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Abstract
We introduce nonlinear magnification fields as an ab-

stract representation of nonlinear magnification, providing
methods for converting transformation routines to magnifi-
cation fields and vice-versa. This new representation pro-
vides ease of manipulation and power of expression. By
removing the restrictions of explicit foci and allowing pre-
cise specification of magnification values, we can achieve
magnification effects which were not previously possible. Of
particular interest are techniques we introduce for express-
ing complex and subtle magnification effects through mag-
nification brushing, and allowing intrinsic properties of the
data being visualized to create data-driven magnifications.

1. Introduction
Many approaches have been described in the litera-

ture for stretching and distorting spaces to produce effec-
tive visualizations of data. Such techniques have been
calledpolyfocal projection[4], bifocal display[14], fisheye
views[2, 12], multi-viewpoint perspective display[10], rub-
ber sheet[13], distortion-oriented presentation[8] andfocus
+ context[7]. In [5] we introduced the termnonlinear mag-
nificationto describe the effects common to all of these sys-
tems. The basic characteristics of nonlinear magnification
are non-occluding in-place magnification which preserves a
view of the global context. During our research on the work
described in [5] there were a number of issues which we en-
countered. A brief discussion of some of these issues will
provide context and motivation for the results presented in
the remainder of this paper.

The focus of our work in [5] was to define a nonlin-
ear magnification system using simple modular components
joined together to create complex magnification effects. In
doing this, we distinguished between linear and nonlin-
ear magnification transformations and illustrated how the
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best properties of each could be exploited by providing
simple methods to combine these within a single transfor-
mation, and by introducing constrained transformation do-
mains which remain invariant even when the magnification
or compression changes. We extended the work on 1D
piecewise functions in [8, 13], creating 1D piecewise linear
transformations as efficient and expressive alternatives to
conventional continuous 1D transformation functions.Then
we introduced 2D piecewise linear transformations which
provide approximations to complex sequences of transfor-
mations. We described how 1D piecewise functions could
be easily manipulated through changes to either the mag-
nification or transformation function. We then raised the
question of how such manipulations could be performed on
2D piecewise linear transformations. This paper will pro-
vide answers to that question.

Although our system for nonlinear magnification trans-
formations was successful in reducing complex magnifica-
tion effects to a set of easy to understand and implement op-
erations, there are some general properties which our modu-
lar system still shares with existingnonlinear magnification
systems. These issues have lead us to look for a more gen-
eral schema for defining and implementing nonlinear mag-
nification systems.

The first major limitation of the existing nonlinear mag-
nification systems could be referred to as the “tyranny of the
foci”. Although explicit centers of magnification are clearly
desirable in many cases, this also puts severe limitations on
the types of magnification and interaction which can be pro-
duced. Interaction becomes an exercise in manipulation of
discrete magnifying “lenses”, and additional expressiveness
of magnification comes primarily through the addition of
more and/or complex lenses, thus increasing the computa-
tional complexity of computing the overall transformation.

A second difficulty encountered with existing systems
for nonlinear magnification involves determining the over-
all effect of complex transformations. A general purpose
mechanism would be useful to determine the effects of com-
plex transformations with multiple foci, so that the global
effect of the transformations can be determined across the
entire space of a domain, rather than just at the centers of
magnification or other discrete points.



In this paper we will develop further a theory of non-
linear magnification that addresses these issues. In partic-
ular, we reduce the concept of nonlinear magnification to
a field of scalar magnification values. Broadly speaking,
these nonlinear magnification fields provide benefits at two
levels. First, they serve as a basis for realizing the effects
of existing techniques, even though their underlying mech-
anisms may be very different. Second, they directly define
space transforming visualizations and can be operated on in
computationally efficient and conceptually effective ways,
thus yielding powerful visualization tools.

Expressing magnification as a field of arbitrary scalar
values provides a much greater expressiveness of magnifi-
cation and ease of manipulation than is possible using other
techniques. By removing the restrictions of discrete foci
we allow fluidly shifting magnifications of arbitrary com-
plexity, and can factor out magnification complexity from
the time required to compute suitable transformation func-
tions so that computation isindependentof the complexity
of the magnification function. We will describe a number of
novel ways in which the flexibility of thesenonlinear mag-
nification fields can be used to create effective visualiza-
tions. The techniques presented range from low-level pre-
cise specification of magnification, through the creation of
expressive user-interface techniques, to sophisticated mag-
nification fields constructed by application programs.

In brief, the work described in this paper makes the fol-
lowing major contributions:

� introduces a general method for converting complex
transformations of two or more dimensions to scalar
magnification fields

� introduces an iterative method for converting scalar
magnification fields to transformations

� introducesmagnification brushingas an user-interface
technique allowing creation of complex and subtle
magnification effects

� introducesdata-driven magnificationas a technique
which allows properties of the data to directly define
magnifications for viewing that same data

2. Magnification Fields
When describing nonlinear magnification systems, it is

useful to distinguish betweenmagnificationand transfor-
mationfunctions, as first described in [8]. The transforma-
tion function directly stretches and compresses the space,
while the magnification function (which is the derivative
of the transformation function) represents the magnifica-
tion values which are implicit in the transformation func-
tion. Converting between magnification and transformation
functions in one dimension is a relatively straightforward
task, however the situation is much more complicated in
two or more dimensions. In the remainder of this section

we will describe techniques for accomplishing these con-
versions, after introducing some basic notation.1

Any magnification employs a transformation functiont
((x0; y0) = t(x; y)) which moves points of a rectangular do-
mainD within a frame. Since we want the magnification
to be non-occluding, we require thatt is at leastC0 contin-
uous and order-preserving (given(x0
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ilarly for y). For computational purposes, we deal witht
only on ap� q integer gridG, with g : G ! D (g maps the
regular gridG over the domainD), and represent a discrete
approximation oft with a quadrilateral gridT (T = t � g,
where ’�’ represents composition).

A magnification fieldm is a 2D scalar field of the form
z = m(x; y) which gives the regional expansion around a
point. As with t, m is represented onG by a quadrilateral
meshM (M = m � g). A transformationt corresponds
to a magnificationm, wherem(x; y) = (@t(x; y)=@x) �
(@t(x; y)=@y). This is approximated using an area-based
function mc which computes the local magnification for
each node inT . For computational efficiency, the area-
based magnification we use actually corresponds to the
square of the linear “power” sometimes used in describing
lenses. In describing computations with magnifications and
transformations, notation such asmc or TC indicate varia-
tions of these functions or their approximations.

2.1. Transformation Grid ! Magnification Field
Conversion from a given transformation gridT to a mag-

nification meshM involves numerically computing an ap-
proximate derivative ofT . The computation begins with an
area functiona which, for each node inT , returns an ap-
proximation of the area defined by the neighbouring nodes.
One possibility for this function simply uses the convex
hull of the 4-connected neighboursfT (i + 1; j); T (i �
1; j); T (i; j + 1); T (i; j � 1)g. We defineCa to be the
constant area associated with anyT (i; j) in the untrans-
formed uniform sampling grid. The approximate magni-
fication value for a pointT (i; j) is then given byM(i; j) =
mc(i; j) = a(i; j)=Ca. More accurate area calculations are
possible, such as explicitly finding the area of the four sur-
rounding cells. In practice however, we find that this in-
crease in accuracy does not significantly change the results.
Coarser approximations are adequate, as long as the area
metric is used consistently throughout the system. Figure
1 shows an example of a transformation and its associated
magnification mesh calculated with this method.

This technique allows any nonlinear magnification sys-
tem to create a landscape representation of its implicit mag-
nification with elevation-based shading. The surfaces de-
scribed in 3DPS [1] may appear to be similar to this land-

1Although this paper presents results in 2 dimensions, we note that the
view-independent nature of the techniques presented here allows for trivial
extension to 3 or more dimensions.



Figure 1. Transformation and Magnification

scape representation, however closer inspection reveals that
the two systems have fundamental differences. The most
significant difference is that elevation and magnification do
not correspond directly in 3DPS; the view-dependent na-
ture of 3DPS means that magnification is also dependent
on the degree of orthogonality of the surface normal to the
viewing vector. The inconsistent relation between elevation
and magnification is readily apparent when considering that
with 3DPS both compressed and expanded areas will have
a higher elevation than undistorted areas of unit magnifi-
cation. This points to another difference between the two
systems: the way that they produce shading. 3DPS shades
regions of distortion using a computationally expensive 3D
lighting model, whereas the system we present here shades
regions of magnification simply by mapping elevation val-
ues into a color/intensity ramp.

Figure 2 shows another example illustrating multiple
bounded regions and linear magnification; the transforma-
tion grid was generated using the techniques described in
[5]. As a further example of how these techniques can be
used to determine the implicit magnification generated by
existing systems, we use the example of Perspective Wall
[9], which is representative of the class of nonlinear magni-
fication systems that are based on a perspective projection
of 3D surfaces. By sampling a perspective wall transforma-
tion function with a regular grid, we obtain a transformation
grid which is used to generate the associated magnification
mesh (see Figure 3). These examples show how transforma-
tion and magnification functions can now be tightly coupled
across entire domains even for complex transformations.

Figure 2. Complex Magnification Field

Figure 3. Perspective Wall Magnification

2.2. Magnification Field! Transformation Grid
While it is a relatively straightforward task to find the im-

plicit magnification meshM associated with a transforma-
tion grid T by computing the approximate derivative; it is
a much more complex task to construct a suitable transfor-
mation grid given a magnification mesh. In general terms,
we want to integrate the magnification mesh values in order
to construct an order-preserving transformation grid. There
are a number of issues which make this a difficult task. The
most fundamental problem involves finding a meaningful
way to convert asinglemagnification value into atwocoor-
dinate(x; y) transformation; there are usually many trans-
formations possible for a given magnification. We have in-
vestigated and developed direct methods to solve this prob-
lem, but have found these methods to be unsuited to the
specific task of generating nonlinear magnification transfor-
mations. Some of the major problems which we have ob-
served with the direct approaches are: 1) bounded regions
of magnification inM should produce bounded regions of
transformation inT to preserve a static context, 2) the trans-
formation should be symmetric and centered around mag-
nification maxima, and not constructed relative to some ar-
bitrary boundary of the domain, and 3) solutions providing
only correct area inT do not preserve desired visual prop-
erties of the magnification, such as scale and aspect ratio
within regions of linear magnification.

In order to address these problems we have developed an
iterative method which provides a numerical solution to the
integration problem. By dealing with a localized basis for
computation, we are able to simply and directly control the
overall behaviour of the algorithm to produce the desired
final result. The general problem is to compute an approx-
imate transformation gridTC from a specified magnifica-
tion meshMS . The key to our approach is that the ease
of converting from transformation to magnification facili-
tates the conversion in the opposite direction. We compute
the magnificationMC from the transformationTC , and then
the magnification errorME = MS�MC . We then useME

to further refine the approximationTC . To enhance the vi-
sualization of the performance of our method, we join thez

magnification values ofMC to the(x; y) coordinates ofTC
to create a composite meshMCv. We similarly join theME



values toTC givingMEv. MCv andMEv are used for visu-
alization only, and are not used in any internal calculations.

Conceptually, our algorithm is straightforward. We ini-
tializeTC to the identity transformation. Foreach iteration,
we computeME on a node-by-node basis. IfME(i; j) > 0
then we push the neighbours ofTC(i; j) away a little bit
from TC(i; j). Conversely ifME(i; j) < 0 then we pull the
neighbours ofTC(i; j) a little bit closer toTC(i; j). Both
the pushing and pulling operations are easily constrained
to preserve the ordering of nodes inTC . Figure 4 shows
an example of the operation of this algorithm over a few
iterations (usingMS from Figure 1); and Figure 5 shows
how our method handles the multiple,bounded and linear
regions of magnification specified in Figure 2. There are
a number of parameters and issues to explore in this algo-
rithm, which we discuss below.

Figure 4. TC , MCv and MEv on Iteration 1,40,80

Figure 5. MCv and TC Computed from Figure 2

As mentioned previously, many different area metrics
can be used in these methods. The area metric used will
determine which neighbours should be displaced in our
algorithm (i.e. if the area metric is 4-connected, then

the algorithm should only displace the 4-connected neigh-
bours). The algorithm converges faster if we multiply the
errorME(i; j) by the specified magnificationMS(i; j), so
that regions of higher magnification will be more strongly
weighted. We also use a refinement coefficientCr to scale
the amount of error that is applied to neighbouring nodes.
WhenCr = 0 no displacement occurs, whereasCr = 1
causes the algorithm to attempt as much displacement as
possible on each step of the iteration while still preserving
ordering. To an extent, higher values ofCr cause the system
to converge faster, but ifCr is too high the approximation
will tend to thrash and possibly not converge at all. We typ-
ically useCr = 0:3.

The local errorME(i; j) can be distributed evenly over
the neighbouring nodes, however the algorithm converges
faster if we weight the displacements based on the dis-
tances between a node and its neighbours. IfME(i; j) > 0,
we weight the displacements so that closer neighbours are
pushed a greater distance than farther neighbours. Simi-
larly for ME(i; j) < 0, we weight the displacements to
pull more distant neighbours a greater distance than closer
neighbours.

Our algorithm converges independent of the com-
plexity of the magnification field, where convergence
is measured by root mean squared error:RMSE =qP

p

i=1

P
q

j=1
ME(i; j)2 The primary determining factor

of convergence speed is the volume of specified magnifica-
tion, or more precisely the volume of error inME . There are
a number of parameters which we can use to tune the per-
formance of our algorithm based on speed/accuracy trade-
offs. First we create an error clipping constantCe with a
default value of0, then our algorithm ignores nodes where
ME(i; j) < Ce. This causes it to converge faster be-
cause it does not have to compress areas whose implicit
magnification is greater than its specified magnification.
The result of this is that regions ofdemagnificationare
not strictly enforced, but allowed to remain at their origi-
nal unmagnified level (excepting where magnified regions
push into those demagnified regions). This allows the re-
sulting transformation grid to fill up the available space
more efficiently, eliminating dead screen regions which
were outside the range of the original transformation grid.
Color Plate A shows a few iterations on an input identical
to that used for Figure 4, except that error clipping with
Ce = 0 is used on the color plate. When this error clip-
ping method is used, we redefine our error measure as:

RMSE=
qP

p

i=1

P
q

j=1
Max(0;ME(i; j)�Ce)2 and ob-

serve that the primary determining factor of speed of con-
vergence is now the volume ofME above the clipping plane
defined byCe. By increasingCe to 0:1 or 0:25, little visual
difference is apparent in the resultingTC , although substan-
tial performance benefits occur.



In a similar fashion we can define a magnification clip-
ping constantCm, and make our algorithm ignore nodes
havingMS(i; j) < Cm. Depending on the particularMS

being used, increasingCm to 0:5 or 0:75 can significantly
increase performance with little cost in the final visual re-
sult. Error clipping is more robust than magnification clip-
ping because it takes into account the changes to the implicit
magnification ofTC as the algorithm progresses, and thus
distributes the magnification more evenly over the entire do-
main. By carefully adjustingCm andCe for the particular
application, very significant increases in performance can
be achieved, to the point where our algorithm converges at
speeds which are suitable even for interactive applications
requiring high frame-rates. Mesh resolution is also a signif-
icant factor in the performance of our algorithm. High res-
olution meshes are able to compute finer detail than lower
resolution meshes, but generally require greater computa-
tion time. Thus mesh resolution is another parameter in our
systems which can be used to tune results. Table 1 summa-
rizes the effect of adjusting these parameters2.

p� q Cm Ce Iterations Time (s)
32� 32 - - 154 0.826

0.00 72 0.236
0.25 50 0.104

0.75 - 73 0.220
0.00 72 0.198
0.25 50 0.072

24� 24 - - 98 0.298
0.00 40 0.072
0.25 28 0.030

0.75 - 40 0.068
0.00 40 0.058
0.25 28 0.022

Table 1. Performance Using MS from Figure 1

Not all possible magnification specifications will have
a solution, there are some degenerate specifications which
are physically impossible to satisfy without violating the de-
sired characteristics for nonlinear magnification. Although
these physically degenerate cases have no exact solution,
our algorithm still manages to compute a reasonable com-
promise for them. We describe the degenerate cases be-
low, along with how they can be effectively dealt with. First
however we point out that any magnification field which is
generated from a transformation meeting our stated require-
ments for nonlinear magnification will (by definition) never
be degenerate, and our iterative method can always manage
to construct a transformation grid having the same implicit
magnification field as the original transformation grid.

The first type of degenerate case occurs when the spec-
ified magnification requires an area greater than the avail-

2Timings were obtained on a 195 MHz MIPS R10000 CPU.

able area. For example a mesh specifying2� magnifi-
cation across the entire field cannot possibly be satisfied
while maintaining the desired properties of non-occluding
in-place magnification. This reflects the intuitive notion that
every expansion must cause a corresponding compression at
some other region. Another related type of degenerate case
involves conflicting regions of magnification. For example
when a region of very low magnification is surrounded by
regions of high magnification (a doughnut shape), it may be
physically impossible to satisfy both specifications simulta-
neously.

We can resolve these degenerate cases by making the as-
sumption that regions of high magnification (and high er-
ror) should take higher priority. In this wayCe andCm

can always be adjusted so as to relax the specification to a
non-degenerate configuration. In addition, weightingME

by MS (as described previously) will resolve degeneracies
above the clipping planes by emphasizing higher magnifi-
cation values. It is worth noting that we can also emphasize
areas of demagnification simply by reversing the clipping
tests and weighting by the inverse of the magnification.

3. Magnification Field Manipulation
By isolating magnification field specification from the

transformation function, it is now possible to manipulate the
magnification valuesdirectly rather than have them change
only as a side effect of changes in the transformation. We
refer to systems which rely on transformation functions to
produce nonlinear magnification astransformation-based
systems. Another class of systems use a physical view-
ing model and perspective projections to produce nonlin-
ear magnification effects [9, 11, 1]. Suchperspective-based
systems have an irregular correspondence between eleva-
tion and magnification, and require careful attention to the
orthogonality of surface normals to the view vector, thus
adding additional degrees of complexity to the magnifica-
tion specification task. In contrast, the system we present
here is a truemagnification-basedsystem. Direct manipu-
lation of the magnification mesh makes for a system which
is both simpler and more expressive than previous nonlin-
ear magnification systems. From the user and application
standpoint, the task now is simply to specify desired magni-
fication levels in a scalar field. The conversion techniques in
Section 2.2 automate the task of constructing a transforma-
tion grid having those magnification values (assuming the
case is not degenerate, and that such a transformation grid is
possible). This frees the user and application program from
the often difficult task of determining what combination of
complexly interacting transformation functions or surface
normals will produce the desired magnification.

The remainder of this section will highlight some of the
ways in which direct magnification field manipulation can
be used, from low-level node operations to high-level global
constructions. In all of these examples, we begin with a



direct magnification specification and end with a transfor-
mation reflecting that specification. We intend to illustrate
through these examples that “magnification” is a more intu-
itive and useful interface concept than “distortion”. Distor-
tion is not the goal of our system but only a by-product, al-
though our system does allow for explicit representation of
the distortion present in any nonlinear magnification field.
Defined as the rate of change in magnification, distortion is
easily computed as the gradient of the magnification field,
as shown in Figure 6 and Color Plate B. This clearly reveals
the derivative nature of distortion.

Figure 6. Magnification/Distortion from Figure 2

3.1. Node-Level
At the lowest level, we can control the magnification

mesh on a node by node basis. For demonstration purposes,
we have created a simple interface which allows the user
to select single nodes or rectangular regions of nodes from
the magnification mesh. The magnification levels associ-
ated with these selected nodes can then be raised or low-
ered accordingly. This provides a very fine-grained control
of the magnification specification. Of greater interest is the
ability to associate logical values with the selectednodes.
For example the ability to “lock”nodes in place allows for
specification of regions which will remain unchanged in the
transformation grid. This allows any region of the domain
to be excluded from the transformations, as shown in Figure
7; these regions can also be locked at magnification levels
other than unity by transforming them before locking them
in place. In addition, it now becomes a trivial matter to con-
strain the transformation to any arbitrary bounded domain
simply by locking those nodes which define that bounded
domain (see Figure 7). Some of the examples in this pa-
per used locked nodes on the mesh perimeter to ensure that
the transformed grid would still fit precisely in the original
rectangular sampling area.

A major feature of this locking mechanism is that in
many cases specifying bounded regions of magnification
(or non-magnification) actuallyreducesthe computation
required (assuming degenerate cases are not introduced).
Thus while these bounded regions are similar to the con-
strained domains introduced in [6, 5]3, they differ in that ad-

3The “distortion control” presented in [1] is not equivalent to these, as

ditional computation or program complexity is not required
here to enforce the fixed boundaries. This locking mecha-
nism allows us to obtain arbitrary bounded and excluded re-
gions for “less than nothing” in computational cost in most
cases, by means of a trivial boolean flag check for each node
in the iterative conversion process.

Figure 7. Excluded and Bounded Regions

3.2. Mesh-Level
Our representation of magnification as a simple scalar

field greatly facilitates many operations which would be
very involved (if not impossible) with non-magnification-
based systems. Given a transformation gridT having an
implicit magnification meshM , it is a simple matter to com-
pute the inverse meshM�1, and then find the inverse trans-
formationT�1 (see Figure 8). Further, although our system
allows for multiple regions of magnification within a sin-
gle mesh, it is also possible to combine multiple meshes in
useful ways using simple node-by-node operations across
the meshes. As examples, two meshes can be blended
with proportional averaging:M(i; j) = dMa(i; j) + (1 �
d)Mb(i; j) (0 � d � 1), combined: M(i; j) =Max
(Ma(i; j);Mb(i; j)), or composed:M(i; j) = Ma(i; j) �
Mb(i; j). In addition to operations on the magnification val-
ues across the meshes, it is also possible to perform op-
erations on logical mesh values (such as the node-locking
mechanism described in the previous subsection). For ex-
ample we can find the intersection of the non-locked regions
of magnification between two meshes simply by AND-ing
their logical values.

Figure 8. Inverse of Figure 1 M�1 and T�1

it does not provide invariant boundaries that are independent of the magni-
fication/distortion parameters.



3.3. User-Level
The expressivenessand implementation-independent na-

ture of our representation makes it well suited for the con-
struction of user-interfaces which employ nonlinear magni-
fication. By developing a nonlinear magnification interface
as an abstraction layered above our magnification field spec-
ification, the designer can construct magnification tools and
techniques which are customized to specific tasks.

We have just begun to explore the possibilities of layer-
ing interfaces on top of our general magnification field tech-
niques. Perhaps the simplest interface involves construction
of a discrete “magnifying glass” which can be moved over
the domain; other possibilities are more interesting. For
example, by making the magnification fieldMS persistent
outside of that same magnifying glass, the user can effec-
tively “paint” arbitrary regions of magnification by stroking
the glass (which might now better be described as a brush)
over the domain. By using the brush to increment the mag-
nification rather than to set the absolute magnification value,
stroking a region with the brush would correspond to paint-
ing the region with increasing levels of magnification (see
Figure 9 and Color Plate C). By using persistence which de-
cays over time (or by not resettingTC after each movement
of the magnifying glass, sinceTC will carry some residual
implicit magnification from previous iterations), we obtain
“trails” of magnification which gradually fade out behind
the magnifying glass (see Figure 9). This degree of expres-
siveness goes far beyond anything that can be achieved with
existing systems, and moves magnification towards a com-
modity user-interface item, similar to color and intensity.

Figure 9. Magnifying Brush and Trail

3.4. Data-Level
Visualization is but one technique applicable to the

exploration of large databases (so-called “data mining”).
The greatest potential benefit will combine higher-level
(database and semantic-related) mechanisms with low-level
(rendering or presentation) ones that are the primary focus
of this paper. The most significant bridge between these
levels is to use the data to control presentation, and control-
ling magnification is a major component of this. One major
reason for implementing transformations based on an arbi-
trary magnification field is to allow properties of the data
itself to specify the magnification. When the magnification

is entirely directed by human commands, it is only possible
to provide a small number of magnification “lenses” which
can be easily applied to an image. But much more exten-
sive mapping mechanisms are required when magnification
is data-driven, since the regions of magnification may po-
tentially have arbitrary shapes.

Using data to indicate regions of special importance is a
familiar idea; color coded contour maps display things as
concrete as altitude and as intangible as political attitude.
For a contour map of environmental pollution, the next step
beyond displaying pollution “hot spots” is to expand those
regions in order to show the pollution sources within those
regions. The exploration of hot-spots for pollution sources
can be done by a user-controlled lens, because the situation
is static and the task requires only sequential attention to in-
dividual hot spots. Automatic magnification becomes truly
significant when the information is dynamic or the user’s at-
tention must encompass the entire scope at once. An appli-
cation that displays both of these characteristics is air traffic
control. Figure 10 and Color Plate D show a simulated air
traffic control system where regions of higher traffic density
are automatically magnified4.

Figure 10. Data-Driven Magnification

4. Related Work
Leung and Apperley [8] provide a comprehensive re-

view and taxonomy of major nonlinear magnification sys-
tems. Through the introduction of the distinct concepts of
transformation and magnification functions, they describe
the basic one dimensional properties of nonlinear magnifi-
cation systems in a systematic fashion. For two dimensions,
they use the metaphor of a rubber sheet to describe the be-
haviour of nonlinear magnification systems in broad terms.
One of the goals of the current paper is to provide a more
rigorous treatment of some of the issues which they raise,
in particular the non-trivial magnification to transformation
conversion for more than one dimension.

Space-scale diagrams [3] are well suited for dealing with
typical pan-and-zoom systems; however such systems do
not share basic properties of nonlinear magnification sys-
tems, such as preserving a view of the global context. The

4The authors (who fly frequently) would suggest further human-factors
studies be carried out before this technique is tried in actual control towers.



view-dependent nature of space-scale diagrams makes them
unsuitable for describing nonlinear magnification systems,
as the lines of sight (“great rays”) which they use may intro-
duce problems of occlusion for 1D functions having more
than one maxima. These problems are compounded further
for 2D, and issues of converting magnifications to transfor-
mations (and vice-versa) are not addressed in this work.

We have already described significant differences be-
tween 3DPS [1] and our system in Section 2.1. In addi-
tion, 3DPS uses explicit foci to define the magnification,
so that increasing complexity of the magnification function
entails additional computation. With 3DPS non-occlusion
and confinement of data to fixed regions is not inherent, and
requires additional (unspecified) constraints on parameters,
whereas by its very nature our iterative system guarantees
non-occlusion and confinement to any size or shape of do-
main. Also worth noting is that 3DPS is a perspective-based
system which is closely tied to its own specific implemen-
tation of a physical viewing model. In comparison our sys-
tem is less implementation dependent, and the concepts and
techniques can be directly applied to a broad range of visu-
alization and nonlinear magnification systems.

5. Conclusions and Further Work
Nonlinear magnification fields provide a natural repre-

sentation for dealing with nonlinear magnification systems.
We have shown how the magnification effects of other con-
tinuous nonlinear magnification systems can be examined
and compared by constructing implicit magnification fields
from their transformations, providing a consistent mapping
between complex transformation and magnification func-
tions. Going in the other direction, the iterative method
which we present allows construction of a transformation
from an arbitrary magnification field specification. Our
method is simple and effective, even on complex fields hav-
ing multiple maxima,bounded regions, and areas of linear
magnification. A number of parameters can be easily tuned
to control overall performance.

Our abstract magnification field representation is expres-
sive and easy to manipulate. By removing the restrictions
of view dependence and explicit foci, our system provides
a natural and intuitive means of specifying magnification
which does not rely on the side effects of complexly in-
teracting transformation functions or surface normals. This
ease of manipulation can be exploited on a number of levels,
from fine-grained control at the individual node level to so-
phisticated user-interface techniques which can be layered
on top of our system. Of particular interest is the ability to
use properties of the data itself to define the magnification
fields best suited to visualizing that data, thus opening the
door to many new applications of nonlinear magnification.

We are investigating the use of multi-resolution meth-
ods to increase the speed and interactivity of our iterative

method. More work is also being done on providing ef-
fective interfaces to our low-level routines in a way which
takes advantage of the power and flexibility of this system.
This work is proceeding on two levels: constructing user
interfaces for interactive application, and exploring further
how properties of data can best be used to create data-driven
magnifications.
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