Algorithms for Frequent Sets on Streams Ed Robertson, edrbtsn@cs.indiana.edu

- Motivation Association Rules and Frequent Sets
- Motivation Data Streams
- Frequent Sets in Streams Current Status
- Proposed project
- Other projects

Motivation - Association Rules and Frequent Sets

- Example: market basket analysis
 - ♦ data from supermarket scanners
 - ♦ want to know when sales of products are associated
 - ♦ men who buy diapers commonly buy beer
- Example Amazon recommender
 - \diamond people who have purchased [the same set of books you have] also buy \cdots
- Requires discovering frequent sets
 - \diamond set of items occurs in at least x% of input baskets
- Problem is combinatorics
 - ⋄ many possible sets need to be considered
- Off-line case well considered: apriori algorithm prunes sets

Motivation - Data Streams

- Stream model
 - ♦ input data flow does not terminate
 - ⋄ must answer queries about input thus far received
- Example monitoring network traffic
- Problem is efficiency
 - ♦ must keep up with flow
 - \diamond no or minimal secondary storage use
 - ♦ guaranteed approximations, "time windows" typical work-arounds

Frequent Sets in Streams Current Status

- Would like frequent sets for past intervals as well as everything up to now
- In pure form, combinatoric problem even worse!
- Existing algorithm:
 - ♦ guaranteed approximation
 - ♦ past intervals within scaled windows

example: last 300 seconds, preceding 10 minutes, 3 preceding quarter hours, preceding days

Frequent Sets in Streams Proposed Project

- Many more experiments
 - ♦ what are reasonable data set characteristics?
- Reimplementation for performance
- Improve algorithms
 - \diamond amortized updates

Other Projects

- Extending EER tool for metadata and constraints
 - ♦ can graphical metadata model be translated unambiguously to relational schema?
 - ♦ can constraints be derived from graphical representations?
 - ♦ are graphical models easy for users to understand?
 - ♦ can graphical models be implemented with usable operations
- Enterprise-level modeling
 - ♦ understanding how modelers build high-level (meta-meta-) models
 - \diamond formalizing the same
 - ♦ participating in development of international standards for modelbased enterprise interoperability