
algebra for digital design derivation 1

Research Prospectus

Algebra for Digital Design Derivation

August, 1989

[This is the project description for NSF grant MIP89-21842, funded for the period

from August, 1989 through July, 1991—SDJ ]

1. Introduction

This research investigates aspects of digital design in a functional algebra. The

engineering paradigm is to obtain correct implementations through a sequence of

algebraic transformations on a specification. This is synthesis in a formal frame-

work; the term derivation is used to emphasize that source and target descriptions

are dialects of a single modeling notation. A higher order functional notation is

chosen for its simplicity, its power, and its affinity to digital system description.

A primary goal is to characterize methods. By casting design in a formal

framework we can relate engineering tactics and look for unifying generalizations.

Applications of this research lie at the frontiers of design automation, where there is

the greatest need to support conceptual processes. With progress in silicon compila-

tion and logic synthesis, these frontiers are rapidly expanding. Higher abstractions

in digital engineering must be exposed in order to better integrate design techniques,

reasoning methods, and tools.

The challenge is to distill valid methodology from ad hoc engineering tactics.

A central topic is algebra for maintaining orthogonal hierarchies in a design. All

aspects of digital description are subject to a compositional (i.e., structured or

hierarchical) treatment. However, a given design instance decomposes in different

ways for different reasons. Sustaining the conceptual structure of a design is difficult,

and is often sacrificed to the greater need for a secure path to physcial realization.

Engineers must work at levels of description from which correct hardware synthesis

can be assured. Currently, these levels are relatively low, or “flat;” hence, much

of the burden of interpreting real and simulated design behavior is borne by the



algebra for digital design derivation 2

engineer. As design costs grow in proportion to other engineering tasks, the need

for abstraction increases.

This research is concerned with the mechanics of how conceptual structures

are maintained in the process of implementation. At this stage, we are focused on

three central aspects of design organization. Logical organization is the structure

expressed, for example, in a functional block diagram. It is sometimes called the

“structural aspect” of description. Physical organization is the structure of a real-

ization, as seen, for example, in a floor plan. It is sometimes called the “geometric

aspect” of description. Temporal organization is the way an implementation is con-

ceived to operate in time, as specified by an algorithm. It is sometimes called the

“behavioral aspect” of description.

Section 2 of this proposal surveys our previous research and outlines current

formal topics. Our approach differs with contemporary work in behavioral synthe-

sis, although it has the same objective: codifying useful engineering abstractions.

Conventional synthesis evolves from practice, codifying useful design abstractions

and techniques. A formal treatment evolves toward practice, specializing a compre-

hensive theory to the hardware implementation task. By building from established

implementation paths, conventional synthesis guarantees realizability, but is often

limited in its scope. Formal methods promise greater generality and rigor, but must

first forge complete paths to hardware.

Thus, despite a theoretical orientation, this research is experimental in char-

acter. We devote a significant portion of effort to carrying our approach all the

way to hardware, and exercising it on large problems. A mechanized algebra has

been developed and used (in conjunction with logic synthesis tools) to derive sev-

eral working circuits. These experiences have been crucial in exposing important

problems, and should clarify this research to the practicing community. Section 3

summarizes recent experimentation and future development plans.

The proposed research advances on three frontiers. We continue to develop

tools and investigate methods for algebraic synthesis. Currently, these tools serve

the research purpose of exploring design at a realistic scale. As the research becomes

better understood, they will develop into a useful engineering system. Second, we

will further explore formal aspects of design description, along the established in

previous research. Finally, we expect to make progress in the integration of this

research with other treatments; in particular, mechanized logics for verificaiton.

These topics are discussed in Section 4.



algebra for digital design derivation 3

2. Formal Aspects of the Research

The foundations of this work lie in the areas of denotational semantics, func-

tional programming, and comparative schemata. An early topic was to extend

Wand’s approach to language synthesis, which involves extraction of virtual ma-

chine descriptions from denotational language definitions [40, 8]. Our aim was to

further transform these machines into specialized hardware for language execution.

The powerful methods of denotational semantics are not restricted to the imple-

mentation of programming languages. Functional programming applies the same

methods to ordinary programming problems [17, 18]. It is a discipline in which

programs are algebraically manipulated with some purpose in mind, such as per-

formance improvement, program verification, or compilation. In other words, goal

directed transformation is fundamental to the programming paraigm as well as its

semantic theory. This research draws from a large body of techniques for software

synthesis [10], many of which adapt directly to hardware construction.

Early research in functional programming compared its expressive power with

that of imperative languages. The central result is that the class of iterative recur-

sion equations (i.e. fully tail-recursive systems of function definitions) characterize

finite-state control models [33]. Since finite-state models are used to specify hard-

ware control, it follows that iterative systems can do the same. In fact, there is a

direct syntactic relationship between iterative control descriptions and another class

of linear recursion schemata called sequential system descriptions, which describe

network structure and model discrete-time behavior. Our treatement of digital

synthesis follows from this interative characterization [22, 23, 24].

In this approach, synthesis is really translation between dialects of a single

modeling language of functional expressions. A design derivation is a sequence of

expressions.

E0
T0−→ E1

T1−→ · · ·
Tk−1
−→ Ek

Following current terminology [6], we sometimes call source expression E0 a ‘specifi-

cation’ and target expression Ek an ‘implementation’*. However, it is more accurate

to say that a design is specified by the sequence of transformations, 〈T0, . . . , Tk−1〉,

* The word ‘realization’ is used in [22], [23], and [24], but this term is now
reserved for the resulting physical circuit.



algebra for digital design derivation 4

which is applied to E0. This sequence expresses the design intent and can, therefore,

be regarded as the synthesis program.

Derivation diagrams, like the one above, are an informal notation for discussing

topics of research and synthesis exercises. The engineering task is to build a sequence

to satisfy a set of implementation constraints. Assuming the transformations pre-

serve some notion of behavioral equivalence; derived implementations are correct

by construction.

Much of the algebra we study is valid at any level of description—an important

benefit of the approach. A specification may be expressed in terms of an arbitrary

basis type, or vocabulary of constants, operations and tests. Let CB be an interative

control specification, C over the basis B. The characterization discussed earlier gives

a mechanical translation into a system description, SB , expressed in terms of the

same basis:

· · · CB −→ SB · · ·

This basic transformation is called system synthesis. When B is relatively simple,

SB can be then be automatically reduced to a boolean implementation and realized

by logic synthesis. When B is complex, it must be decomposed into simpler parts.

Silicon compilers typically support a fixed basis, always including binary fields,

often providing for common abstractions such as integer, and sometimes supporting

simple array declarations [11]. One of our goals is to provide the kind of type

abstraction found in higher level programming languages. The following partial

sketch of a complex basis gives a vocabulary for later discussions; it reflects the

actual basis for the of the derivations reviewed in Section 3.

• A Lisp processor operates on a heap of lists, subject to access operations, car
and cdr, and an allocator, cons.

• Atomic values in the heap are numbers and strings, each with its own set of
information processing operations.

• The heap is implemented by a memory with read and write operations.

• A memory address is subject to simple arithmetic operations and tests.

• A memory content further decomposes into tag and data fields. One kind of
datum is an address.

• A memory is represented by a 2n × m RAM device; an address by an n-bit
vector; a content by an m-bit vector.

• Bit entites are subject to the usual boolean operations.



algebra for digital design derivation 5

It is a task of the design algebra to cope with such hierarchies. The general issues

are not unique to hardware, but this work is addressed to the specific problems of

that domain.

2.1. Logical Organization and Factorization.

Functional specifications often treat complex data types as values. For example,

a memory is often modeled as a function from addresses to contents. Abstract

component factorizations were proposed in [22] to encapsulate such abstractions in

system descripitons. Object oriented description is not excluded, but this kind of

algebra permits modularity to be introduced later. In [27] this algebra is generalized

to system factorizations, which are also used to allocate operations and manipulate

communication ports.

Given a control specification, CT (A), over an aggregate basis, T (A), system

synthesis produces a system description ST (A). Intuitively, factorization decomposes

ST (A) into two subsystems:

· · · CT (A) −→ ST (A) −→ S1
A ◦ T

1
A · · ·

where the ‘◦’ denotes process composition. For example, instances of the param-

eterized base type memory(address, content), factor as a MEMORY process with

address and content ports.

Factorizations maintain correctness while a logical organization is imposed on

a design. A byproduct of factorization is a synthesized specification of how T 1

must behave in order to preserve the original behavior of S. Since S1 ◦ T 1 is now

expressed in terms of the simpler type A, there has been a reduction in the level of

description. The internal description of T 1 may still be abstract.

In [25], system factorization is distilled to six elementary laws. Thus, we are

approaching a primitive of algebra for manipulating the conceptual architecture of a

design. We are not so far along in formalizing the second aspect design organization,

discussed next.



algebra for digital design derivation 6

2.2. Physical Organization and Representation.

Logical organization is conceptual: “this register holds an address.” Some-

times, a design’s physical organization reflects an entirely different structure: “this

block of ‘logic’ is a bit slice of the principal data path.” Where logical organization

follows the hierarchy of type parameterization, physical organization appears to fol-

low a hierarchy of type representation. Its algebra has to do with replacing types

rather than encapsulating them; For example, memory addresses and contents are

replaced by binary vectors.

Suppose the abstract type A is represented by a concrete type R. A derivation

must correctly incorporate R in the system description S1
A:

· · · CT (A) −→ ST (A) −→ S1
A ◦ T

1
A −→ S2

R ◦ T
2
R · · ·

Several issues make this an interesting problem for hardware synthesis research.

Abstract operations are sometimes implemented by concrete combinations, inducing

refinements to control flow. Little is known about how representations compose

under the structural constraints of hardware design.

Finally, the notion varies as to what constitutes a representation. In the rep-

resentation diagram below, suppose α and ρ give abstraction and representation

mappings between A and R. Let FA and FR stand for the functions described by

S1 ◦ T 1 and S2 ◦ T 2 in the derivation diagram.

A
FA−→ A

α

xyρ ρ

xyα
R

FR−→ R

Hunt’s ALU proof [20] has the form, αFR = FAα, which asserts, “Device FR works

for any representable value.” In contrast, Boute proposes assertions of the form

FA = αFRρ which might be read, “FR implements FA for all abstract values.”

These distinctions are significant because α and ρ are not always inverses—they

may not even be functions.

Furthermore, S2 is subject to orthogonal decomposition. This is the main

topic in [27], where boolean representations are projected into bit slices. The paper



algebra for digital design derivation 7

[3], touches on hierarchical aspects of restructuring in a multiple chip design (See

Section 3.1). This is preliminary work at the lowest levels of representation. Future

research addresses representation in more generality.

The most advanced work on this topic is by Sheeran, who defines second or-

der functions for restructuring and retiming [37]. She has successfully applied her

algebra to systolic designs and regular arrays of combinational circuitry. We plan

to adapt these results to data path manipulations. The entailed algebra is exacting

and crucially important, for it sustains correctness as geometric qualities are im-

posed on implementations. Formal verification methods have run into difficulty at

this stage of design. As discussed in Section 3.3, our experimentation shows that

algebraic derivation can closing the remaining gap which physical realization.

2.3. Temporal Organization and Coordination

Control is the least developed aspect of our approach, although we have some

results for systems governed by single controllers. Serializing transformations dis-

cussed in [3, 42] manipulate control in order to satisfy architectural constraints.

The relationship between ‘scheduling’ and ‘allocation’ in high level synthesis [5] is

characterized in our work as an interplay between serialization and factorization

(Section 2.1).

One issue is illustrated by the derviation diagram below:

· · · −→ C1
T (A)

(1)
−→ S2

A ◦ T
2
A ◦ T

2
A
′

(2)
y y?

C3
T (A)

(3)
−→ S4

A ◦ T
4
A −→ · · ·

A factorization (1) may require two (or more) devices, T 2 ◦ T 2′, to perform the all

the encapsulated operations. Serialization (2) produces a control description with

less parallelism, so that the same factorization (3) generates just one module. In [27]

for example, a factorization of arithmetic operations resulted in three ALUs, while.

in [3] the same specification was first serialized to obtain a single ALU. However,

we would like a more direct derivation path for such manipulations of architecture.



algebra for digital design derivation 8

It is a research topic to develop more direct algebra for transforming S2 ◦ T 2
A ◦ T

2
A
′

to S4 ◦ T 4
A .

A related goal is to find suitable abstractions of ‘process.’ Most existing for-

malisms employ a primitive notion of event for this purpose. However, the in-

determinacy of events is a fundamental problem for functional modeling because

of difficulties in capturing infinite qualities, such as fairness and liveness. System

factorization (Section 2.1) is a form of process decomposition, but it is not yet a

general treatment for sequential processes. Again, there are alternative design paths

to consider:

· · · −→ C1
T (A)

(1)
−→ S2

T (A)

?
y y?

C3
A ◦ CT A

(3)
−→ S4

A ◦ T
4
A −→ · · ·

A derivation might follow the path of system synthesis (1) followed by factoriza-

tion. However, when T 4 is sequential, a protocol is involved, and our factorization

algebra does not yet synthesize protocols. Control specification C1 might first be

decomposed into communicating sequential processes, C3 and CT , the latter imple-

menting T (A). From that point, deriving S4 ◦ T 4 is a a standard system synthesis

(3). However, we do not yet have algebra for decomposing control specifications in

this way.

Derivations applied to a verified microprocesser, summarized in Section 3.3,

are concrete examples of these problems. Proposed research will explore methods

for process decomposition and adapt the algbra for them. Process calculi, such

as Milne’s CIRCAL [34] and Gopalakrishnan’s HOP [14] are attractive because of

their algebraic flavor. Approaches based on temporal logics and formal-automaton

models, such as Clarke’s [4], Dill’s [9], and Lynch’s [32], have already shown promise

but are much farther removed from our semantic foundations. Algebraic theories

recently developed by Harman and Tucker [16] are a promising lead, as are some of

Sheeran’s functionals for retiming [37]. Possible problems in adopting any of these

approaches include problems with higher order expression, difficulties in sustaining

the relationship between control and information flow, and the need to associate

verification conditions with the transformations.



algebra for digital design derivation 9

2.4. Directions for Formal Research

Engineering entails balancing design concerns. Our research investigates how

temporal, logical, and physical concerns interact. It leads to techniques for manag-

ing the interaction, and generalizations to other aspects of digital description. Our

algebra for logical organization is the most broadly developed. Our treatment of

physical organization has progressed only to the point of supporting specific repre-

sentation tactics, such as bit slicing. Control manipulations are the least aspect of

the algebra.

The derivation diagrams sketch a complex design space with many possible

paths between specification and implementation. We have begun to identify land-

marks for successful synthesis. The work continues along two fronts. We shall

expand the formal topics entailed in the previous discussions, and at the same

time, investigate design management through a closer integration of factorization,

representation, and serialization. Mechanized support is essential, due to the ex-

acting nature of the algebra on large designs. The next section reviews progress in

automation and experimentation with mechanized derivation.

3. Experimental Aspects of the Research.

The formal constructions of [22, 23, 24] are implemented in an interactive

system for digital design derivation, called DDD [26]. This research tool establishes

a path to physical realization, linking the theoretical approach to demonstrable

practice. The DDD system is a specialized editor, a loosely organized collection of

transformations integrated with back-end logic synthesis tools. We expect DDD to

evolve into a practical design tool—in fact, it has become practical in local research.

However, its primary function at this time is the illumination of research issues.

In the projects described below, DDD implements all of the controlling circuitry

and most of the data path. Standard components are used for memories ALUs,

and so forth. Wire-wrap prototyping is done on the Logic Engine development

system [36]. The target technologies have been PLD (programmable logic device)

components and PLA (programmable logic array) layouts. We are now exploring

tactics for other technology targets, including standard cells, path programmable

logic, and generic architectures of our own design.



algebra for digital design derivation 10

DDD manipulates purely functional Lisp s-expressions, which can be executed

to explore design behavior. This is especially useful at higher levels of description,

where the engineer is dealing with symbolic abstractions. The designs in Sections

3.1 and 3.2 were thoroughly exercised in this fashion. Such design animation is very

much a part of the practical paradigm, but automated reasoning is by no means

precluded. The derivations in Section 3.3 were done to explore the relationship

between algebraic synthesis and direct verification.

3.1. A Derived Garbage Collector

The first large derivation experiment was a prototype stop-and-copy garbage

collector, first realized in PLDs and then retargeted to VLSI. The upper derivation

path in the diagram below is detailed in [27]. Control specification C0, based on

a functional memory model, was transformed (1) to system description S1 and

then factored (2) into subsystems, which included the principal data path (S2),

two memory modules (T and T ′) and an arithmetic subsystem (A). A binary

representation, A→ R, was incorporated (3) and the system was then partitioned

into PLD programs. The PLDs were programmed using available logic synthesis

tools. The result was a highly parallel prototype which collected heaps at about

sixty times the estimated rate of a M68000 benchmark.

C0
T (A)

(1)
−→ S1

T (A)

(2)
−→

S2
A ◦ AA
◦TA ◦ TA

′

(3)
−→

S2
R ◦ AA
◦TR ◦ TR

′ =⇒ PLD

(4)
y
C3
T (A)

(5)
−→ S4

T (A)

(6)
−→ S5

A ◦ AA ◦ TA
(7)
−→ S5

R ◦ AR ◦ TR =⇒ PLA

Essentially the same derivation (5–7) was used to derive a VLSI implementation us-

ing PLAs [3]. However, less parallelism was available, due to technology constraints

and external memory requirements. A system of serializing transformations (4, see

Section 2.3) was applied to C0, resulting in a refined control description, C3, from

which PLA programs were derived. The bit-slice decomposition was further par-

titioned into a three-chip set. This is our best example of hierarchy in physical

organization.



algebra for digital design derivation 11

The PLA version of the garbage collector is the first chip for this research

project, and it suffers electrical problems. However, the chip was thoroughly vali-

dated in switch level simulation, and the method of validation is of interest. Test

patterns were literally computed by the specification: C3, executing as a Lisp pro-

gram, was linked to a production heap processing system. Execution traces were

fed directly to a COSMOS simulation of the derived circuit. Thus, the correlation

of source and target behaviors was accomplished without manual intervention and

without implementing an interpreter to extract the traces. This is a good demon-

stration of how animation with an executable modeling language can be used in a

practical design environment.

3.2. A Derived Lisp Computer

A second exercise done in 1988 was the derivation of a simple lisp processor,

using Henderson’s specification of the SECD machine [17]. New topics exposed in

this project have to do with integrating designs at the system level. The design,

realized in PLD and MSI components, consists of four subsystems: a CPU, yet

another garbage collector, a serial I/O interface, and heap initializer [41]. All but

the interface were derived in DDD. The next diagram sketches the derivation.

An SECD CPU (C1 → S3 → S5 → S7) and storage manager (C2 → S4 →

S6 → S8) were done collaterally. Both derivations followed the usual path of

system synthesis, factorization, and representation. The two subsystems shared a

single data path to memory, but their specifications employed different abstractions

for it, designated by T (A) and U(A) in the diagram. Only after the representation

R was incorporated could the distinct views be resolved to the more primitive VR.

We would like to move to higher levels of description in which the interaction of

subsystems (e.g. C1 ◦ C2) is formally specified (See Section 3.3). Resolving distinct

data abstractions in a single representation is a matter for theoretical study.

Graham and Birtwistle have done a HOL verification of an SECD chip [15],

which we would like to compare to the derived version. The next project explores

possible integration with another verification system.



algebra for digital design derivation 12

C1
T (A) ←− ? −→ C2

U(A)

(1)
y (2)

y
S3
T (A) S4

U(A)

(3)
y (4)

y
S5
A ◦ TA S6

A ◦ UA

(5)
y (6)

y
S7
R ◦ TR

?
−→ S7

R ◦ VR ◦ S
8
R

?
←− S8

R ◦ URww�
PLD

3.3. Derivation of the FM8501 Microprocessor

The FM8501 is a general register machine whose gate level description is

mechanically verified in Boyer-Moore logic by Hunt [20]. DDD was applied to both

the source and target descriptions [29]. This was easy to do because the concrete

syntax of Boyer-Moore logic is exactly the language manipulated by DDD. The

project was undertaken to develop a thesis for the interdependence of verification

and synthesis. As witnessed by Hunt, Joyce [30], Cohn [7], and others, sequential

hardware verification is greatly complicated by the need to reverify lower levels

of description. Evidently, a significant part of the problem stems from structural

differences between architectural and physical descriptions. Translation between

these two organizations is one of our research topics (Section 2.2).

Hunt proved that an instruction level specification, called SOFT, is implemented

by a micro-program interpreter, called BIG. We first attempted to derive BIG from

SOFT. The derived architecture, S3◦M◦A below, was close to Hunt’s, but there were

significant differences. All of them were due to a change in the model of memory

between the two levels of description. The derived memoryM, encapsulated SOFT’s

functional abstraction. In BIG, memory is described a concurrent process, P, and



algebra for digital design derivation 13

S4 includes state and control for a synchronization protocol.

SOFTM(A)
(1)
−→ S1

M(A)

(2)
−→ S2

A ◦MA ◦ AA
(3)
−→ S3

R ◦MR ◦ AR

{Hunt}
~ww

BIGA ◦ PA
(4)
−→ S4

A ◦ PA ◦ AA
(5)
−→ S5

R ◦ PR ◦ AR
(6)
−→

PLA

programs

The exercise highlights the inventive aspect of Hunt’s proof, which related two

preconceived memory models. The next question for research is whether this as-

pect could be isolated and separately verified. If reasoning can be focused on the

ingenious qualities of a design then the prospects for mechanical verification are

improved.

We next applied DDD to BIG (BIG → S4 → S5 → PLA), in order to explore

design management as physical organization is developed. Hunt demonstrated that

a gate level description could be compiled directly from BIG. However, a bottom-up

compilation is explosive: BIG expands to 11 million gates before reducing to 1,800

[20]. We successfully employed DDD to guide a top-down expansion, in which the

largest intermediate description was about 150,000 characters. No new tactics were

involved, although the exercise did require enhancement to DDD.

Our research is evidence that algebraic manipulation is a better way of dealing

with translation at lower levels of description. However, this exercise also highlights

the necessity of verification. The correctness of a derived implementation follows not

only from the validity of the algebra, but also from the validity of representations.

In this case, Hunt’s proof of a binary representation of arithmetic is an antecedent

to any claim for mechanical correctness. In addition, synthesis may generate new

verification conditions for the derived circuit’s environment. Incorporating the pro-

cess P for memory abstraction M changes the behavior of FM8501 in a way that

must be reflected in its specification.

3.4. Directions for Experimental Research

We will continue to develop the DDD system as a vehicle for experimentation.

The system will be applied to more and more varied designs. As is noted in Section

2.4, there will be near-term emphasis on managing alternative derivation paths. In



algebra for digital design derivation 14

practical terms, this requires us to develop top level facilities for strategic design

management.

The experimentation will broaden in several ways. First, we will integrate more

technologies, developing tactics for a broader collection of logic synthesis tools. Sec-

ond, we will also apply our research at system levels, along lines established in Sec-

tion 3.2, and add program transformation techniques from functional programming

research. Third, we will address new kinds of problems, particularly those with

a significant degree of event coordination. In particular, we will address forms of

pipelining and network interface applications.

4. Review of Topics and Related Work

This is an investigation of conceptual structures used in VLSI and digital sys-

tem design. Various decompositions of design are considered, with the object of

distilling general principles for the integration of engineering methods and tools.

The research uses a theory of functions to model design processes, which are charac-

terized by algebraic laws. This theory gives a coherent mathematical framework for

exploring the higher level abstractions of digital description. The synthesis algebra

is automated, providing a tool for interactive digital design derivation. Experimen-

tation with this sytem demonstrates the practical prospects of the approach, and

helps focus the research on issues of scope and scale.

Our research emphasizes rigor and generality; we continue to apply a fully

abstract modeling theory to digital engineering. Our approach emphasizes experi-

mentation and demonstration; we develop algebra from experience with concrete ex-

amples. A central topic is managing the often conflicting decompositions of logical,

physical and temporal organization. In general, we seek unified ways to maintain

abstraction in design.

The primary deliverables of this research are foundational. We are defining a

kernel of basic laws from which synthesis tactics are composed. However, the DDD

system (Section 3) will remain available as a demonstration vehicle and over time

will evolve into a viable engineering tool.

A narrow path has been established from reasonably abstract specifications

to synthesizable implementations. Present research aims at securing the gaps in

this path by implementing the tactics now used to carry designs to realization.



algebra for digital design derivation 15

We expect to broaden the range of possible target technologies and the spectrum

of designs classes considered (Section 2.4). We expect the most progress in the

treatment of representation and physical organization. It appears that a subset of

Sheeran’s Ruby algebra [37] can be used for the task of type incorporation (Section

2.2). Abstractions of temporal organization and process decomposition are certainly

needed; it is likely that our research will adopt prior results in this area (Section

2.3). Applicative process oriented languages, such as SBL [38] and HOP [14], are

attractive, although temporal logic formalisms, such as SML [4], appear to support

better reasoning capability.

The most exciting recent development has been in the relationship between

algebraic synthesis and formal verification. The practical prospects for both ap-

proaches are improved as ways are found to integrate them. The FM8501 exercise

(Section 3.3) demonstrates that a mechanized functional algebra can contribute to

mechanically assured correctness. In particular, it was established that DDD could

manage the abstractions used by Hunt in his machine descriptions. This particular

relationship will be explored further.

References

[1] Bickford, Mark and Mandayam Srivas. Hardware Verification using Clio. In
M. Leeser and G. Brown (eds.), VLSI Specification, Verification and Synthesis:
Mathematical Aspects (Proceedings of Mathematical Sciences Institute work
shop, Cornell University, July, 1989), Springer, New York, in preparation.

[2] Boute, Raymond. Systems Semantics: Principles, Applications and Imple-
mentations. ACM Trans. Prog. Lang. and Systems, 10(1):118–155 (1988).

[3] Boyer, C. David, and Steven D. Johnson. Using the Digital Design Derivation
System: Case Study of a VLSI Garbage Collector. In J. Darringer and F.
Ramming (eds.) Proceedings of the IFIP WG 10.2 Ninth International Sym-
posium on Computer Hardware Description Languages (CHDL-89), Elsevier,
Amsterdam, in preperation.

[4] Browne, Michael C., Edmund M. Clarke, and David L. Dill. Automatic Cir-
cuit Verification using Temporal Logic: Two New Examples. In G. Milne
and P. Subrahmanyam(eds.) Formal Aspects of VLSI Design, North-Holland,
Amsterdam, 1986, 113–124.

[5] Camposano, Raul. Behavior-preserving Transformations for High-Level Syn-
thesis. in M. Leeser and G. Brown (eds.), VLSI Specification, Verification



algebra for digital design derivation 16

and Synthesis: Mathematical Aspects (Proceedings of Mathematical Sciences
Institute work shop, Cornell University, July, 1989), Springer, New York, in
preparation.

[6] Camurati, Paolo and Paolo Prinetto. Formal Verification of Hardware Cor-
rectness: Introduction and Survey of Current Research. Computer, vol. 21,
No. 7, 1988.

[8] Clinger, William D.. The Scheme 311 Compiler: An Exercise in Denotational
Semantics. Conf. Record of the 1984 ACM Symp. on LISP and Functional
Programming, Austin, August, 1984, 356–364.

[7] Cohn, Avra. Correctness Properties of the Viper Block Model: The Second
Level. Preliminary papers for the Banff Hardware Verification Workshop,
June 1988, proceedings to appear.

[13] Borriello, G., and E. Detjens. High-Level Synthesis: Current Status and Fu-
ture Directions. Proc. 25th ACM/IEEE Design Automation Conference, Ana-
heim, June, 1988.

[9] Dill, David L.. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. Ph.D. dissertation, Carnegie-Mellon University, 1988.

[10] Friedman, Daniel P., et. al.. Programming Languages: Abstraction, Repre-
sentation, and Implementation. In progress.

[11] Gajski, Daniel D. (ed). Silicon Compilation. Addison-Wesley, Reading, 1988.

[12] German Steven M., and Yu Wang. Formal verification of parameterized hard-
ware designs. Proc. IEEE International Conference on Computer Design:
VLSI in Computer, 1985.

[15] Graham, Brian and Graham Birtwistle. Formalising the Design of an SECD
Chip. In M. Leeser and G. Brown (eds.), VLSI Specification, Verification
and Synthesis: Mathematical Aspects (Proceedings of Mathematical Sciences
Institute work shop, Cornell University, July, 1989), Springer, New York, in
preparation.

[14] Gopalakrishnan, Ganesh. Specification and Verification of Pipelined Hardware
in HOP. In J. Darringer and F. Ramming (eds.) Proceedings of the IFIP
WG 10.2 Ninth International Symposium on Computer Hardware Description
Languages (CHDL-89), Elsevier, Amsterdam, in preperation.

[16] Harman, N.A. and J.V. Tucker. Clocks, Retimings, and the Formal Specifi-
cation of a UART. In G.J. Milne(ed.) The Fusion of Hardware Design and
Verification, North- Holland, Amsterdam, July, 1988, 375–396.

[17] Henderson, Peter. Functional Programming, Application and Implementation.
Prentice-Hall, Englewood Cliffs, NJ, 1980.



algebra for digital design derivation 17

[19] Hill, Fredrick J., and Gerald R. Peterson. Introduction to Switching Theory
and Logical Design. John Wiley and Sons, New York, 1981, Third edition.

[20] Hunt, Warren A., Jr.. FM8501: A Veified Microprocessor. PhD. dissertation,
The University of Texas at Austin. Also published as Technical Report 47
(December, 1985) Institute of Computing Science, The University of Texas at
Austin, 1985.

[21] Johnson, Steven D.. Circuits and Systems: Implementing Communication
with Streams. Proc. 10th IMACS World Congress on Systems Simulation
and Scientific Computation, vol. 5, eds. W.F. Ames and R. Vichnevetsky,
Motreal, August, 1982.

[22] Johnson, Steven D.. Synthesis of Digital Designs from Recursion Equations.
The MIT Press, Cambridge, 1984.

[23] Johnson, Steven D.. Applicative Programming and Digital Design. Proc.
Eleventh Annual ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (1984), 218–227.

[24] Johnson, Steven D.. Digital Design in a Functional Calculus. In G. Milne
and P. Subrahmanyam(eds.) Formal Aspects of VLSI Design, North-Holland,
Amsterdam, 1986, 153–178.

[25] Johnson, Steven D.. Manipulating logical organization with system factor-
izations. In M. Leeser and G. Brown (eds.), VLSI Specification, Verification
and Synthesis: Mathematical Aspects (Proceedings of Mathematical Sciences
Institute work shop, Cornell University, July, 1989), Springer, New York, in
preparation.

[26] Johnson, Steven D. and Bhaskar Bose. A system for digital design derivation.
Submitted abstract.

[27] Johnson, Steven D., Bhaskar Bose, and C. David Boyer. A Tactical Frame-
work for Digital Design. In G. Birtwistle and P.A. Subrahmanyam (eds.)
VLSI Specification, Verification and Synthesis, Kluwer Academic Publishers,
Boston, 1988, 349–383.

[28] Johnson, Steven D. and C. David Boyer. Modelling Transistors Applicatively.
In G.J. Milne(ed.) The Fusion of Hardware Design and Verification, North-
Holland, Amsterdam, July, 1988, 77–98.

[29] Johnson, Steven D., Robert M. Wehrmeister and Bhaskar Bose. On the Inter-
play of Synthesis and Verification: Experiments with the FM8501 Processor
Description. Submitted for publication.

[30] Joyce, Jeffrey J.. Multi-Level Verification of a Simple Microprocessor. Progress
Report, Computer Laboratory, University of Cambridge.



algebra for digital design derivation 18

[31] Keutzer, Kurt and Wayne Wolf. Anatomy of a Hardware Compiler. ACM
SIGPLAN ’88 Conference on Programming Language Design and Implemen-
tation, Atlanta Georgia, 1988.

[33] Manna, Zohar. Mathematical Theory of Computation. McGraw- Hill, New
York, 1974.

[34] Milne, G. J.. CIRCAL and the representation of Communication Concurrency
and Time. ACM Transactions on Programming Languages and Systems, 7(2),
(1985).

[35] O’Donnell, John T.. Hardware Description with Recursion Equations. Proc.
8th International Symposium on Computer Hardware Description Languages
and their Applications, North-Holland, Amsterdam, April, 1987, 363–382.

[36] Prosser, Franklin P. and David E. Winkel. The Logic Engine Development
System—Support for Microprogrammed Bit-Slice Development. Proc. Micro
16, 84–91.

[37] Sheeran, Mary. Retiming and Slowdown in Ruby. In G.J. Milne(ed.) The Fu-
sion of Hardware Design and Verification, North-Holland, Amsterdam, July,
1988, 289–308.

[38] D.R. Smith and Mandayam Srivas. Hardware Specification and Testing using
SBL. Preliminary papers for the Banff Hardware Verification Workshop, June
1988, proceedings to appear.

[39] Verkest, D., et. al.. Formal Techniques for Proving Correctness of Param-
eterised Hardware using Correctness Preserving Transformations. In G.J.
Milne(ed.) The Fusion of Hardware Design and Verification, North- Holland,
Amsterdam, July, 1988, 77–98.

[40] Wand, Mitchell. Deriving Target Code as a Representation of Continuation
Semantics. ACM Trans. Programming Languages and Systems 4(3), 496–517.

[41] Wehrmeister, Robert M. The Derivation of an SECD Machine: Experiences
with a Transformation System (working title). Indiana University Computer
Science Department Technical Report, in progress.

[42] Zhu, Zheng X. and Steven D. Johnson. An Algebraic Characterization of Ar-
chitectural Constraints in Hardware Descriptions (working title). Submitted.


