V ] .

if:[ nil?: F

V

isLtrl?:F

if:[ same?:[I F] A V ]

isLST?:F

LOOKUP:[ I

[head:F ! head:A]

LOOKUP:[ I

[tail:F ! tail:A]

V

] ]

"otherwise"

asERROR:["arg/" I]

]
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5.3 Closure Objects

The closure object, denoted �\X.E in the Daisy Language De�-
nition, is represented as a function cell

C: F�!
.

R � F�����! X E

The closure records the environment in e�ect at the point of
function's evaluation; C 's tail is just the original function object,
\X.E. Closures are distiguished from functions by a mark (�) that
is inaccessible to Daisy programs. Hence, the implementation of
closures arti�cially marks them by attaching a literal indicator
`?=?\'. This choice of indicator mimics what is seen when closures
are displayed. The synthetic closure object is

F�! I??y
L�����! R F�����! X E

?=?\

Closures are built by asCLOSURE. The test isCLOSURE? determines
whether a function object is closed. The destructuring function
exCLOSURE returns the content of a closure object, considered as a
list [See Technical Note ??3{1].

|

| &CLOSURE is the reserved indicator for closure objects

|

&CLOSURE = "?=?\"

|

| asCLOSURE:[Environment, Function] --] Closure

| (closes a function object)

|

asCLOSURE = \[R F]. asFTN:[ &CLOSURE R ! F ]

|

| isCLOSURE?:FunctionObject --] Bool

| (test for a closure object)

|

isCLOSURE? = \F. same?:[ &CLOSURE head:asLST:F ]
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|

| exCLOSURE:ClosureObject --] [Envt., FormalArg. ! Body]

| (exposes the components of a closure object)

|

exCLOSURE = \C.

let:[ [ Mark R ! F ] asLST:C

[ R ! asLST:F ]

]

5.4 Errons

Daisy programs can result in errons, but cannot test for them
or manipulate them. Hence, the treatment of errors cannot be
emmulated with the \live" objects [See Technical Note ??4{1].
The functions below maintain a representation of errors as lists
of literals, headed with indicator `?!'. The erron |ftn/ubi:CAR|,
which really looks like

E�! f t n / E�����!u b i : E�����!C A R � nil

is modeled as

L�! I??y
L??y

I??y
L�����! I??y

L�����! I??y
nil

?! ftn/ ubi: CAR

|

| &ERROR is the reserved indicator for error objects.

| Erron: [&ERROR Literal, ...]

|

&ERROR = "?!"

|

| isERROR?: Value --] Bool

| (test for a synthetic erron)

|

isERROR? = \V. all?:[ isLST?:V

same?:[ &ERROR head:V ]

]

The function asERROR incorporates new text in compound errons
(See the Daisy Errons section). Here are some examples:
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Expression Value Models

asERROR:["arg/"] [ ?! arg/] |arg/|

asERROR:["arg/" asERROR:["ubi:" "CAR"]] [ ?! arg/ ubi: car] |arg/ubi:CAR|

|

| asERROR: [Literal, ...] --] Erron

| : [Literal ! Erron] --] Erron

|

asERROR = \[I ! Is].

let:[ [Mark ! E]

Is

[ &ERROR I ! if:[ isERROR?:Is

tail:Is

[]

]

]

]

5.5 A Daisy Interpreter

The two main interpretation programs, VALUE and APPLY corre-
spond to the evaluation functions V and A the Daisy Langage
De�nition.

5.5.1 Evaluation

VALUE

is shown on the next page, with discussion notes below. [1]

Identi�ers E0 and E1 name expression E's head and tail, and are
used throughout VALUE's body when E is a composite structure.
See also Technical Note ??5{1. [2] Where expression E is, itself,

an erron, it is often the byproduct of a syntax error. The parsing
operations generate errons to report bad syntax, and these are
passed on to evaluation. The interpreter adds the pre�x val/ to
the error message. [3] Directives evaluate to themselves. Typi-
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|

| VALUE: [Expression, Environment] --] Value

|

VALUE = \[E R] . | NOTES

|

let:[ [E0 ! E1] | [1]

asLST:E |

|

if:[ isERROR?:E | [2]

asERROR:["val/" ! E] |

isDCT?:E | [3]

E |

isNML?:E | [4]

E |

isLST?:E | [5]

E |

isFTN?:E | [6]

asCLOSURE:[ R E ] |

isIDE?:E | [7]

if:[ VOID?:E1 |

BINDING:[E R] |

E1 |

] |

isAPL?:E | [8]

(( APPLY:R |

): VALUE:[E0 R] |

): VALUE:[E1 R] |

|

]] | [9]

|
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cally, there are just three cases where evaluation encounters di-
rectives, rather than their names, in applications. The lst, set, and
idy directives are incorporated in parsing. See Section 1, and also
Note [5], below. [4] Numerals evaluate to themselves. [5] Pure

list objects evaluate to themselves. The typical list expression,
[E0 ! E1 ] is incorporated as

A�! lst L�����! E0 E1

which applies the value of lst, a directive, to the value of [E0 ! E1 ];
both evaluations are immediate. In addition, the actual inter-
preter specialized for this case. Applications of binding primi-
tives, like let:[X E0 E1 ] use pure-list brackets to supress evalu-
ation of their arguments. [See Technical Note ??5{2.] [6] Evalua-

tion of a function produces a closure. There is no test at this
point to determine if E is already closed. An expression like
val:val:^\X.E produces a twice-closed function object. Should
this object be applied, the result is useless. [7] This point in

VALUE accounts for Nil, literals, and quotations. The VOID? test is
de�ned as

|

| VOID? tests for the |void| constant.

|

VOID? = \V. same?:[V asDCT:0]

The void value asDCT:0 cannot be assigned to a symbolic name,
for to do so has the e�ect of unassigning the name. Where E1

is void, E's binding is sought in the environment. Should E be
unbound, the BINDING function returns an erron.

The test VOID?:E1 fails when E is an assigned literal

I �! E??y
value

a literal quotation

I �! lqte I �! literal
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a value quotation

I �! vqte I �! value

or Nil.

I �! hsh ?

In each case E1 is the desired value. [8] Interpretation of an

application object applies the value of the function-part to the
value of the argument-part. The curried form of APPLY, invoked
as

((APPLY:R): V0): V1 ;

enforces Daisy's strictness in application. That is,

((APPLY:R): 
): E1 = ((APPLY:R): E2): 
 = ?

The order of evaluation is accurate: E0 then E1, both before con-
trol transfers to APPLY. [9] The cases are exhaustive because there

are just seven kinds of object in the data space. The sequential
behavior of the actual interpreter is better described as a case-
statement, or jump table, indexed by the citation E's tag. The
behavior is almost described by

(TagOf:E): [ erron-case
directive-case
numeral-case
list-case
function-case
identi�er-case
application-case

] ]

With the synthetic representation, errors would be handled in
list-case; at the implementation level, there is a distinct tag for
errons. The actual numeric values of tags is not correct in the
expression above|consult the description of TagOf for the true
order.
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5.5.2 Application

As in VALUE, the APPLY function is a selection based on the ap-
plied value's tag. The coding of APPLY is shown on the next
page, with notes just below. The functional interpretation of
directives, numerals, and lists are developed later in asOPN, PROBE,
and LISTFUNCTIONAL. Application of identifer and application ob-
jects is erroneous, but see Note [5]. [1] APPLY has the form

(\R.\U.\V. � � � ) to enforce Daisy's strictness in application. See
VALUE's Note [8]. Thus,

APPLY� ? v = APPLY� u ? = ?

as discussed in the language description. [2] If the function-value

is erroneous, APPLY pre�xes ftn/. For instance, if BAD is unbound,
the expression BAD:9 yields |ftn/ubi:BAD|. [3] Application of a

directive is decoded by asOPN, which returns a function expecting
an environment and an argument. The environment is passed for
operations val, let, rec, and fix; and also for the lst and set

primitives (See VALUE's Note [3]. All other operations, ignore the
argument R. [4] The PROBE function returns the Uth element of V;

its description is developed later. [5] Nil is the only identi�er

object with a functional interpretation, and it is the constant-Nil
function. This interpretation �ts that of the construction func-
tional. The erron generated in this case includes the identi�er's
name, if it is a literal. For instance, the expression "BAD":9 re-
turns |ftn/BAD|. Compare this with Note [3], above. [6] No

application object has a functional interpretion. Such objects are
unlikely to arise at this point, except through incorrect program
construction. [7] Daisy's construction functional is developed

later as the function LISTFUNCTIONAL. [8] Function objects repre-

sent both closures and function expressions, and the isCLOSURE?

tests discriminates between them.

� At this point, according to closure representations,

X is a formal argument
R' is an environment
E is an expression
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|

| APPLY: Envt. --] Value --] Value --] Value

|

| NOTES

APPLY = \R. \U. \V . | [1]

|

if:[ isERROR?:U | [2]

asERROR:["ftn/" ! U] |

isDCT?:U | [3]

(asOPN:U):[R V] |

isNML?:U | [4]

PROBE:[U V] |

|

isIDE?:U | [5]

if:[ nil?:U |

[] |

asERROR:["apl/"] |

] |

|

isAPL?:U | [6]

asERROR:["apl/"] |

isLST?:U | [7]

LISTFUNCTIONAL:[R U V] |

|

isFTN?:U | [8]

if:[ isCLOSURE?:U |

|

let:[ [ R' X ! E ] | [8a]

exCLOSURE:U

VALUE:[ E EXTEND:[X V R'] ]

]

|

let:[ [X ! E] | [8b]

asLST:U

VALUE:[ E [X ! V] ]

]

] |

] | [9]

|
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If U is a closure, its environment, formal argument, and body
are retrieved; the closure's environment is extended; and the
body is evaluated.

� At this point, according to environment representations,

X is a formal argument
V is a value

[X ! V] is an environment
E is an expression

If U is a function expression, it is interpreted as a combinator,
requiring no bindings beyond the pairing of the formal and
actual arguments. Thus, any free occurance within the body
becomes unbound.[9]The cases are exhaustive because there

are just seven kinds of object in the data space. See VALUE's
Note [9].

5.5.3 Operations

The asOPN function, shown on the next page, converts the di-
rective encoding an operation into a function modeling that op-
eration. The program is only partly de�ned to illustrate a few
key operations; asOPN invokes the underlying primitives for those
directives not described. For this reason, Daisy's treatment of
errors is not fully described. This point is explained more fully
in the notes.

asOPN takes a directive and returns a function expecting an
environment, R and a value. R is ignored by all but the special
operations, such as let and val.

[1] Recall that an expression like [E1 ! E2 ] is incorporated as an
application,

A�! lst L�����! E0 E1

where lst is the list-directive. Evaluation of this form applies lst

to pure-list argument, [E1 ! E2 ] (See VALUE's Note [5]). LSTdct?,
and SETdct? in the next case, test for the two directives. There
is just one other directive explicitly incorporated in applications
by the parser: it is the identity operation idy, associated with a
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|

| asOPN: Directive --] ( [Envt., Value] --] Value )

|

asOPN = \D . | NOTES

|

if:[ LSTdct?:D | [1]

\[R Es]. LIST:[R Es "D"] | [2]

SETdct?:D | [1]

\[R Es]. LIST:[R Es "I"] | [3]

same?:[D val] | [4, 5]

\[R E]. VALUE:[E R] |

|

same?:[D let] | [4, 6]

\[R [X E E']] . |

VALUE:[ E' |

EXTEND:[ X VALUE:[E R] R ]|

] |

|

same?:[D rec] | [4, 7]

\[R [X E E']] . |

rec:[ R' |

EXTEND:[ X |

VALUE:[E R'] |

R |

] |

VALUE:[E' R'] |

] |

|

same?:[D fix] | [4, 8]

\[R [X ! E]] . |

fix:[ V |

! VALUE:[ E |

EXTEND:[ X V R ] |

] |

] |

|
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parenthesized expression (See Section 1). Here, these tests are
implemented by

|

| LSTdct?: Directive --] Bool

| SETdct?: Directive --] Bool

|

LSTdct? = let:[ X

head:asLST:^[anything]

\D. same?:[D X]

]

SETdct? = let:[ X

head:asLST:^{anything}

\D. same?:[D X]

]

This way of de�ning the tests makes them independent of possible
changes to the actual constants. A similar thing is done in Section
1.1. [2]The lst directive transfers control to the LIST function, de-

scribed later. Briey, LIST maps VALUE over a list-of-expressions.
The argument B is a binary indicator, telling LIST which construc-
tor to use. In this case, "D" indicates the determinate constructor.
[3] The set directive also transfers control to LIST, the only di�er-

ence being the indicator "I", telling LIST to use the indeterminate
constructor. [4] The test same?:[D val] compares the directive

D with val's value, which is the directive encoding the evaluation
operation. Similar tests are done throughout asOPN. In the ac-
tual interpreter, invokation of operations is done through a jump
table, indexed by D. A more accurate description of asOPN would
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be

asOPN = \D. |

let:[ UnknownOperation |

\[R V]. asERROR:["opn/"] |

|

(asNML:D): |

[ UnknownOperation | 0

UnknownOperation | 1

UnknownOperation | 2

\[R E]. VALUE:[E R] | 3 = val

\[R Es]. Es | 4 = idy

\[R Es]. LIST:[R Es "D"] | 5 = lst

\[R Es]. LIST:[R Es "I"] | 6 = set

UnknownOperation | 7

\[R [X E E']].� � � | 8 = let

\[R [X E E']].� � � | 9 = rec

\[R [X ! E]].� � � | 10 = fix

� � �
] | and so on

The numeric value of an operation's directive is subject to change.
[5] The val operation invokes VALUE, using the environment in

e�ect where val is applied. In that sense, val is dynamically
scoped. For instance, the following expression returns 5, even
though F is bound to val in an environment binding X to 0:

let:[ X 0

let:[ F val

let:[ X 5

F:"X"

]]]

The other binding operations have the same property. [6] The

let operation expects a list, consisting of a formal argument X, a
binding expression E, and a body E'. The body is evaluated in an
environment that extends R by E's value in R. R is the environment
in e�ect where let is applied. The expression

let:[ X 5

let:[ F let

let:[ X 6

F:[Y X Y]

]]]
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returns 6, even though F is bound at a point where X is 5.

EXTEND uses a lazy constructor to build the new environment.
As a consequence, an expression like let:[X 
 E ] does not
diverge unless evaluation of E calls for a binding from X: The
\macro expansion" to (\X . E ):
 would diverge because ap-
plication is strict. [7] The rec operation expects a list, consisting

of a formal argument X, a binding expression E, and a body E'. The
rec operation �xes a new environment R' for E and E', making
X's new binding available for both evaluations. This is imple-
mented, in the usual way, by pre-allocating the object for R', and
later updating its content. [8] The fix operation expects a list,

whose head is a formal argument and whose tail is an expression.
fix:[X ! E ] is like rec:\LST{X\ E\ E}. In describing fix, it is
more natural to �x the value, V. However, the implementation
uses the same mechanism as rec's to build a recursive environ-
ment (Note [7] above), then simply retrieves the initial binding.
Recall that EXTEND represents an environment as a structure

[[X ! F] ! [V ! A]]

A more accurate portrayal of |fix| is

\CenterCode

rec:[ R'

EXTEND:[ X VALUE:[E R'] R ]

head:tail:R'

]

[9] The remaining operations discard the environment R and are,

therefore, true operations and not extensions of the language.
Only three, add, inc, and dcr, are described, in order to indicate
the error treatment. Unary arithmetic operations, like inc and
dcr, expect a numeral and share a run-time validation,

|

| CHKN:[Value, (Nml --] Value)] --] Value

|

CHKN = \[V O]. | NOTES

if:[ isNML?:V |

O:V | [9.1]

asERROR:["nn0/"] |

] |
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Similarly, binary arithmetic operations, like add, share the argu-
ment validation CHKNxN.

|

| CHKNxN?:[Value, ([Numeral, Numeral] --] Value)] --] Value

|

CHKNxN? = \[V O]. | NOTES

if:[ all?:[ isLST?:V | [9.2, 9.3]

isNML?:head:V |

isLST?:tail:V | [9.2]

isNML?:head:tail:V ] |

O:V | [9.1]

asERROR:["nn?/"] | [9.3]

] |

[9.1]CHKN and CHKNxN invoke the pending operation O provided V is

a numeral, in the �rst case, or a pair on numerals in the second
case. Otherwise, an erron is generated. The erron does not record
which operation was to be invoked.[9.2]In the implementation,

the asLST? tests are implicit to the access primitives, head and
tail. This cannot be accurately described at this level. In fact,
add's argument can be any binary object, such as a function cell.

[9.3]In CHKNxN there is no veri�cation of the argument's length.

The expression add:[2 3 4] returns the sum of 2 and 3. [9.4]

If V does not conform to the expected structure, and erron is
created. It can be either |nn0/� � �| or |nn1/� � �|, depending on
which test fails (See the Daisy Errons section. Implementations
of CHKNxN and CHKN share code in a manner not described here.
[10]Detailed descriptions of the remaining Daisy operations are

omitted (See the Daisy Operations section). Instead, the default
case simply applies the directive to the argument, thereby linking
to the actual interpreter. In doing this, description is no longer
insulated from true errors|isERROR? doesn't work for real errons.
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5.5.4 List Evaluation

The function LIST maps VALUE over an expression list.

|

| LIST: [Envt, [Expression, ...] B] --] [Value, ...]

| where

| B: {"D", "I"}

|

LIST = \[R L B]. | NOTES

let:[ [E ! L'] L |

let:[ V VALUE:[R E] |

let:[ Vs LIST:[R L'] |

|

if:[ isLST?:L |

if:[ same?:[L L'] | [1]

[V *] |

same?:[B "D"] | [2]

[V ! Vz] |

same?:[B "I"] |

{V ! Vz} |

] |

"otherwise" |

VALUE:[R L] | [3]

]]]] |

[1]A cyclic expression list results in a cyclic value list. [2]Where

L is not a cyclic list, LIST iterates. The binary indicator B tells
which data constructor to use, D for \determinate" and I for
\inderterminate". [3] LIST degenerates to VALUE if L is not a list.

In particular, this branch takes care of Nil.
In implementation, LIST is more elaborite. The following points

are not modeled by the program above.

� There is an explicit check for Nil.

� Expressions E are partially evaluated. For instance, should
E be a directive, numeral, or list, it is not evaluated; if it is
a function, E is closed immediately. An erron encountered
during partial evaluation is simply pre�xed with |lst/ � � � |.

� Since partial evaluation tests E, LIST can diverge if E is ? (not

), that is, if the expression's construction diverges.
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� Similarly, LIST's iteration is more strict than is described by
[V ! Vs]. Evaluating [E ! ? ] (not [E ! 
 ]) can diverge.

In typical cases, LIST's strictness is justi�ed by the presumption
that programs are manifest when they execute. This is true where
Daisy's parser is involved because it too is strict. For this reason,
explicit use of the lst directive is not recommended. The evlst

operation more safely maps evaluation.

5.5.5 Numeric Probes

The PROBE function indexes the (list) value L according to the
numeral N.

|

| PROBE: [Numeral Value] --] Value

| | NOTES

PROBE = \[N L]. |

rec:[ Index | [2]

\[N [V ! Vs]]. |

if:[ zero?:N | [3]

V |

isLST?:Vs | [4]

Index:[dcr:N Vs] |

asERROR:["prb/" ! Vs] |

] |

|

if:[ all?:[ pos?:N isLST?:L] | [1]

Index:[N L] |

asERROR:["prb/" ! L] |

] |

] |

[1] Indexing proceeds once it is veri�ed that N is non-negative

and that L is a list. Otherwise an erron is generated, with pre�x
|prb/ � � � |. In the implementation, the pos? test actually checks
whether N is between zero and the largest list address. [2] PROBE

is an iterative loop, called Index here. [3] Index invokes N tails,

followed by a head. That is, indexing starts with zero. [4] A

probe error results if something other than a list is encountered,
such as Nil.
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5.5.6 The Construction Functional

An applied list, call it L, is interpreted as a mapping functional,
The argument should be a list of lists, which, for the moment is
thought of as a \row major" matix, M. L's head is applied to
M's �rst column, and L's tail is applied to the matix resulting
when M's �rst column is removed.

Where L is a proper list|no funny tails|and M is rectangu-
lar, the construction functional can be thought of as an element-
wise application of L's elements to M transposed. There are sev-
eral boundary conditions, also descibed in the Daisy Langugae
Description:

� M can be non�nite in either dimension.

� In e�ect,M's rows are padded with values appearing as `#'.

� Where L is cyclic, there is an extra termination check; the
result has the length of M's �rst row.

The construction functional is described by the LISTFUNCTIONAL

program, below, with notes following.

|

| LISTFUNCTIONAL: [ Envt List Value] --] List

|

LISTFUNCTIONAL = \[ R F V ]. | NOTES

let:[ [ Fh ! Ft ] F | [1]

let:[ APPLY' APPLY:[[]![]] | [2]

|

if:[ nil?:isLST?:V | [3]

asERROR:["f-c"] |

|

all?:[ same?:[F Ft] nil?:head:V ] | [4]

[] |

|

[ (APPLY':Fh):HEADs:V | [5]

! (APPLY':Ft):TAILs:V |

] |

] ]] |

|

[1] The argument F is known to be a list at this point. [2] The
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environment at the point of application is discarded. The expres-
sion [[] ! []] forms an environment with empty formal and
actual parts (in the implementation the environment is simply set
to Nil). Dereferencing the environment was done to repair space
consumption problems in certain programs. Here is a pathelogical
example of why this might be considered wrong: the expression

let:[ X 5

[let *]:[ ["Y" "Y" ]

[ X "X" ]

["Y" "Y" ]

]

]

returns [ 5 |ubi:X|], while its expansion,

let:[ X 5

[ let:["Y" X "Y"]

let:["Y" "X" "Y"]

]

]

returns [ 5 5]. It is not clear what these kinds of programs should
mean, but they have occasionally arisen in applications modeling
interactive environment. In this case, one can code around the
problem by replacing [let *] with [(\v.let:v) *]. [3] The

argument, V is veri�ed as a list, but it is not veri�ed that V's
elements are lists|as they should be. [4] The test same?:[F Ft]

succeeds if F is a cycle, and if so, construction terminates when V's
�rst row is Nil. Though it is not described here, the termination
test generates the |f-c| erron when L's head is neither a list nor
Nil. [5] The remaining case performs the mapping, with HEADs

and TAILs incrementally transposing the argument. The functions
below do not illustrate the all the checking, which is discussed in
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the commentary.

|

| HEADs: List --] [List ...]

| TAILs: List --] [List ...]

|--------------------------------------------| NOTES

|

HEADs = \L. |

let:[ [[H ! T] ! L' ] | [5.1]

L |

[ H |

! if:[ nil?:L' | [5.2]

[] |

isLST?:L' |

HEADs:L' |

asERROR:["xps"] |

] |

] |

] |

|

TAILs = \L. |

let:[ [[H ! T] ! L' ] | [5.1]

L |

[ T |

! if:[ nil?:L' | [5.2]

[] |

isLST?:L' |

TAILs:L' |

asERROR:["xps"] |

] |

] |

] |

|

[5.1]There is an additional test on L's head to verify that it is a

list. If not, the |xps| erron is returned.[5.2]The test on L's tail,

L', is actually made prior to construction. Hence, HEADs and TAILs

are more strict in implementation than is described here. (See
also LISTFUNCTIONAL's Note [2]). This has lead to di�culty in pro-
gramming certain applications. In practical experience, the con-
ditions leading to problems are manipulation of interactive input
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to which cyclic lists are applied; and the symptom is a premature
input prompt. Since there are other|equally obscure|reasons
this symptom can arise, correcting such programs can be hard.
A trick that almost always works is to replace an application of
[F * ] with a value Fs, de�ned to be

Fs = fix:[ L ! [F F ! L] ]

Since Fs is a cycle of length two, the cyclic-termination test is not
made. (See also, Technical Note ??5{3)

5.5.7 Testing the Evaluation Model

The program TEST, below, interactively exercises the system of
functions described in this section. TEST's single argument, a lit-
eral, is a terminal prompt.

TEST = \Prompt .

let:[ InitialEnvironment

[ NmlAsChr:10 ! NmlAsChr:10 ]

let:[ Operator

xparses:scans:console:Prompt

[VALUE *]:[ Operator

[ InitialEnvironment *]

]

]]

InitialEnvironmentbinds the new-line character NL to itself; NmlAsChr:10

gives the literal character with display code 10. This binding is
needed because parsing passes new-lines to evaluation.

VALUE is mapped over a stream of expressions, using the ini-
tial environment with each. The expression console:Prompt es-
tablishes a channel to the operator's keyboard with the given
prompt, producing a stream of characters corresponding the op-
erator's key strokes. Given such a stream, scans builds a stream of
atoms: literals, numerals, and symbols. Given a stream of atoms,
xparses produces a stream of represented expressions. It is this
stream, called Operator, to which VALUE is applied element-wise.

TEST shows that VALUE is interpreting the same expression rep-
resentations as are used by the actual interpreter. It also speci�es
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how interactive Daisy is established in its implementation. How-
ever, a closer description is given by replacing TEST's body with

VALUE:[ asAPL:[ &LSTdct ! Operator ]

InitialEnvironment

]

where &LSTdct is the lst directive. That is, VALUE is given a single
expression representing [ inputexpressions ]. In the implementa-
tion the evlst directive is used rather than lst (See the discussion
of LIST).

The program shown on the next page is a version of the system
described earlier, which does not use assignment. An outline of
the program is

INTERPRET = \Z.

let:[ | Constants

[ &CLOSURE &ERROR &LSTdct &SETdct ]

[ � � � values � � � ]
let:[ | Combinators

[ EXTEND asCLOSURE isCLOSURE? exCLOSURE isERROR? asERROR

VOID? LSTdct? SETdct? CODES? CHKN CHKNxN?

]

[ � � � values � � � ]
let:[ | Trivial Loops

[BINDING PROBE HEADs TAILs]

[ � � � values � � � ]
rec:[ | Serious loops

[ VALUE APPLY asOPN LIST LISTFUNCTIONAL ]

[ � � � values � � � ]
| in

VALUE:Z

]]]]

Given an expression E, the test program below invokes INTERPRET
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on itself, interpreting E:

TESTTEST = \Expression.

let:[ InitialEnvironment

[[]![]]

INTERPRET:[ asAPL:[ INTERPRET

! [Expression InitialEnvironment]

]

InitialEnvironment

]

]

This is an intensive trial, but it is not exhaustive because the
construction functional is not used in INTERPRET.

5.6 Assignment

Though assignment is to be considered outside the Daisy lan-
guage, the command is implemented by Daisy's interpreter. It is
discussed here for completeness. However, the means of assign-
ment, and the privilege to invoke it, are in no way guaranteed in
future versions of the language.

The parsing operations test for the = symbol in their outer
loops. Where the form

Literal = Expression

is recognized, the following representation is built.

A�! dfn L�����! I E

That is, the command is incorporated as an appliaction of the dfn

directive (meaning \de�ne").

Where such a form is evaluated, dfn and the list argument are
passed to APPLY, and subsequently to asOPN. In other words, the
assignment command has the same evaluation pattern as a [ � � � ]
expression.

In asOPN, the case for dfn is something like

DFNdct?:D

\[R [I ! E]]. (ASSIGN:I): VALUE:[E R]



132 CHAPTER 5. DAISY INTERPRETATION

The DEFINE function is curried to specify that E is evaluated prior
to the assignment. Functionally, DEFINE simply returns I, the
name assigned, and not the assigned value.

|

| ASSIGN: Literal --] Value --] Literal

| Includes a side effect.

|

DEFINE = \I. \V. set:[ ]I

5.7 Technical Notes

note 2{1.

In LOOKUP, it is more accurate to use the access operations _hd and
_tl in place of head and tail in probing the actual environment A.
The former do not verify their operands as lists. and one bene�t
is that function parameters Though this is a little faster, it can
lead to mysterious results in wrong programs. Use of head and
tail is under consideration for future releases.

note 3{1.

This note is in the category of \telling the whole truth about
Daisy." It happens that in the 4 release, one can express a clo-
sure object. I typed the expression asFTN:{ ^[F ! A] ! ^\X.E

} , which evaluates to \?=?\X.E . This is the issue operation's
display of a properly represented closure. This works because:

� The mark that distiguishes function objects from closure ob-
jects is the same mark (actually a synchronization bit) that
distiguishes determinate lists from indeterminate lists.

� The value returned is not cited as a list and, therefore, is
never subject to re-ordering.

These are purely coincidental points about representation. Their
exploitation is not only risky, but also depends on knowledge of
how multisets are implemented. Such knowledge is beneath the
level of description for the language manual. In addition, there
is still no means available to test for these objects [but see note

4{1].

note 4{1.
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Again, the whole truth. Since print names are indistinguishible
from errons|in fact, they are errons|it is possible to create and
manipulate them indirectly as literals. One could contemplate an
approach to error analysis by passing values through the issue

operation and inspecting the resulting character stream. Look
for the | character.

note 5{1.

The coercion asLST:E is not really needed because actual-environment
probes are not sensitive to lists (See Technical Note 2{1). That
is, it would be correct to write let:[ [E0 ! E1] E � � � ] .

note 5{2.

Revision to the interpreter|hence also the language, invoking
list evaluation at this point, is under consideration. In VALUE, the
fragment

isLST?:E | [5]

E |

changes, to become

isLST?:E | [5]

LIST:[R Es "D"] |

Should this be done, a di�erent mechanism for applying binding
operations (i.e., let, rec, etc.) is needed.

note 5{3.

The early test in HEADs and TAILs are implemented to eliminate
backward references in stream computations. Let S = [N0 � � � ]
and T = [M0 � � � ] be nonterminating integer lists. Then the ap-
plication of [ add *] to [S T ]maps add over the stream [ [N0 M0 ] � � � ].
Now, each pair in this list is veri�ed by CHKNxN, which never tests
the pairs' lengths (See asOPN's Note [9.3]). Unless the early test is
made, trivial but un�nished invokations of HEADs and TAILs retain
a chain of backward references in the stream. As a consequence,
programs that should run in bounded space do not.
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same?:[D inc] | [4, 9]

\[R V]. CHKN:[ V add ] |

same?:[D dcr] | [4, 9]

\[R V]. CHKN:[ V mpy ] |

same?:[D add] | [4, 9]

\[R V]. CHKNxN?:[ V inc:V ] |

|

"otherwise" | [10]

\[R V] . D:X |

] |

|



5.7. TECHNICAL NOTES 135

INTERPRET = \Z.

let:[ | Constants

[ &CLOSURE &ERROR &LSTdct &SETdct ]

[ "?=?\" | = &CLOSURE

"?!" | = &ERROR

head:asLST:^[anything] | = &LSTdct

head:asLST:^{anything} | = &SETdct

]

let:[ | Combinators

[ EXTEND asCLOSURE isCLOSURE? exCLOSURE isERROR? asERROR

VOID? LSTdct? SETdct? CODES? CHKN CHKNxN?

]

[ | EXTEND =

\[X V R] . let:[ [F ! A] R [ [X ! F] ! [V ! A] ] ]

| asCLOSURE =

\[R F]. asFTN:[ &CLOSURE R ! F ]

| isCLOSURE? =

\F. same?:[ &CLOSURE head:asLST:F ]

| exCLOSURE =

\C. let:[ [ Mark R ! F ] asLST:C [ R ! asLST:F ] ]

| isERROR? =

\V. all?:[ isLST?:V same?:[ &ERROR head:V ] ]

| asERROR =

\[I ! Is]. let:[ [Mark ! E] Is

[ &ERROR I ! if:[ nil?:Is

[]

same?:[&ERROR Mark]

Es

Is

]

]

]

| VOID? =

\V. same?:[V asDCT:0]

| LSTdct? =

\D. same?:[D &LSTdct]

| SETdct? =

\D. same?:[D &SETdct]

| CODES? =

\[D I]. same?:[D tail:asLST:I]

| CHKN =

\[V O]. if:[ isNML?:V O:V "nn0" ]

| CHKNxN? =

\[V O]. if:[ all?:[ isLST?:V isNML?:head:V

isLST?:tail:V isNML?:head:tail:V ]

O:V

"nn?"

]

]
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let:[ | Trivial Loops

[BINDING PROBE HEADs TAILs]

[ | BINDING =

\[I R]. rec:[ LookUp

\[I [F ! A] V].

if:[ nil?: F

V

isLtrl?:F

if:[ same?:[I F] A V ]

isLST?:F

LookUp:[ I

[head:F ! head:A]

LookUp:[ I

[tail:F ! tail:A]

V

] ]

"otherwise"

asERROR:["arg" I]

]

LookUp:[I R asERROR:["ubi:" I] ]

]

| PROBE =

\[N L].

rec:[ Index

\[N [V ! Vs]].

if:[ zero?:N

V

isLST?:Vs

Index:[dcr:N Vs]

asERROR:["prb" ! Vs]

]

if:[ all?:[ pos?:N isLST?:L]

Index:[N L]

asERROR:["prb" ! Vs]

]

]
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| HEADs =

fix:[ Loop !

\Lst.

let:[ [[H ! T] ! Lst' ]

Lst

if:[ nil?:Lst

[]

[H ! Loop:Lst']

]

] ]

| TAILs =

fix:[ Loop !

\Lst .

let:[ [[H ! T] ! Lst' ]

Lst

if:[ nil?:Lst

[]

[T ! Loop:Lst' ]

]

] ]

]
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rec:[ | Serious loops

[ VALUE APPLY asOPN LIST LISTFUNCTIONAL ]

[ |VALUE =

\[E R].

let:[ [E0 ! E1]

asLST:E

if:[ isERROR?:E

asERROR:["val" ! E]

isDCT?:E

E

isNML?:E

E

isLST?:E

E

isFTN?:E

asCLOSURE:[ R E ]

isIDE?:E

if:[ VOID?:E1

BINDING:[E R]

E1

]

isAPL?:E

(( APPLY:R

): VALUE:[E0 R]

): VALUE:[E1 R]

]]
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|APPLY =

\R. \U. \V .

if:[ isERROR?:U

asERROR:["ftn" ! U]

isDCT?:U

(asOPN:U):[R V]

isNML?:U

PROBE:[U V]

isIDE?:U

if:[ nil?:U

[]

asERROR:["apl" ":" U]

]

isAPL?:U

asERROR:["apl"]

isLST?:U

LISTFUNCTIONAL:[ R U V ]

isFTN?:U

if:[ isCLOSURE?:U

let:[ [ R' X ! E ]

exCLOSURE:U

VALUE:[ E EXTEND:[X V R'] ]

]

let:[ [X ! E]

asLST:U

VALUE:[ E [X ! V] ]

]

]

]
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| asOPN =

\D.

if:[ LSTdct?:D

\[R Es]. (LIST:"D"):[Es R ]

SETdct?:D

\[R Es]. (LIST:"I"):[Es R]

CODES?:[D "val"]

\[R E]. VALUE:[E R]

CODES?:[D "let"]

\[R [X E E']] .

VALUE:[ E'

EXTEND:[ X VALUE:[E R] R ]

]

CODES?:[D "rec"]

\[R [X E E']] .

rec:[ R'

EXTEND:[ X

VALUE:[E R']

R

]

VALUE:[E' R']

]

CODES?:[D "fix"]

\[R [X ! E]] .

fix:[ V

! VALUE:[ E

EXTEND:[ X V R ]

]

]

CODES?:[D "inc"]

\[R V]. CHKN:[ V inc ]

CODES?:[D "dcr"]

\[R V]. CHKN:[ V dcr ]

CODES?:[D "add"]

\[R V]. CHKNxN?:[ V add ]

"otherwise"

\[R V]. D:V

]
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| LIST =

\B. fix:[ Loop

! \[L R].

let:[ [E ! L'] L

let:[ V VALUE:[E R]

let:[ Vs Loop:[L' R]

if:[ isLST?:L

if:[ same?:[L L']

[V *]

same?:[B "D"]

[V ! Vs]

same?:[B "I"]

{V ! Vs}

]

"otherwise"

VALUE:[L R]

]]]]

]

| LISTFUNCTIONAL =

\[ R F V ].

let:[ [ Fh ! Ft ] F

let:[ APPLY' APPLY:[[]![]]

if:[ nil?:isLST?:V

asERROR:["f-c"]

all?:[ same?:[F Ft] nil?:head:V ]

[]

[ (APPLY':Fh):HEADs:V

! (APPLY':Ft):TAILs:V

]

] ]]

]

VALUE:Z

]]]]
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Chapter 6

Tutorials on Daisy

Programming

This section is a collection of tutorials on Daisy programming
techniques. The each tutorial focuses on one method or con-
struct, the examples more broadly illustrate aspects of program-
ming. For instance, in the Multiset Examples subsection there
are several nontrivial interactive programs.

The tutorials [when �nished] include discussions of multisets
and their use; programming on recursive data; implementing sys-
tems; and modeling hardware systems; parsing and program ma-
nipulation.

6.1 Multiset Examples

For programs dealing with multisets, an idealized view of evalua-
tion is not adequate. Evaluation must be considered operationally
as computational e�ort applied to to produce values. One must
also keep in mind that Daisy, like Lisp, manipulates references to
objects representing values, that these, hence also their compu-
tations, may be shared through the environment bindings. The
Daisy Interpretation section discusses language execution at this
level.

A multiset is a concurrency construct in which a speci�ed list
is ordered as its elements' computations �nish. The more e�ort
required to produce a value, the later that value appears in the
resultant ordering. Only an approximation of e�ort can be de-

143
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duced from the text of a program. There is implicit overhead
in the interpretation process, maintanence of environments, and
multitasking. In addition, there are global parameters governing
the granularity and degree of concurrency. Even if an exact mea-
sure of cost were to be de�ned, there is a lack of precision in the
process of discovering convergent elements.

The programs that follow were executed under minimal set-
tings for granularity, by invoking

Daisy -n 2 -s 2 -m 200000

The command argument -m calls for 200,000 cells of data. The
arguments -n and -s set tight bounds on multitasking. With
both set to 2, there is �ne multitasking granularity. The e�ects
are multiset orderings are most strongly related to actual e�ort
and that multitasking overhead is at its maximum.

Only a small fraction of existing Daisy programs use multisets,
and indeterminate applicative programming is largely unexplored
territory. Although experimentation is encouraged, it would be
tedious to reproduce these examples by hand. Their source is
available with the installation of this documentation. The base
operations used are briey discussed as they arise. Detailed ex-
planations are given in Daisy Operations section.

6.1.1 A First Example

The following program was suggested by John O'Donnell as a �rst
multiset example. The functions up and dn compute the distance
between two numbers. The expression up:[N M] counts how
many times N must be incremented to reach M; dn:[N M] counts
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how many times N must be decremented to reach M.

|

up = \[K L]. | K, L are numerals

if:[ zero?:K | `zero?' tests for 0

L |

up:[ inc:K inc:L ] | `inc' increments

] |

|

dn = \[K L]. | K, L are numerals

if:[ zero?:K |

L |

dn:[ dcr:K inc:L ] | `dcr' decrements

] |

|

The function ABS computes the absolute value of N by concurrently
calculating its distances from 0.

|

ABS = \N. | N a numeral

head:set:[ dn:[N 0] |

up:[N 0] |

] |

|

ABS:93 returns 93; ABS:0 returns 0; ABS:-2001 returns 2001.
The head operation retrieves the �rst element of the concurrently
ordered list. Assuming a perfect implementation of arithmetic,
one of dn:[N 0] or up:[N 0] diverges unless N is 0, in which case
both return 0). Hence, the right choice appears at the multiset's
head.

The actual implementation of arithmetic is not perfect; num-
bers are �nitely represented and arithmetic operations \wrap
around." The expression dn:[ -6 0 ] eventually converges|
in fact, it returns -6 under the two's complement interpreta-
tion used in Daisy. Hence, there can be no guarantee|only
an extreme liklihood|that ABS returns the right answer. How-
ever, dn:[N 0] returns more quickly when N is positive, and
up:[N 0] returns more quickly when N is negative. That is,
computing the distance in the right direction requires less compu-
tational e�ort, although the di�erence diminishes as N approaches
the largest representable number. (See Technical Note 1{1).
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6.1.2 Implementing E�ort

For later examples, a synthetic implementation of e�ort is needed.

|

run = ^\[N M]. N:[M*] | N a numeral, M a value

|

The function run returns M after N units of e�ort. It does so by
retrieving the Nth element of a cyclic list of Ms. Storage access is a
dominant factor gauging work done, and run is a fairly accurate
instrument. It executes iteratively, consuming a small, constant
amount of storage, independent of N. The actual e�ort is pro-
portional to N because that many list access are executed by the
numeric probe. We also need to implement in�nite e�ort, or di-
vergence. The function dvg runs inde�nately by looking for a 0

in a cyclic list of 1s. Like run, dvg is a tight loop.

|

dvg = ^\[]. in?:[0 [1*]] | `in?' tests for

| membership

The following program is a multiplication function, which returns
0 should either of its operands be 0.

Multiply = \[N M].

head:set:[ if:[ zero?:N 0 dvg:[] ]

if:[ zero?:M 0 dvg:[] ]

mpy:[N M]

]

Should both of Multiply's operands be non-zero, the two condi-
tional expressions diverge, leaving mpy:[N M] as the only expres-
sion whose value can be promoted. Should N be zero, either the
�rst or third expression can produce a value at the head of the
multiset. It doesn't matter which, because both expressions re-
turn 0. In cases that M and N diverge, Multiplymay still produce a
result: Multiply:[0 dvg:[] ] and Multiply:[ dvg:[] 0] both
yield 0.

6.1.3 A Concurrent Conditional

In the article \A Note on Conditional Expressions," (Comm. ACM
2l, 11 (November, 1978), 93l-933) Friedman and Wise discuss the
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elimination of conditional tests and their distribution through
structure. At times, one would like to reason that an expression
like

if P then A else A

is equivalent to A; and further, that

if P then <E0 ! E1 > else <E0
0 ! E

0
1 >

is equivalent to
[ if P then E0 else E0

0

! if P then E0 else E0
0

]

These transformations are invalid for the usual conditional, which
is strict in its test. They are inconsistent with the law holding
that if:<
 E E0 > is equivalent to 
; regardless of E and E0:

The conditional developed here supports the weaker interpre-
tation. The function GUARD returns a value after verifying a se-
quence of tests. Should any of the tests fail, GUARD diverges.

|

GUARD = ^\[T ! Ts]. | T is a test.

|

let:[ [V ! Ts'] Ts | V is either the answer,

| or another test.

|

if:[ nil?:T dvg:[] | `nil?' tests for Nil.

nil?:Ts' V |

GUARD:Ts |

]] |

|

There must be at least one test initially, and Nil represents a
test that fails. A let form is used to identify as V the element
following T and as Ts' the ensuing su�x. If V is last element of
a list, it is taken as the resulting value; otherwise, it is the next
test.

The concurrent conditional CF looks at three cases (the version
published by Friedman and Wise is more elaborite). It tries the
standard conditional. At the same time, it checks whether the
alternatives, U and V, are identical. If so, either U or V can be
returned. If both U and V are lists, the selection can be distributed
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to their components.

|

CF = ^\[T U V]. | T a test,

| U, V alternative values

let:[ [Uh ! Ut] U |

let:[ [Vh ! Vt] V |

|

head: |

set:[ GUARD:[ "true" | "true" always succeeds

if:[T U V] |

] |

GUARD:[ same?:[U V] | `same?' tests equality

U | of reference

] |

GUARD:[ isLST?:U | `isLST?' tests for a list.

isLST?:V

[ CF:[T Uh Vh] ! CF:[T Ut Vt] ]

]

}]] |

|

The nested let-expressions, identifying the components of U and
V might have been written as one:

let:[ [[Uh ! Ut] [Vh ! Vt]]

[ U V ]

head:set:[cdots]

]

This identi�cation might have been placed within the scope of
the third GUARD where it is known that U and V are lists. However,
most Daisy programmers prefer to assemble local bindings out-
side the body of a function. In cases where either U or V is atomic,
the bindings are erroneous, but the program is non-erroneous be-
cause the names are used. The namings are not essential; writing
head:U for Uh, and so on, would not alter the CF's meaning.

The expression

CF:[ "true"

[1 2 [3 4 5] 6]

[1 2 [3 4 5] 7]

]
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returns [1 2 [3 4 5] 6]. If CF had been if, one could be sure
that the result and the second argument were identical; that is,
the same list object. With CF, the result might be a copy. The
expression below also returns [1 2 [3 4 5] 6].

CF:[ run:[10000 "true"]

[1 2 [3 4 5] 6]

[1 2 [3 4 5] 7]

]

In this second case, it is fairly certain that a copy is returned
because a display of the answer pauses before the `6':

[1 2 [3 4 5|pause|] 6]

which indicates that the outcome of the test is not used until this
point, and hence that the result is a copy of the original list [See
Technical Note 3{1]. The expression

CF:[ dvg:[]

[1 2 [3 4 5] 6]

[1 2 [3 4 5] 7]

]

yields the value [1 2 [3 4 5] ?], the divergent test not coming
into play until the alternatives di�er. Finally,

CF:[ dvg:[]

[1 2 [3 4 5] 6]

[1 2 [3 4 5] 6]

]

returns [1 2 [3 4 5] 6]; CF does not need the outcome of the test.
Though CF supports the distributive law

[ if P then E0 else E0
0

! if P then E0 else E0
0

]

it is not operationally equivalent. Should P be an expression,
it might be evaluated twice if distributed according to the law.
In CF, only a reference to the test is distributed; the branches
of computation share any progress in its evaluation through T's
binding.
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6.1.4 A Timely Merge

The word stream was �rst coined by Landin (\A Correspondence
between algol 60 and Church's Lambda Notation," Comm. ACM
21, 11, 93l{933), but now has a variety of meanings. As used here,
it refers to a possibly nonterminating sequence of values, accessed
in order, and represented by a list. The program below collates
two lists, building a single list of their elements. Considered as
a function on streams, MERGE joins inputs As and Bs in a single
output.

|

MERGE = ^\[ As Bs ]. |

let:[ [ Ah ! At] As | As is a stream

let:[ [ Bh ! Bt] Bs | Bs is a stream

|

head: |

set:[crc_hd:[Ah ! MERGE:[Bs At]] | `crc_hd' see

crc_hd:[Bh ! MERGE:[As Bt]] | below

} |

|

]] |

|

As earlier, the multiset implements a choice among alternatives.
Here, they are to inject the initial element, either of As or Bs, into
the output. In the �rst case, the head of stream As is injected
and merging resumes on Bs and As' tail. However, that result
can arise only after Ah is present. The operation crc_hd expects a
list and returns that list once its head is present. It is essentially
(\L. if:[ head:L L L ]).

MERGE expects two nonterminating streams, and produces a
nonterminating stream. In the experiments that follow, input
streams are developed like this:

[run*]:[ ^[ 15 12 215 10 10 15 13 10000*]

^[ a1 a2 a3 a4 a5 a6 a7 a8*]

The result of this expression is [a1 a2 � � � a8 a8 � � � ] . According
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to the meaning of list application, an equivalent, expression is

[ run:[ 15 "a1"]

run:[ 12 "a2"]

run:[ 215 "a3"]
...

run:[10000 "a8"]

run:[10000 "a8"]
...

]

That is, an e�ort is associated with each value by mapping run

through a list of numbers. For instance, it takes 15 units of e�ort
to produce a1 and 215 units of e�ort to produce a3.

MERGE deals with nonterminating streams, The function PREFIX

below returns a the �rst N elements of a list Vs. [See Technical
Note 4{1.].

|

PREFIX = ^\N.\Vs. |

rec:[ LOOP |

\[N [V ! Vs]]. | `zero?' tests for 0

if:[ zero?:N | `dcr' decrements.

[]

[V ! LOOP:[dcr:N Vs]]

]

LOOP:[N Vs] |

] |

|

The local function LOOP builds the desired sublist. For example,
(PREFIX:2):^[A B C D] returns [A B].

The expression below merges streams of as and bs. Of interest
is how well the result reects the e�ort required to produce an
individual element.

(PREFIX:20):

MERGE:[ [run*]:[ ^[ 15 12 215 10 10 15 13 10000*]

^[ a1 a2 a3 a4 a5 a6 a7 a8*]

]

[run*]:[ ^[210 11 11 300 11 11 11 10000*]

^[ b1 b2 b3 b4 b5 b6 b7 b8*]

]

]
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The result (it might be di�erent on successive executions) is

[ a1 a2 b1 b2 b3 a3 a4 a5 a6 a7

b4 b5 b6 b7 a8 b8 a8 b8 a8 b8

]

This shows that MERGE is timely, in the sense that its output reects
the relative e�ort producing the inputs. The crc_hd operation, or
something like it, is essential in obtaining this kind of behavior.
So too is the role of the environment in developing shared ref-
erences. The expression [Bh ! MERGE:[As Bt]] converges with
constant e�ort, returning a list of two computations. A version
of MERGE without crc_hd is equally likely to choose either alterna-
tive, independent of the work needed to compute the heads. On
the same inputs, a crc_hd-less version produces the pre�x

[ a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

b6 b7 a6 b8 a7 a8 b8 b8 a8 b8

]

The expression crc_hd:[Bh ! MERGE:[As Bt]] has the same value
unless Bh diverges; and the e�ort needed to evaluate this expres-
sion is a little more than that needed to evaluate Bh.

The notion of fairness for multisets is the degree of indepen-
dence between the ordering expression and the ordering of the
result. That is, multisets are (more) fair when equal e�orts have
(more nearly) equal liklihood of advancing in the ordering. What
we have called \timeliness" is the (possibly equivalent) notion
that values advance (nearly) in proportion to their e�ort. The
MERGE examples suggest that this is so, although multiset evalua-
tion is not perfect in this respect. Even if it were, this property
may not be inherited by programs using them. The order of the
let bindings makes Ah harder to look up than Bh. Since Ah is
harder to look up, the alternative

crc_hd:[Ah ! MERGE:[Bs At]]

implicitly requires more e�ort. In the recursive call to MERGE,
the two streams are alternated. The object is to eliminate the
bias just discussed. It is di�cult to tell if the solution works.
Experimentation convinces the author that it helps, although,
the bias only shows up in degenerate cases. Where there is any
appreciable e�ort in computing the streams, MERGE produces a
reasonable output stream whether or not altenation is used.
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6.1.5 Governing Concurrency

The function RUN1, de�ned in a moment, is a specialized version of
MERGE. It's purpose is to process a stream of computations so long
as a given resource holds out. The resource is represented by a
background computation. The assignments below name constants
to be used in RUN1.

|

&DONE = "/DONE/" | Reserved symbol

&STOP = "/STOP/" | Reserved symbol

STOP? = ^\V. same?:[V &STOP] | Test for &STOP

run&stop = ^\N. run:[N &STOP] | Makes a resource

The constants &DONE and &STOP cannot be used in the stream-of-
computations called Work below. If RUN1 is viewed as a scheduler,
these are priviledged communications. RUN1 injects the elements
of Work until the resource Rsrc is exhausted. Like MERGE, it pro-
duces a stream of results. Unlike MERGE, it detects stream termi-
nation, although this does not mean that Work must be �nite.

|

RUN1 = ^\[Rsrc Work]. |

|

let:[ [W ! Ws] Work | Work is a stream

let:[ [X Y] {run:[1 W] Rsrc} |

|

if:[ nil?:Work [&DONE] |

STOP?:X [X] |

[X ! RUN1:[Y Ws]] |

]]] |

|

The outer let-binding names components of the list Work. The
inner let-binding names the two elements of a multiset value. X

could bind either to the resource or to run:[1 W], Y to the other.
Where Work terminates, RUN1 terminates, appending the constant
&DONE to its output. The second branch of the conditional tests
whether Rsrc is exhausted. If so, RUN1 terminates, appending the
constant &STOP. The test is on X, the head of the multiset in which
Rsrc is competing for the ordering. Where STOP?:X fails (and
assuming W cannot be &STOP), X must be the �rst item in Work and,
therefore, Y must be the resource. RUN1 appends X to its output
and resumes, running Ws against Y (i.e. Rsrc).
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In the latter case, Y and Rsrc bind to the same object. This
means that progress in the resource computation is inherited by
recursive calls to RUN1. Eventually, this computation completes,
hence RUN1 produces a �nite list. The expression

RUN1:[ run&stop:500

[run*]:[ ^[100 25 200 15 25 300 5 5 5 400]

^[ j1 j2 j3 j4 j5 j6 j7 j8 j9 j10]

]

]

uses the same technique shown with MERGE to create a stream of
non-trivial computations. The result is a list

[j1 j2 j3 j4 /STOP/]

With run&stop:500 replaced by run&stop:1000, the result is

[j1 j2 j3 j4 j5 j6 j7 j8 /STOP/]

With the resource run&stop:1500, the result is

[j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 /DONE/]

In RUN1, the multiset { run:[1 W] Rsrc } assures a minimal ef-
fort in the input stream. In pathological experiments, it was too
hard to tune Rsrc computations, and in some trials it seemed that
Rsrc did not get enough attention to make progress. In reasonable
examples, {W Rsrc} was adequate.

About the same methods are used in the variation below,
which allows two jobs in Work to run concurrently. One di�erence
is that concurrent computations are explicitly tagged, in order
to identify them in scheduling. In addition, a messy termination
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test is omitted, so that RUN2 expects a nonterminating stream.

|

RUN2 = ^\[Rsrc Work]. |

let:[ [W0 W1 ! Ws] |

Work |

|

let:[ [[X I] ! Etc ] |

{ crc_hd:[W0 "A"] |

crc_hd:[W1 "B"] |

crc_hd:[Rsrc "R"] |

} |

|

if:[ same?:[I "R"] |

[X] |

same?:[I "A"]

[X ! RUN2:[Rsrc [W1 ! Ws]] ]

same?:[I "B"]

[X ! RUN2:[Rsrc [W0 ! Ws]] ]

]

|

]] |

|

RUN2 executes the �rst two elements of Work against the resource.
The distinct literals attached to W0, W1, and Rsrc classify the out-
come. For instance, `B' means that the second job in Work con-
cluded, and RUN2 then runs the �rst and third jobs against Rsrc.
As was done in MERGE earlier, crc_hd is used to force a good
ordering in the multiset. Since this approach eliminates the need
for the symbol &STOP, it might be preferable to that of RUN1. It is
also easier to generalize. The expression

RUN2:[ run&stop:500

[run*]:[ ^[100 25 200 15 25 300 5 5 5 400 10000*]

^[ j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 Z*]

]

]

gives a non-terminating stream to RUN2. The result,

[j2 j1 j4 j5 j3 j7 j8 j9 /STOP/]

shows that later, shorter jobs advance past earlier, longer jobs.
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Should unlimited concurrency be desired, one would again use
a test for the reserved value &STOP and simply copy the Work stream
into a multiset.

|

RUNall = ^\[Rsrc Work]. |

|

rec:[ Icopy |

\W. if:[ nil?:W |

[]

{ head:W ! Icopy:tail:W }

]

rec:[ Watch |

\[W ! Ws]. if:[ STOP?:W |

[W]

[W ! Watch:Ws]

]

| in |

Watch:{ Rsrc ! Icopy:Work } |

]]

Icopy takes a list W and builds { 0:W 1:W 2:W � � � }. Though
Work may be ordered initially, Icopy:Work is not. Watch watches
for termination of the resource, ending the output stream where
this happens. RUNall's body adds the resource to the other com-
putations. The expression

RUNall:[ run&stop:1500

[run*]:[ ^[100 25 200 15 25 300 5 5 5 400 10000*]

^[ j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 Z*]

] ]

returns [j2 j1 j4 j5 j7 j3 j8 j9 j6 j10 /STOP/].

On the same argument, the three versions of RUN produce the
following orderings. RUN1 builds

[j1 j2 j3 j4 j5 j6 j7 j8 j9 j10]

It preserves the order of Work because individual jobs are run.
RUN2 executes two jobs at a time, allowing shorter jobs to advance
around longer ones:

[j2 j1 j4 j5 j3 j7 j8 j9 j6 j10]
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RUNall has the same e�ect with a higher degree of concurrency.

[j2 j1 j4 j5 j7 j3 j8 j9 j6 j10]

The multiset below also runs the ten jobs concurrently.

{ run:[100 "j1"]

run:[ 25 "j2"]

run:[200 "j3"]

run:[ 15 "j4"]

run:[ 25 "j5"]

run:[300 "j6"]

run:[ 5 "j7"]

run:[ 5 "j8"]

run:[ 5 "j9"]

run:[400 "j10"]

}

Its result is the list

[j7 j4 j5 j2 j8 j9 j1 j3 j6 j10]

This is a better ordering, in the sense of approaching the ideal
reection of e�ort. That j2, j4, and j5 preceed j8 and j9 reects
the overhead in multiset evaluation, which contributes to a bias
in favor of earlier expressions. For RUNall the overhead is more
signi�cant because Icopy must iterate n times to place jn in the
\run set."

6.1.6 Concurrent Interaction

The following program monitors an input channel from the op-
erator's key board, returning &STOP where it �nds an interrupt
character.

SENSEOPR = ^\[Prompt InterruptChar].

rec:[ Loop \[C ! Cs]. if:[ same?:[C InterruptChar]

&STOP

Loop:Cs

]

Loop:console:Prompt

]

The locally de�ned Loop searches a list for an occurance of InterruptChar,
and returns the &STOP constant. The body of SENSEOPR applies Loop
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to the stream of input characters created by console; the console

operation directs interactive input (stdin in unix) into such a
stream.

Now, the object is to allow the operator to represent the re-
source used in the program RUN2, developed in the previous sec-
tion. The resource expression run&stop:1500 is replaced by a
call to SENSEOPR. The same jobs are run, but their e�orts are in-
creased ten-fold for this experiment. The operator's prompt is ??
and the interrupt character is #

RUN2: [ SENSEOPR:["??" "#"]

[run*]: [ ^[ 1000 250 2000 150 250

3000 50 50 50 4000 10000

*]

^[ j1 j2 j3 j4 j5

j6 j7 j8 j9 j10 Z

*]

] ]

The interaction below is taken verbatim from an execution script,
from the point that this expression is entered. System utterences
are shaded.

??

??xxx
[??xxxxxxx
??xxxxxxxxxx
j2 j1 j4 ??xx
??xx
??xxxxxxx
j5 j3 j7 ??xxxxxxx#xxxxxxxx
j8 j9 /STOP/]

The result of the expression is

[j2 j1 j4 j5 j3 j7 j8 j9 /STOP/]

as it was for the earlier invokation of RUN2. The operator's inter-
action with the system interleaved with this output. The instance
of console raises the prompt `??' after each new-line. Over the
course of the program, the operator types as sequence of x's, new-
lines, and one `#', which stops RUN2. Here are three obeservations
about this experiment.
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1. The e�ort of interpreting SENSEOPR replaces that of inter-
preting run&stop, providing a means to stop the potentially
in�nite output.

2. The e�ect of interaction is coursely grained: once a prompt
is raised, control is passed to the I/O subsystem and not
relinquished until the next line of input has been typed. This
is not a property just of the console operation, but is also
due to host input facilities, which bu�er interactive input.
The bu�ering is done both for e�ciency and to support \line
editing" (e.g. back-spaces).

3. Hence, SENSEOPR's e�ort, as sensed by Daisy, is directly pro-
portional to the number of characters it looks at; and it is
independent of the time taken to enter key strokes. The
operator creates more e�ort by typing more characters.

For unix implementations, a version of console exists that records
e�ort while waiting for host input. This operation is liveconsole.
To use it, one must turn o� host's line-editing features (e.g. by
setting the terminal attribute cbreak). Once this is done, and with
console reassigned to be the liveconsole operation, the execution
of RUN2 can be interrupted by a single key stroke. This is shown
in the following recorded session, in which the same experiment
is done.

& console = liveconsole
console

& RUN2:[ SENSEOPR:["??" "#" etc. ]
?? [j2 j1 j4 j5 j3 j7 j8 j9 # j6 /STOP/]

Here, the operator types a single `#' to interrupt. The prompt
is still issued, but eight jobs run before the response. Job j6

completes before the interruption takes e�ect.

6.1.7 Coordinated Concurrency

Earlier examples use multisets to run concurrent independent
tasks. The series of examples below show one way to program
dependent computations. Each of the examples involves a collec-
tion of tasks seeking paths through a maze. Each position of a
maze is repesented by a list of four pointers to its neighbors, with
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Nil representing a blocked position. An maze is a list of positions.
For example, the 3� 3 maze

is expressed as

fix:[ [ M00 M01 M02 | [ ][ ][x]

M10 M11 M12 | [ ][ ][ ]

M20 M21 M22 | [x][ ][ ]

] |

! [ [ [] M01 M10 [] ] | = M00

[ [] M02 M11 M00 ] | = M01

[] | = M02

[ M00 M11 M20 [] ] | = M10

[ M01 M12 M21 M10 ] | = M11

[ M02 [] M22 M11 ] | = M21

[] | = M20

[ M11 M22 [] M20 ] | = M21

[ M12 [] [] M21 ] | = M22

] |

] |

This expression builds the network

" "
 ! !

"# "# "
 ! ! !

# "# "#
 ! !

# #

Each of the positions in the maze is simply a list of neighboring
positions, with boundaries represented by Nil.

The program SEEK, below, implements a tasks looking for a
path in a maze puzzel. Each instance of SEEK is located at a
positon Here and is attempting to �nd the destination To. SEEK
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records its path in the accumulator Path; in addition it has two
parameters, Been and GBeen telling it what positions have been
visited by other tasks.

SEEK = ^\[Here To Path Been]. \GBeen.

let:[ [N E S W] Here

let:[ Advice ADVISE:[Here Been GBeen]

if:[ nil?:Here

["Quit"]

in?:[Here Been]

["Stop"]

same?:[Here To]

["Home" Path]

"otherwise"

["GoOn" Here

SEEK:[N To ["N" ! Path] Advice]

SEEK:[E To ["E" ! Path] Advice]

SEEK:[S To ["S" ! Path] Advice]

SEEK:[W To ["W" ! Path] Advice]

]

] ]]

SEEK returns one of four reports to the supervisory program MAZE,
below. Should an instance �nd itself at a blocked position, it
returns [Quit]. Should its current position have been seen before,
it returns [Stop]. Should it be at its destination SEEK returns the
report [Home path], where path is a list of positions. In other cases,
SEEK returns the form [GoOnposition p0 p1 p2 p3], giving its current
position and four continuations. Each of the continuations has
the same destination but starts at an adjacent position|N, E, S,
and W are like directions on a compass.

SEEK passes Advice to its successors, which is the result of some
functon, ADVISE, on Here, Been, and GBeen. Various versions of
ADVISE are de�ned later, but each returns a list of visited positions.

The supervisory function MAZE is de�ned below, with explana-
tion notes following. MAZE takes a list of visited positions and a
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stream of SEEK tasks; it returns a list of paths.

MAZE = let:[ [Kill Home Quit Stop GoOn ] | NOTES

[ 0 1 2 2 3 ] | [1]

|

\[Known Reports]. | [2]

|

let:[ [[Cmd A0 A1 A2 A3 A4] ! Others ] |

Reports |

let:[ Seen |

[A0 ! Known] |

|

(val:Cmd): | [3]

[ [Cmd] | [4] Kill

[A0 &RTN ! MAZE:[Known Others]] | [5] Home

MAZE:[Known Others] | [6] Quit, Stop

MAZE:[ Seen | [7] GoOn

{ A1:Seen |

A2:Seen |

A3:Seen |

A4:Seen |

! Others |

} |

] ] |

]] ] |

[1] MAZE is de�ned in the scope of a let-expression, binding

the commands Kill, Home, Quit, Stop, and GoOn to numbers. This
is an encoding technique; see note [3] below. [2] The Known ar-

gument is a list of positions that have been seen by some instance
of SEEK. Reports is a stream of tasks. The �rst let-binding identi-
fes an element of this stream as a list, consisting of a command,
Cmd, followed by as many as �ve operands. [3] Assuming Cmd is

one of Kill, Home, Quit, Stop, or GoOn, the expression (val:Cmd)

returns a number between 0 and 3|see Note [1] above. The
encoding is used to index a list of four alternative continuations
for MAZE. The same function results should explicit tests be made.
For example, the next line would be

if:[ same?:[Cmd "Kill"]

[Cmd]
...
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[4] In this case, the command is Kill, and MAZE terminates in

the sense that it returns the �nite list [Kill], ending the stream.
SEEK does not generate a command of this form. We shall see in a
moment that this command results when an external resource is
exhausted. [5] In this case, the instruction is [Home path], that

is, some instance of SEEK has found a path to its destination. MAZE
issues that path (&RTN is a new-line) and resumes supervising the
remaining tasks. [6] If the command is [Quit] or [Stop], MAZE

resumes supervising the remaining tasks, with nothing to report
in its output stream. [7] In this case, the command is GoOn, its

�rst operand, A0, is a position, and A1 through A4 are functions,

\GBeen. � � �

each expecting a list of positions. The innermost let-expression
identi�es as Seen the list of Known positions with A0 added. MAZE

updates its global list of positions and also passes it to each of
the tasks it adds to the running set.

Let us summarize the system described. The supervisory pro-
gram MAZE manages a stream of concurrent tasks, each reporting
information about the ongoing maze search. These reports, or
\system calls," can result in �ve actions.

1. A Kill command terminates the system.

2. A Quit or Stop command terminates a tasks.

3. A Home command adds a discovered path to MAZE's output
stream.

4. A GoOn command adds new SEEK tasks to the running set.

5. A GoOn command adds to the list of positions known to have
been visited.

An instance of SEEK receives information about the global search
state from two sources. In SEEK, the expressions

SEEK:[ position To path Advice]

provide, through parameter Been, what is known of the maze by
the immediate anscestor. In MAZE, the expressions Ai:Seen pro-
vide, through parameter GBeen, collective knowledge of search. It
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is the function ADVISE, yet to be de�ned, that determines what
knowledge is used by an individual. The program TEST runs the
MAZE system on a given N �N maze.

TEST = ^\[N NxNPuzzel Time].

let:[ Here

0:NxNPuzzel

let:[ There

(dcr:mpy:[N N]):NxNPuzzel

MAZE:[ []

{ (SEEK:[ Here There [] [] ]):[]

dn:[Time ["Kill" ]]

}

]

]]

With N given, TEST locates the upper-left and lower-right positions
of NxNPuzzel, calling them Here and There. It invokes MAZE with
an initially empty list of known positions and a multiset of two
tasks. One of these is a SEEK, seeking a path from Here to There;
the other is a timer-task, set to issue a Kill instruction after a
given Time.

Below are discussed three executions on TheMaze, a 3�3 puzzle

Here!

 There

In the �rst, all advice is ignored. This is accomplished by de�ning

ADVISE = ^\[Here Been Gbeen]. []

The expression TEST:[3 TheMaze 1000] yields

[[S E S N S E]

[S E W E S N S E]

[S E S N W E S N S E]

[S E S N S N S N W E S N S E]

[S E N S S N S N S N S N W E S N S E]

[S E S N S N S N S N S N S N S N W E S N S E]
...
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Read the paths from right to left. This test shows the preference
for going north and east, as might be inferred from the de�nitions
of SEEK and MAZE. Speci�cally, MAZE builds its schedule as

{ A1:Seen A2:Seen A3:Seen A4:Seen ! Others}

where Others is bound to the set of pending tasks. Evaluation of
the literal Others adds overhead to the pending tasks; and this overhead
accumulates. In fact, the trial shown above failed to terminate,
suggesting that the overhead subsumes any progress on the timer-
tasks. Hence, it may be wrong, or at least unfair, to add tasks at
the head of \run set." A solution to this problem is developed
later.

A second de�nition of ADVISE incorporates collective global
knowledge about the search.

ADVISE = ^\[Here Been Gbeen]. Gbeen

In each instance of SEEK, the Advice used is that provided by MAZE.
The expression TEST:[3 TheMAZE 3000] returns

[[S E S E]

[S E E S]

[E S E S]

[E S S E]

Kill]

A third test on the identical puzzle uses a version of ADVISE in
which the information used is that provided by creating instance
of SEEK.

ADVISE = ^\[Here Been Gbeen]. [Here ! Been]

This time, TEST:[3 TheMAZE 3000] returns

[[S E S E]

[E S E S]

[E S S E]

[S E E S]

Kill]

In neither case is the searching fully coordinated; in particular,
each path found passes through the center square. The following
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programs show that there is, in fact, a di�erence between the two
forms of ADVICE. This time, a 5� 5 puzzle is used:

Here!

 There

With global advice, GBeen, the expression TEST:[5 TheMAZE 100000]

returns

[ [E S E E S E S S]

[E S E E S S E S]

[E E S E S E S S]

[E E S E S S E S]

Kill

]

With local advice, [Here ! Been], the same expression returns

[ [E S E E S E S S]

[E E S E S E S S]

[E E S E S S E S]

[E S E E S S E S]

[E S S W S S E E N E N E S S]

[E E S W S W S S E E N E N E S S]

[E S S W S S E E N E E S]

[E E S W S W S S E E N E E S]

Kill

]

Let us now return to the question of fairness in scheduling these
tasks. It was noted that adding tasks to the head of the multiset
resulted in a last-in-�rst-out bias. In one case, there was an
indication of starvation|of the timer, in fact|where tasks are
added too frequently.

To make the multiset of SEEK tasks more queue-like, we must
arrange to add them at the tail of the multiset. Working top-
down, the MAZE program becomes a system of simultaneous list
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de�nitions, according to the diagram

QUEUE READY REPORT

One K

ZR Q

MAZE

Each of the main functions, QUEUE, READY, and REPORT, iterates over
nonterminating linear lists, named Q, R, and Z. READY produces a
list-of-pairs, which must be split into a pair of lists; that is the
meaning of the transposition symbol (X) in the diagram. The
initial tasks on the list R are a timer and a SEEK instance, depicted
as --[K]---[One]--. In Daisy, the system is

MAZE = ^\[Time One]. |

let:[ K |

dn:[Time ["Kill"]] |

|

rec:[ [Q [Z R]] |

[ |

QUEUE:R | = Q

xps:READY:[[] {One K ! Q} ] | = [Z R]

] |

REPORT:Z |

]] |

The important subprogram is the task manipulator READY, which is
much like the earlier version of MAZE. READY issues pairs of values,
each consisting of an external communication and a new task.
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READY's

READY = let:[ [Kill Home Skip Quit Stop GoOn ]

[ 0 2 1 1 1 3 ]

\[Known Reports].

let:[ [[Cmd A0 A1 A2 A3 A4] ! Others ] Reports

let:[ Seen [A0 ! Known]

(val:Cmd):

[ [ [Cmd ["Skip"]] ! []] | Kill

|

READY:[Known Others] | Quit,Stop,Idle

|

[ [ A0 ["Skip"]] ! READY:[Known Others] ] | Home

|

[ ["." A1:Seen ] | GoOn

["." A2:Seen ] |

["." A3:Seen ] |

["." A4:Seen ] ! READY:[Seen Others] ] |

|

] ]] ]

When READY has no external message it pairs a `.' with the next
task. A trivial [Skip] task is used when there is a message. As
before, the [Kill] command terminates the task stream. In MAZE,
the expression

xps:READY:[[] {One K ! Q} ] | = [Z R]

transposes READY's output into the lists Z and R. The transposition
function used is

xps = [(\x.x) *]

The task list R feeds back into READY having passed through QUEUE,
which simply turns R into a multiset.

QUEUE = ^\[J ! Js]. {J ! QUEUE:Js}

The REPORT program issues the list Z of reports, omitting the `.'
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place holders.

REPORT = ^\[V ! Vs].

let:[ NewLine

NmlAsChr:10

let:[ R

if:[nil?:Vs [] REPORT:Vs]

if:[ same?:[V "."]

R

[V NewLine ! R]

]]

The TEST program is like before. It takes an N �N puzzle, locates
the starting and �nishing positions, and invokes MAZE. The version
below includes a provision for interruption, using the RUN1 and
SENSEOPR functions de�ned earlier.

TEST = ^\[N NxNPuzzel Time].

let:[ Here

0:NxNPuzzel

let:[ There

(dcr:mpy:[N N]):NxNPuzzel

(\W. RUN1:[SENSEOPR:["??" "�] W]):

MAZE:[ Time

(SEEK:[ Here There [] [] ]):[]

]

]]

With \global" advice and again using the puzzel

Here!

 There
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The expression test produces the paths

[ [E S E E S S E S]

[E E S E S S E S]

[E S E E S E S S]

[E E S E S E S S]

Kill

]

Coding READY as a two output function centralizes the command
interpretation, but the \plumbing" is simpli�ed if the interpreta-
tion is distributed. The MAZE system

MAZE = ^\[Time One].

let:[ K

run:[Time ["Kill"]]

rec:[ Q

{One K ! READY:[[] Q ]}

REPORT:Q

]]

has the diagram

+---MAZE-------------------------------+

| |

+--------+ Q +-------+ |

[--| REPORT |[------*----| READY |[---* |

+--------+ | | | | |

| | +-------+ | |

| | | |

| *---[K]---[One]---* |

| |

+--------------------------------------+

In this version, READY simply ignores any command that does not
generate new tasks; and it subsumes the role of QUEUE by building
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a multiset.

READY = let:[ [Kill Home Skip Quit Stop GoOn ]

[ 0 2 1 1 1 3 ]

\[Known Reports].

let:[ [[Cmd A0 A1 A2 A3 A4] ! Others ] Reports

let:[ Seen [A0 ! Known]

(val:Cmd):

[ [["Skip"]] | Kill

READY:[Known Others] | Quit,Stop,Idle

READY:[Known Others] | Home

{ A1:Seen | GoOn

A2:Seen |

A3:Seen |

A4:Seen |

! READY:[Seen Others] |

} |

] ]] ] |

The REPORT program is also a command interpreter, which passes
[Home path] and [Kill], ignoring everything else. The translation
of [Kill] to &STOP is done for the sake of RUN1, as before.

REPORT = let:[ [Kill Home Skip Quit Stop GoOn ]

[ 0 2 1 1 1 3 ]

\Reports.

let:[ [[Cmd A0 A1 A2 A3 A4] ! Others ] Reports

(val:Cmd):

[ [&STOP] | Kill

REPORT:Others | Quit,Stop,Idle

[ A0 &NEWLINE ! REPORT:Others ] | Home

REPORT:Others | GoOn

] ]]

6.2 Technical Notes

note 1{1 In the current implementation, this version of ABS never

fails to give the right answer, although it might fail to terminate.
Tail recursive programs do not operate in bounded space, and
an expression like up:[1 0] exhausts storage: there are not as
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many list cells as there are numbers from 1 up to 0. However, a
truely iterative version of up could be written, as is shown in the
next section. note 3{1 The expected output would be

[1 2 [3 4 5] |pause|6]

The pause occurs before the `]' because of strictness in the issue

operation. This matter is discussed in the Daisy Operations sec-
tion, in the description of issue. To explore the next two exam-
ples, the author wrote another, lazier, version of issue:

myissue = ^\[V Etc].

if:[ isAtm?:V

[ V ! Etc]

[ "[" ! myissue:[

head:V [

"!" ! myissue:[

tail:V [

"]" !

Etc ]]]]]

]

}

This program gives an in-order expansion of a list structure. Un-
like issue, it does not de-reference interior cells. note 4{1 PREFIX

takes its arguments one at a time merely to avoid dangling list
delimiters. One can write

(PREFIX:20): Interesting expression

instead of
PREFIX:[ 20

Interesting expression
]


