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Abstract

Case-based reasoning (CBR) solves new problems by retrieving records of simi-

lar past problem solving episodes and adapting the prior solutions to �t the current

situation. While the retrieval phase of CBR has been explored with success by past

models, developing e�ective algorithms for automated adaptation remains an open

problem. The central hypothesis of this research is that e�ective case adaptation

knowledge can be learned and reapplied automatically by applying CBR to the adap-

tation process. In this model, adaptation knowledge is learned by storing the results

of successful adaptations to be reused in solving similar future problems. If there is

no relevant adaptation knowledge to reuse, general rule-based methods of adaptation

are used to build the adaptation case base. These methods model the search for

needed information as a planful process whose strategies can be captured and reused

by case-based reasoning when similar situations are encountered in the future. In

addition, as adaptation knowledge is acquired, methods for evaluating the similarity

of past cases are re�ned to re
ect the adaptability of a prior case to the new situation.

This model is implemented in the DIAL system, a case-based planner in the domain

of disaster response planning. DIAL analyzes new disaster situations and proposes

response plans to address the problems arising from the disaster. In this research, two

criteria are used to evaluate adaptation learning in the DIAL system: the eÆciency

of the solution process and the usefulness of its results. The eÆciency of the solution

process is examined through statistical evaluation of empirical results. Usefulness is

de�ned as the system's ability to generate acceptable solutions. Through analysis of

the results, the utility of this approach is measured and the contribution of the model

is judged.
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Introduction

This research introduces a new approach to automated

case adaptation in a case-based planner. In this ap-

proach, case adaptation knowledge is learned by a system

that stores derivations of solved case adaptation episodes.

This knowledge is then reused to solve future similar

problems.

A typical task for arti�cial intelligence systems is generating a sequence of steps

to solve a speci�ed problem. For example, building an eÆcient plan for transport-

ing packages to and from speci�ed points under speci�ed constraints might be one

such problem (Veloso, 1991). One approach to problems like these that has met

with some success is case-based reasoning. Case-based reasoning relies on prior ex-

perience to guide the solution generation process. In fact, under ideal conditions,

relevant prior experiences can be reused directly to solve new problems. However, in

many situations past experiences only provide ballpark solutions and require addi-

tional modi�cations before being e�ectively reused. This plan modi�cation process,

known as case adaptation, has challenged researchers and a general purpose approach

has not been demonstrated. This research introduces one method of automatically

adapting problematic plans. Our system uses an internal case-based reasoning pro-

cess to acquire case adaptation knowledge in an attempt to learn \how to adapt" by

derivational analogy within a case-based planner.

Case-based reasoning is commonly used to store and generate plans for problems in

a speci�ed domain. What has not been done is to use a separate case-based reasoning

process to address the case adaptation problem.
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An internal case-based reasoning process to support case adaptation (Sycara,

1988) in a case-based planning system has been built as part of the DIAL sys-

tem. Empirical evidence will show that this method is capable of speeding up the

solution generation process and generating better �nal solutions than when not using

this method.

This case adaptation learning process introduces several challenging new problems

that will be addressed, including: how an internal CBR process can be integrated

within a larger planning process, how di�erent cases can be combined, how to select

appropriate cases with changing system knowledge, and �nally, how rules and cases

can be combined to learn case adaptation.

This introductory chapter is divided into �ve sections. The �rst section begins by

stating the primary thesis of this research. Section 2 introduces the key concepts from

case-based reasoning. Section 3 supports our approach by outlining its advantages and

examines related work. Finally, the last two sections expand on our thesis statement

and provide questions to guide the dissertation.

An automated case adaptation process

This work addresses how knowledge can be acquired to support and guide the

case adaptation process.

Case adaptation knowledge, the knowledge needed to identify and solve case adap-

tation problems, can be stored in cases. A case is a record of a prior problem solving

episode. These cases can encapsulate the reasoning process used when solving previ-

ous case adaptation problems. Thus a system that learns case adaptation knowledge

can begin with little or no knowledge about the requisite problem solving process.

The reapplication of these reasoning traces when solving new similar problems should

enhance a planning system's ability to solve future similar problems.

Thesis claim: E�ective case adaptation knowledge can

be learned and reapplied automatically by applying CBR

to the case adaptation process.

In this research, case adaptation knowledge is acquired by storing problem solving

reasoning traces. This augments the system's knowledge and provides an implicit un-

derstanding of \how to adapt." In our system, this knowledge is stored as adaptation

cases. The development and use of this knowledge has been guided by two principles:
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1. System knowledge coded by hand is insuÆcient to handle the range of problems

a system may encounter. Close attention must be paid to the methods of

knowledge acquisition that support the reasoning processes.

2. Systems facing real-world problems must deal with unpredictable data. Over

time, solutions that were once reasonable may no longer be applicable. The

system must change to re
ect the current state of its world.

Several criteria guide our evaluation of the e�ectiveness of the internal case-based

approach to case adaptation. Our primary evaluation criteria focus on the overall

improvement of the system when case adaptation is required. This improvement can

be measured by asking two questions.

1. Is the problem solving competency of the case based planning system is ex-

tended? Are there problems that are solvable that would have unsolvable prior

to the addition of case adaptation learning?

2. Does the system solve problems faster with the addition of case adaptation

learning? With speedup learning the amount of time the system spends com-

puting solutions is decreased.

A secondary set of evaluation criteria examine the a�ect of case adaptation learn-

ing on other aspects of the problem solving process. This acquired pool of knowledge

can be used by other components to improve system performance on tasks not di-

rectly related to case adaptation. These components include similarity assessment,

a rule base of strategies for searching the system's memory, and the organization of

the system's case base.

We claim that the overall case-based reasoning process is improved by incorporat-

ing this internal learning process that happens to also apply the same CBR method.

1.1 Case-based reasoning

Case-based reasoning is the primary process driving this research. It acts as

the central planning process and provides the mechanism for the automated case

adaptation learner. This section identi�es the key concepts and illustrates the basic

operation of the case-based reasoning process. It begins by presenting several real

world examples of case-based reasoning.

Consider each of the following scenarios taken from the author's experiences.
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� As a student lacking in culinary skills, I would examine the contents of my

refrigerator and then leaf through a cookbook searching for a recipe that closely

matched the leftovers.

� A customer enters a video store searching for a movie. The clerk examines the

customer's recent rental history and suggests a movie containing some of the

same actors that were in the prior �lms the customer enjoyed.

� Searching for a bookstore in an unfamiliar city, I noticed a popular restaurant. I

remembered how in my home town this same restaurant was in close proximity

to a large shopping area. Using this knowledge, I traversed the immediate

vicinity and found a mall containing a bookstore.

As the above examples indicate, reasoning by re-using past cases is a powerful and

frequently applied way to solve problems for humans. This is supported with results

from psychological research. Rose (1989) presented evidence for the existence of a

case based process in human problem solving. Other researchers such as (Anderson,

1983) showed that humans use past cases as models when learning to solve problems.

Experts also seem to have a preference for case reuse when solving new problems

(Rouse & Hunt, 1984). It was therefore appropriate for researchers to explore a

similar reasoning approach for computer problem solvers. This led to the development

of case-based reasoning.

Case-based reasoning is solving new problems by

reusing the solutions of past problem solving episodes.

The CBR process, sometimes described as \remember and adapt" or \remember

and compare" (Kolodner & Leake, 1996), o�ers a straightforward algorithm to im-

prove the overall problem solving process of a system. The basic solution generation

process employed by case-based reasoning case be summarized as follows:

1. Create a new problem description

2. Search for a similar stored problem description.

3. Use the prior problem description and stored solution to generate a new solution

for the presented problem.
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Figure 1.1: Traditional Model of CBR

Case base reasoning works succeeds because similar problems tend to reoccur, and

the stored cases can easily provide solution to these problems.

Researchers have presented case-based reasoning as a combination of 4 separate

and primary components (Aamodt & Plaza, 1994) as illustrated in �gure 1.1. To best

describe the function of and motivation for each component, they will be introduced

in the context of a traditional CBR example. Following the example, each component

will be examined and its contribution to the process stated.

CBR example

Perhaps the most familiar example of a case-based planner is Kris Hammond's

CHEF system (Hammond, 1989). CHEF is a case-based planner that generates new

cooking recipes. The system is given a set of constraints de�ning the problem to be

solved and then uses case-based reasoning to determine a satisfactory solution.

Problem Description: A recipe is desired that satis�es the following constraints:

� Include beef in the dish
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� Include broccoli in the dish

� Make a stir-fry dish

The �rst step is to retrieve the recipe. Using the constraints of the dish as fea-

tures, the CHEF planner �nds a recipe BEEF-WITH-GREEN-BEANS in its library

of recipes. This recipe is an exact match of two constraints, in that it is a stir-fry dish

and includes beef, and a partial match of a third constraint by way of generalization

(both green beans and broccoli are vegetables).

The next step is to reuse the prior case in the new context. A new recipe is

created using the beef and green beans recipe with the substitution of broccoli for

the green beans. Next, CHEF tests each of the proposed recipes with a simulator

program designed to provide useful feedback. Before the simulation, a set of expecta-

tions for the recipe is generated. Included in Hammond's example are the following

expectations:

� The beef in now tender.

� The disk now tastes savory.

� The broccoli is now crisp.

When the simulator completes, one of these expectations is not satis�ed. \The

broccoli is now crisp" is not satis�ed. Instead it is reported that in the proposed

recipe \the broccoli is now soggy."

Following that the new plan must be revised. Assuming that the recipe is \in

the ballpark" of a solution, CHEF attempts to determine the cause of the problem

and attempts to repair it. Domain rules assist in determining that the problem was

caused by the broccoli absorbing the liquid of the meat as they cooked.

One strategy, among many, used to repair problems is to split apart steps of

the recipe. Splitting the steps in the current recipe creates a recipe with broccoli

cooked separately from beef. Then a step is added to recombine the recipes after

this subprocess is completed. The desired result is achieved with the proposed case

adaptation. A second pass of the simulator veri�es that this recipe has satis�ed all

of the expectations.

Finally, the successful plan is retained. The new recipe is stored in the system's

case base for future reuse. Additional knowledge is recorded describing the new rule

on how to solve this type of interaction problem. Both can be used to solve similar

problems in the future.
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Figure 1.2: Model of Retrieval

CBR components

The CHEF example introduced the primary organization of the CBR process. The

four components, retrieve, reuse, revise and retain are now described in greater detail.

Each component is listed along side the key issues involved in its implementation as

well as the unique knowledge necessary for that component's successful use.

1. Retrieval:

The retrieval process, presented in �gure 1.2 and adapted from Leake (Kolodner

& Leake, 1996), receives as input a description of the current problem. When

�rst encountering a new problem, a ballpark solution needs to be located in the

memory of past cases. This process assumes two factors: �rst that a usable

case exists somewhere in memory, and second, that cases, once located, can be

evaluated on the basis of their similarity to the current problem.

Once a case has been successfully retrieved, the next step is to apply the match-

ing case to the new situation. This is the task of the reuse phase of case-based

reasoning.

2. Reuse:
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With the retrieved case, the system attempts to reuse the case in the current

context. This requires it to identify any potential problems with the reuse of

the plan. An evaluation subcomponent attempts to identify these potential

problems so that they may later be repaired. Several di�erent approaches to

evaluation have been used by CBR systems. These methods include testing the

proposed solution in the real world or a simulated world (Hammond, 1989),

asking a user for feedback (Oehlmann, Sleeman, & Edwards, 1993), examining

the outcomes of previous cases (Kolodner, 1988a) or accessing a rule base that

provides information about well known problems. If the evaluation identi�es

no relevant problems, then the solution can be used and the new case will be

retained. Otherwise, the solution is sent with a list of identi�ed problems for

revision. In practice, the boundaries between the reuse and revise phases are

blurred until an acceptable solution is built.

3. Revise:

The revision component performs case adaptations as necessary to repair the

problems identi�ed during evaluation. However, case adaptation can be diÆcult.

To repair a problem, the problem must �rst be understood. For example, a

student 
unking an exam could have many potential causes: the student may

not have studied, the exam was surprisingly diÆcult, or the teacher graded the

student unfairly. In order to prevent the student from 
unking in the future,

it is necessary to assess blame to a cause so an appropriate solution can be

generated.

However, it is non-trivial to assign blame for the problems identi�ed by the

evaluator. One solution could cause a host of other problems, some far more

diÆcult to solve than the initial problem. In fact, some problems may require

knowledge that is outside the scope of the original problem domain. These types

of problems often require that a separate knowledge base be created exclusively

for the use of the case adaptation module.

Due to these diÆculties, case adaptation is often performed using static adap-

tation rules or by user intervention. Automated case adaptation has been con-

sidered by many to be an intractable problem. The problem is so acute that

experts in both CBR research (e.g., Kolodner, 1991) and applications (e.g., Bar-

letta, 1994; Mark et al., 1996) agree that it is not currently practical to deploy

CBR applications with automatic case adaptation.

However, research has begun to examine this problem in greater depth as meth-

ods are proposed to better understand the case adaptation process and the types

of knowledge required to perform them (Hanney, 1997). In fact, one central idea

of this thesis describes a mechanism for learning to �nd good case adaptations
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Figure 1.3: Evaluation/Adaptation Subprocess

for certain classes of problems.

Case adaptation knowledge can be learned for certain

classes of problems.

As repairs are made, the case adaptation component passes the repaired solu-

tion back to the reuse phase to ensure that other negative side-e�ects do not

occur. If other problems are found, control is returned for additional revisions.

This subprocess, shown in �gure 1.3, continues until no additional problems are

found. The �nal solution now can be used and is passed to the retain phase.

4. Retain:

When the �nal solution is sent to be retained, it is ready to be placed in the case

base. A key issue for retention is where to store the �nal solution in the case
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base. A well organized case base can reduce retrieval time and thus decrease

the total overhead of the CBR process. The retention process provides the

mechanism for the system to learn from the problems that have been solved

from scratch and gives the opportunity to reuse the solutions in future similar

problem episodes.

1.2 Motivations for addressing the case adaptation

problem

Case-based reasoning has proven e�ective in a wide variety of domains. For a

survey of several such systems see Kolodner (1993) and Leake (1996a). However,

case-based reasoning without case adaptation limits the types of problems that a

system can solve, and case-based system developers have encountered diÆculties im-

plementing automated case adaptation. and some systems have chosen to avoid the

issue entirely. As one CBR text observes (Kolodner, 1993), considerable domain

knowledge may be needed to guide the case adaptation process. Further, the knowl-

edge must be organized in a way to facilitate the case adaptation process. While this

research does not dispute the necessity of such knowledge, it does address new ways

of acquiring and reusing case adaptation knowledge.

Some other approaches to addressing the case adaptation problem have met with

some success. Some previous case adaptation systems have relied on rule sets to

support its process (Koton, 1988). This approach has limitations on how developers

create the rules and subsequently determine the relevancy of the rules. Regardless of

the number or type of rules created, gaps in the knowledge are likely to exist. In fact,

even if rules alone were suÆcient to solve the case adaptation problem, the creation

of these rules would remain a diÆcult problem. New approaches that avoid these

problems are needed.

Case-based reasoning provides a method for �lling the gaps in knowledge left by

rule based methods and their equivalent. By building case adaptation knowledge from

past case adaptation episodes, a system can automatically acquire the knowledge that

otherwise would be unavailable. CBR is a logical choice to use for this task as it is

often applied to domains that are poorly understood or diÆcult to codify. Thus the

CBR case adaptation process can succeed in developing the correct knowledge where

other methods might have greater diÆcult.

This research has taken the view that much of the knowledge needed to perform

case adaptation can be gathered through a meta-reasoning process. Case-based rea-

soning is perfectly suited to the task of acquiring this case adaptation knowledge and
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thus helping to alleviate many of the knowledge acquisition issues. However, several

other motivations exist for applying a case-based approach to case adaptation. The

next subsections identify advantages of this approach and mentions other ways the

problem has been studied.

Advantages of a CBR approach to case adaptation

A case-based reasoning approach to case adaptation provides several advantages

for an automated solver. With case-based reasoning, a set of problem-solving episodes

are stored and reapplied when similar problems are encountered. Each added case

extends the problem solver's coverage of the solution space. However, despite this

coverage, the problem solver may encounter certain types of problems for which its

current knowledge is insuÆcient to �nd solutions. For these situations, additional

knowledge is required to solve these problems. Case adaptation knowledge is exactly

the type of knowledge needed.

If case adaptation knowledge is to be acquired then an internal learning mech-

anism needs to exist. The use of case-based reasoning for this internal process has

many advantages. Many other types of learning require signi�cant amounts of a

priori knowledge about the organization of memory and thus would have diÆculty

in identifying any regularity that might exist. Case-based reasoning, however, has

no such constraints on its knowledge sources. Instead it provides a useful paradigm

to learn case adaptation knowledge since CBR has been shown to be successful in

domains that are not fully understood and for which no complete theory on the orga-

nization of memory exists. The internal CBR process used to support case adaptation

learning can begin to acquire useful knowledge that can be reapplied to future case

adaptations from the �rst instances of learning.

Some researchers have proposed di�erent internal learning processes such as an

inductive approach (Hanney, 1997), case based estimate re�nement (McSherry, 1998),

genetic algorithms (Purvis & Athalye, 1997; de Silva Garza & Maher, 1999) or even

decision tree (Shiu, Sun, Wang, & Yeung, 2000) approaches to case adaptation. These

methods have had some success but do not result in a robust and dynamic mechanism

for handling case adaptation in a changing environment or adequately address the

knowledge acquisition issue. Others, such as Sycara (1988), have successfully used

case-based reasoning to support a case-adaptation process. However, this method was

limited in the ways it could reapply case adaptation knowledge. Speci�cally, it was

given well-de�ned heuristics and rules on how to apply the stored case knowledge.

One possible limitation of using case-based reasoning is that given a retrieved case,
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it is not always clear how that case should be appropriately reapplied. This is espe-

cially pertinent to our case-adaptation module which relies on accurately reapplying

case adaptation knowledge to solve diÆcult problems. This issue must be addressed

in any evaluation of our method.

Motivations from psychology

While there is suÆcient evidence from case-based reasoning literature to suggest

the feasibility of our approach, a similar process exists within humans and has been

studied by psychologists. Humans tend to be analogical reasoners in certain prob-

lem solving situations. Several researchers have described experiments where humans

change their approaches to problem solving when additional knowledge can be applied

analogically (Chi, Feltovich, & Glaser, 1981; Suzuki, Ohnishi, & Shigermasu, 1992).

The additional knowledge, the analogue to our case adaptation knowledge, aids hu-

mans in �nding quicker and more accurate solutions than when compared to subjects

without the additional knowledge. The knowledge used in these studies was most

often experiential in nature and thus represents precisely the knowledge we suggest

using to solve new case adaptation problems. While human methods may not always

carry over to computer methods, this is reasonable evidence that such an approach

is feasible and has been bene�cial in at least one intelligent system.

1.3 Case based case adaptation

This section outlines the basic reasoning process required for case-adaptation. It

begins by describing several of the knowledge acquisition issues and how they pertain

both to case based reasoning and case adaptation. Next, our approach to automated

case adaptation is presented in terms of case based reasoning. Finally, we highlight

several advantages of acquiring case adaptation knowledge by suggesting areas beyond

case adaptation where this knowledge can be used.

Knowledge supporting the CBR process

Learning by acquiring new cases is an integral part of the CBR process: each

problem-solving episode itself provides a new case to save for future reuse. However,

these cases form only one pool of knowledge that support learning in this framework.

CBR systems rely on at least four types of knowledge:
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� The case base: The stored solutions known to the system

� The indexing scheme: The features used to retrieve cases from the case base.

These features are often prede�ned and �xed within the system.

� Similarity criteria: The method used for selection of candidates retrieved

during the retrieval process. Like indexes, the criteria used have traditionally

been prede�ned by the user.

� Case adaptation knowledge: The stored problem solving episodes, as de-

scribed above, provide a rich source of knowledge that enables many types of

learning.

These four types of knowledge exist in support of various aspects of the CBR

process. For example, the indexing scheme supports the retrieval of relevant cases

from the case base. While the case base changes as new solutions are accepted by

the system, the other three knowledge sources are generally unchanging and de�ned

from the outset of processing in the system. However, this dissertation proposes a

new method for acquiring case adaptation knowledge. With the acquired knowledge,

there is a potential to a�ect the other knowledge sources already in the system. One

of our claims is that the stored plan cases can be reapplied more e�ectively if better

case adaptation knowledge is available.

Case based reasoning can be further improved by augmenting the retrieval simi-

larity criteria with the stored case adaptation knowledge. Stored cases can be selected

for reuse based on how easily the system can subsequently adapt them. The interac-

tion of di�erent knowledge sources to augment and overcome the de�ciencies of one

another has previously been established and documented (Richter, 1995). However,

the types of knowledge interactions available with the addition of learned case adap-

tation knowledge have not been examined. This dissertation describes some of these

interactions and illustrates their a�ect on the overall CBR process.

Acquiring appropriate knowledge

The use of case adaptation knowledge by our automated case adaptation method

involves two phases: the acquisition of appropriate knowledge, and the successful

reapplication of that knowledge. This subsection examines the acquisition issue, while

subsequent subsections address the reapplication issue. The knowledge acquisition

process itself is a�ected by several decisions which guide our description: the learning

methods used, how knowledge from di�erent sources is integrated, and the e�ort

expended during the acquisition phase.
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This approach focuses on developing individual learning strategies for each type of

knowledge required. When the speci�c knowledge is acquired it can then be integrated

into the whole CBR system. This is not a unique approach. Learning methods already

exist for re�ning indexing criteria (see (Kolodner, 1993)); learning methods have also

been applied to case adaptation knowledge (Hanney, 1997; Sycara, 1988); and some

CBR systems already combine multiple forms of learning (Hammond, 1989).

We introduce three questions in order to provide guidance in this document for

addressing knowledge acquisition issue.

1. When building internal learning processes for knowledge acquisition, what de-

termines an e�ective learning method?

2. How can these processes be used in order to maximize the gain of useful knowl-

edge? Can they noticeably improve overall system performance?

3. What is the cost incurred by the knowledge acquisition phase? Are subsequent

gains in speed or accuracy lost when the acquisition process is accounted for?

When knowledge is acquired in a CBR system relevant to a speci�c subcompo-

nent, such as case adaptation, can this knowledge be integrated into the knowledge

of other system components One of our claims is that knowledge acquired in one

subcomponent may be reused in support of other subcomponents. When possible,

this enhances the bene�ts of subcomponent knowledge acquisition. We will show that

case adaptation knowledge can be used beyond solving case adaptation problems and

will improve the operation of other aspects of the CBR process. In the following

subsections, we examine how knowledge is acquired and reapplied for case adaptation

using an internal case-based reasoning system.

Learning how to adapt

We have described several potential advantages of learning case adaptation knowl-

edge. However, the internal learning process comes at the price of added system

overhead as well as some form of training period before becoming e�ective. An obvi-

ous alternative would be to hand code the case adaptation knowledge in the form of

rules that the system could apply when problems are encountered. This would be a

preferred method if rules did not su�er from begin static and brittle:

� Static: Rules are �xed once created. Most rule sets are unable to adapt to

changes in system knowledge. If system knowledge is changed, all of the rules

may need to be recoded by hand. This can be both a tedious and error-prone

process.
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� Brittle: Even the best though out rules are not likely to provide complete

coverage in anything but the simplest domains. As such, situations inevitable

arise for which the rule set does not provide solutions.

In the place of rules, our approach acquires the needed knowledge with case-

based reasoning. The case-based framework can circumvent many of the traditional

problems of rule-based systems, and its learning can be applied immediately. Our

approach works by beginning with a small set of domain independent rules that can

be applied to the adaptation process. These rules are developed from the types

of operations that can be performed directly on the system's memory, providing a

comparatively unguided search of system memory. If a solution is found using this

rule-based approach, then it can be stored as an adaptation case. The adaptation

case can be reapplied using derivational analogy on future similar case adaptation

problems. As this process continues, the case adaptation knowledge of the system

will change from a primarily rule-based system to a primarily case-based system.

One obvious concern is whether the problems that plague rule sets a�ect our

approach as our method begins with a foundation of rule-based knowledge. The rules

used in this approach are not selected arbitrarily but rather are an exhaustive list of

allowed search operations. These operations provide the foundation for all possible

reasoning in the system. Our approach learns new ways to combine multiple rules

to create task and domain speci�c patterns of higher reasoning. Further, as domain

speci�c rules are augmented by new learning over time, they do not su�er from the

problems of static pre-de�ned rules.

This dissertation describes an automated case adaptation

component that acquires knowledge through an internal

case-based process.

Reapplying case adaptation knowledge

Once adaptation cases are built and stored, in order for the system to be e�ective,

these cases must be reapplied on future problems. The reapplication of these cases to

new problems presents some diÆculties. The reuse of adaptation cases can occur in

two di�erent ways. These two methods provide a bridge between the adaptation prob-

lem and the desired solution. The �rst method, transformational analogy, directly

applies the solution from a similar prior problem to the new situation. With this

method the same overall solution structure is maintained and the relationships in the

solution are kept. A second method of reapplication is derivational analogy(Carbonell,
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1986; Veloso, 1994). Using this approach it is not the previous solution that provides

the guidance for the new situation but instead it is the reasoning steps that were

taken to achieve the past solution that are reapplied in the new context. Transforma-

tional analogy is akin to taking a recipe and substituting new but similar ingredients

to form a new recipe. A derivational approach to cooking would examine how the

original recipe was created and try to apply the same recipe creation strategies to

solving the new cooking problem.

Consider for example how a student might approach studying for exams. On a

mathematics exam a student might practice problems repeatedly until con�dence is

achieved. In other math related disciplines (such as a physics course), the same ap-

proach can be applied directly as a form of transformational analogy and the student

can expect success. However, if the same student decides to study for a literature

exam, that student should reevaluate this method. One approach would be to consider

what topics were stressed in the class and focus on mastering those concepts. An-

other approach would be to ask other students who had previously taken the course.

So rather than directly reapplying the approach used in the mathematics course, the

student determines the overall strategy used to pass the exam. This reasoning process

allows the student to prepare better for the literature exam than if literature word

problems are sought after. When performing case adaptations on a plan, a choice

must be made between a transformational or derivational approach to reapply.

Case adaptation and similarity

Another challenge for adaptation case reapplication is how to coordinate multiple

learning processes. If, for example, the top level CBR process produces a set of plans

that cannot be adapted using the stored case adaptation knowledge then there is no

improvement in the system. To remedy this problem, one approach is to retrieve plan

cases from the case base that will require the least amount of case adaptation.

Similarity and retrieval. The standard retrieval process for plan cases is driven by

a similarity assessment process. This process uses surface features from the problem

description to identify appropriate stored plan cases to reuse. Several candidate cases

can be selected quickly using this approach, but none of these cases has any guarantee

that it will be easily adaptable. When no case adaptation knowledge exists, this

approach is justi�ed. However, if case adaptation knowledge is stored in the system,

similarity assessment can be re�ned.

Case adaptation knowledge and similarity. Case adaptation knowledge stored

in adaptation cases can be exploited to evaluate each candidate plan case on the
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basis of its expected repair cost. With a repository of adaptation cases containing

the necessary statistical information, it is straightforward to score the adaptability of

candidate cases. Thus as more case adaptation knowledge is acquired the more re�ned

the similarity criteria can become when these two knowledge sources are coupled.

The learning of case adaptation knowledge provides op-

portunities for learning in other areas of the system.

1.4 Thesis statement

This dissertation proposes the use of an internal CBR process to support case

adaptation within the framework of a case-based planning system. The creation of this

internal CBR process enables the system to acquire new and useful case adaptation

knowledge which can be reapplied throughout the planning process.

Learned case adaptation knowledge in the form of adap-

tation cases can support and contribute to a more robust

and eÆcient case-based reasoning process.

Potential problems with this approach

The use of an internal case-based reasoning process to support automated case

adaptation is a promising approach to this diÆcult problem. However, several dif-

ferent factors could limit the e�ectiveness of this approach or cause it to fail. Thus

establishing our thesis requires demonstrating that the following potential pitfalls do

not apply, or can be overcome.

� The overhead of the internal CBR process could be larger than the

time savings. One of the primary goals of case adaptation learning is to

speedup the planning process. However, if the cost of retrieving adaptation

cases and managing the adaptation case base is greater than any savings, then

this approach is not worthwhile.

� Past adaptation solutions may not be easily reapplied to new prob-

lems successfully. An assumption is made in this research that stored adap-

tation cases can be reapplied to future similar case adaptation problems. It

is not clear that the prior solution derivations will generalize to new problems

that are encountered.
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� Adaptation cases may not improve on the knowledge already stored

in response plan cases. Plan cases that are stored may implicitly cover the

same knowledge that the adaptation cases attempt to store. A good retrieval

component might select plan cases that already contain the appropriate solu-

tions to the new problems assuming that the case base has suÆcient coverage

of the solution space. If the results from retrieval only systems are as good as

the results when case adaptation learning is added, then this would eliminate

the need for case adaptation knowledge.

� Evaluation of problems in candidate plans may be imperfect and pre-

vent quality case adaptations from being performed. While not the

primary focus of this research, the evaluation of candidate plans is central to

the creation of acceptable new plans. Evaluation is a key component of the case

adaptation process both in the identi�cation of problems and the assessment

of the proposed solutions. If the evaluation component fails in its task, the

remainder of the system's performance is suspect.

� The credit assignment problem could make the reapplication of adap-

tation cases diÆcult. When reapplying a reasoning trace from past case

adaptation episode, it can be diÆcult to determine why a given reasoning step

was performed. When using this trace in a di�erent context, the system makes

determinations as to the best way to reuse the trace. If the system's assessment

about the reasoning is 
awed then it is diÆcult to accurately judge the a�ect

of adaptation cases on the planning process.

� Traces of prior problem solving episodes may be too speci�c to be

applicable to new situations. One premise of this research is that problems

of a given type can be solved using the same reasoning steps independent of the

context of the problem. While this may not hold true for every example, the

reapplication of adaptation cases will be ine�ective if it is not possible some of

the time.

1.5 Central research questions

This dissertation will try to answer several central questions about the addition

of the internal case-based adaptation process to case-based reasoning. Several of the

general questions are asked here.

� Does the automated case adaptation component improve the CBR process in

terms of eÆciency and solution quality?
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� What overhead is created by this case adaptation process?

� What is the relative contribution of each component in the CBR process and

how does case adaptation interact with the other components

� Does the integration of several learning models and knowledge sources increase

the overall eÆciency of the system without incurring further overhead?

� What is the e�ect of an increased number of cases requiring processing and

management during each problem solving episode and what are ways to manage

these cases?

� How will this model scale up to a larger system and what are speci�c ways for

which the utility problem can be addressed?

More speci�c questions that we will address include:

� Is the addition of a case adaptation learning component prohibitively expensive

relative to any improvement to the overall CBR process?

� Does case adaptation learning provide an equivalent or synergistic mode of

learning when compared with traditional case learning?

� Does the acquisition of case adaptation knowledge provide other opportunities

for learning to occur in the CBR process?

� What role is played by the selection of the knowledge base to the success or

failure of learning?

� How does this model of reasoning compare to other established models of case

adaptation in terms of both eÆciency of solution and coverage of the solution

space?

� What is the bene�t of including separate reasoning subprocesses such as case

adaptation learning and similarity learning and how does the interaction of

these subprocesses a�ect the overall reasoning process?

1.6 Thesis overview

This dissertation is organized into seven chapters. Chapter two illustrates the

complete processing of the system through the use of an example. Chapter three
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presents a detailed view of the case adaptation learning component. Chapter four

describes adaptive similarity techniques that can exploit case adaptation knowledge.

Chapter �ve lends empirical support to the validity of these approaches and o�ers

some perspective to the entire process. The �nal chapter concludes this dissertation

and places this research in the context of the current state of the art.



2

Overview of the DIAL System

This chapter introduces the DIAL system, the testbed

system for the case adaptation learning process. The

chapter will describe and illustrate the processing of

DIAL through the use of a single extended example.

This chapter describes the overall processing of the testbed system DIAL that was

used to examine the ideas presented by this research. A example from the system is

traced to show how di�erent learning methods combine to support the overall planning

process. The chapter begins with a broad outline of the DIAL system, highlighting

the primary components and identifying central areas of interest to this research.

Following this, a second example provides a step by step illustration of the learning

processes as they occur in the system. Each of the learning strategies used by DIAL

is illustrated in the context of the system.

2.1 DIAL

DIAL, for Disaster Response Planning with Introspective Adaptation Learning,

operates in the domain of disaster response planning for natural and man-made dis-

asters. Examples of such disasters include earthquakes, chemical spills, 
oods, forest

�res, and \sick building syndrome," in which occupants of a building fall victim to

problems caused by low air quality inside a building. Studies of human disaster re-

sponse planning show that case-based reasoning plays an important role in response

planning by human disaster planners (Rosenthal, Charles, & Hart, 1989). In fact,

human disaster planners often are trained using a case-based process. They learn
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the possible successes and failures of response planning by examining real world prior

episodes.

DIAL starts with a library of domain cases|disaster response plans from pre-

vious disasters|and general (domain independent) rules about case adaptation and

memory search. Like other case-based planners, it learns new plans by storing the

results of its planning process. Unlike the architectures of some traditional planning

systems, the DIAL architecture stresses the components that implement automated

case adaptation and improve the overall case adaptation process.

When DIAL successfully adapts a response plan to a new situation, it stores not

only the problem solving episode in the form of a disaster response plan, but also two

types of case adaptation knowledge. Memory search cases, encapsulating information

about the steps in the memory search process, and adaptation cases, encapsulating

information about the case adaptation problem as a whole, are stored to be reused

when similar case adaptation problems are encountered.

The entire DIAL system includes a schema-based story understander (that receives

its input in a conceptual representation), a response plan retriever and instantiator,

a simple evaluator for candidate response plans, and a case adaptation component to

adapt plans when problems are found.

DIAL's basic processing sequence is as follows:

� A story is input to the system.

� Candidate response plan cases for similar problem situations are retrieved, using

static similarity assessment techniques to retrieve a set of cases from similar

prior disaster situations.

� A second similarity assessment process uses learned information about the dif-

�culty of case adaptation to select the candidate case whose response plan is

expected to be easiest to adapt.

� The response plan is evaluated and problems which need to be repaired are

identi�ed and packaged for case adaptation.

� Problems in the response plan suggested by the selected case are repaired by

case adaptation. During case adaptation, DIAL learns by storing traces of

the case adaptation process and of the memory search process used to �nd

needed information. If its case adaptation attempt fails, DIAL can also learn

by recording a trace of a user-guided case adaptation process.

� The resulting response plan case is stored for future reuse.
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Figure 2.1: DIAL System Processing

Each step is discussed in the following sections. Figure 2.1 can be used as a guide

to the 
ow of control of the system. This �gure emphasizes the interaction of di�erent

knowledge sources in the case adaptation process. Both the case base and the rule

base provide concrete information to support case adaptation while the similarity as-

sessment, evaluation and case adaptation provide other forms of knowledge necessary

to repair the current plan.

Story understanding component

The DIAL system contains a primitive story understanding component. It takes

conceptual representations of news stories and extracts the basic information to be

stored in a representation in the spirit of conceptual dependency (Schank, 1975). To

illustrate, one of the examples processed by DIAL involves the following story: At

Beaver Meadow Elementary School in Concord, New Hampshire, students have been

complaining of symptoms like unusual fatigue, eye irritation, respiratory problems,

and allergic reactions from being inside the building. When DIAL processes this story,

a straightforward schema-based understanding process (Cullingford, 1978) identi�es

the disaster as an air quality problem. DIAL next attempts to retrieve and apply a

response plan for a similar disaster.
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Retrieval component

Important features, determined by pre-de�ned slots in a frame-based represen-

tation, are used as a primary index for retrieving a relevant response plan case. In

DIAL, cases are assigned a score and ranked based on their feature similarity to the

new situation. Important semantic features include but are not limited to: the type

of disaster, the location of the disaster, and the primary victims of the disaster. The

response plan retrieved for the Beaver Meadow story is the plan for the following fac-

tory air quality problem: A & D Manufacturing in Bangor, Maine, has recently come

under pressure from workers and union-representatives to correct perceived environ-

mental problems in the building. Workers have been a�ected by severe respiratory

problems, headaches, fatigue, and dizziness.

Instantiation component

The response plan that has been retrieved is used as the primary guide in the

development of a new plan for the current situation. A plan outline, based on the

structure of the prior plan, is constructed after which various elements of the plan,

including events and roles, are instantiated. Some prior role-�ller values can be

directly mapped into the new situation while other values are placed into the new

plan without change after which the new plan is ready for evaluation. In our above

example, a new plan is built with some �llers (e.g. the prior location (Bangor))

replaced by parallel �llers in the new situation (e.g. the new location (Concord)).

Other values, such as the \worker's union," are left untouched and placed into the

new plan to be examined by the evaluator.

Evaluation component

After instantiation, each response plan selected is evaluated to identify possible

problems. Evaluation in the DIAL system is a two step process, DIAL makes a

coarse grained assessment of the types of problems that might exist and identi�es

obvious problems, while a human user provides backup evaluation in the form of

problem re�nement. Each candidate role-�ller value is analyzed and if the value is

problematic, the user identi�es the type of problem that caused the incompatibility.

In this example, the response plan for A & D Manufacturing involves notifying the

workers' union. DIAL's evaluator determines that the noti�cation step does not apply

to the current situation, because of a con
ict with normative type restrictions on union

members: elementary school students do not belong to unions. (The evaluation and
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problem characterization process is similar to that described in Leake (1992b)). In

the example, the user determined the union problem to be a role/�ller mismatch.

Case adaptation component

DIAL's case adaptation component receives two inputs: an instantiated disaster

response plan and a description of a problem in the response plan requiring case

adaptation. DIAL next applies a suite of available methods to attempt to �nd a

suitable solution to the problems identi�ed by the evaluator. If possible, the system

will make use of prior case adaptation knowledge to guide the new search. The so-

lution to the Beaver Meadow School problem is found when the system determines

that an authority relationship exists between the union and the workers and iden-

ti�es a similar relationship which exists for the students. When it attempts to �nd

alternate role-�llers with the same relationship, several possibilities arise including

the student council, and the school administration. The user rejects these �llers but

another alternative, the student's parents, is accepted as appropriate. This enables

the system to replace weak knowledge (in the form of knowledge constraints) with

speci�c alternatives from memory.

Storage component:

With a new response plan built, DIAL stores into its case base the entire new

plan. In addition, a description of each case adaptation episode is stored as a case

adaptation case. This storage process provides the system with an easier method of

dealing with similar situations in the future, both on the plan level and at the case

adaptation level.

DIAL's knowledge base

The knowledge used to solve problems was stored in a central hierarchical memory.

This memory consisted of di�erent concepts linked together via linguistic relationship.

For example, the concept of automobile might be related to the concepts of car and

truck via a parent/child relationship. This memory could be probed for needed in-

formation or searched to �nd concepts matching speci�ed constraints.
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2.2 Case adaptation learning

The previous section outlined the basic processing and architecture of the DIAL

system within the context of the Beaver Meadow example. This section introduces

the case adaptation process and the structures used to support that process in the

frame of a second example.

This example processed a newswire report that an earthquake had occurred in

Liwa, Indonesia. The DIAL system accepted the story and attempted to outline an

appropriate response plan for the situation. No response plan that was currently in

the response plan case base scored high with regard to similarity, however, the most

appropriate response plan was one used for an earthquake in Los Angeles. This was

selected primarily on the basis of the severity of the disaster and the lack of many

available cases. The next subsection describes the representation used by the DIAL

system to store this response plan case.

Plan representation

All plans in the DIAL system are stored as response plan cases. Figure 2.2 shows

the system representation of the retrieved response plan from the Los Angeles earth-

quake disaster. Response plans are stored and retrieved from a central response plan

case base that is seeded with a small set of preselected response plan cases. The four

initial plans were hand coded and allow the system a starting point for the creation

of new plans.

The response plan architecture consists of several components that include:

� Index: The index provides a concise description of the features of the disaster.

It includes the location of the disaster, the type, the severity of the disaster and

any other knowledge given by the initial disaster problem description.

� Events: Events are the set of actions to be performed in response to the dis-

aster. Events might include mobilizing the police and developing rescue teams.

� Role Fillers: The �llers are individuals, or groups that perform the required

roles of the events.

� Constraints: The constraints are a priori knowledge of what values or types

of values are permissible as role �llers.
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� Statistical Information: This information is used for external analysis of the

system as a whole and is not directly applied during system processing. The

data stored includes the time taken to retrieve the response plan, evaluate the

response plan and adapt the response plan. While not shown in the printed

representation this information is critical for proper evaluation of the approach

described.

By examining the example in �gure 2.2, several important features can be high-

lighted. The response plan structure begins with labels identifying the structure type

and the name given to the plan. The name of the plan is computer generated and

based on the location of the disaster and the type of disaster. Following this, the type

of plan is given. This information can be used by the system to locate the appropriate

plan, to store a new plan, or to �nd other plans of the same type. The roles and �llers

of the plan appear next. The role names are given by the prede�ned response plans

that form the initial case base. In this example, roles such as police and residents

are placeholders for information that will be used in the events. The �llers for these

roles use a non-standard representation for AI systems. The Wordnet knowledge base

provides DIAL with access to a large set of interrelated concepts. Despite Wordnet's

less optimal organization for a reasoning system, it is adequate and more practical

than coding a complete knowledge base by hand. In fact, the 
aws for reasoning of

its organization makes it a more challenging basis for case adaptation learning (see

section 2.6). The events include the list of participants in the action. These partici-

pants are speci�ed with the same tokens used for the role names to allow for proper

matching of �ller values. When submitting the �nal plan to the user, each of the role

place holders would be substituted with the corresponding and appropriate role �ller.

Response plan creation

New response plans are created by reusing the information stored in past response

plan solutions. One of the key issues in the reuse of past cases is the mapping of role

�llers from the old situation to the new situation. This mapping can be non-trivial

as new situations may require di�erent types of knowledge to satisfy the speci�ed

constraints. Several approaches are used to support the mapping and selection of

appropriate �llers for each required action including: examining the availability of

resources, analyzing the constraints of the actions and applying the knowledge the

system stores about groups and individuals. In the example response plan, the \na-

tional guard" was selected as the best �ller for the prevent-looting action. However,

in other situations using the same stored response plan as a starting point for solving

a new problem, the \national guard" may be an unavailable resource and a di�erent

�ller must be found to better match the current situation.
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Response Plan *structure type

la-earthquake-response-plan *response plan name

(earthquake-response-plan) *response plan type

"Earthquake in Los Angeles" *printable name

((police "police") *list of roles and common �ller types

(residents "resident")

(location

((city "los angeles")

(state "california")

(country "united states")

(continent "north america")))

(condition "catastrophic")

(national-guard "national guard")

(�re-dept "�re department")

(relief-group "red cross")

(aid-group "united states government")

(shelter "shelter"))

((rescue-survivors *list actions and their participants

("rescue"

(actor national-guard)

(object residents)))

(prevent-looting

(("defend" (actor national-guard))))

(build-shelters

("construct"

(actor relief-group)

(object shelter)))

(provide-disaster-relief

("provide" (actor aid-group)))

(remove-rubble ("excavate" (actor �re-dept)))

(inspect-area ("inspect" (actor �re-dept)))

(police-patrol ("patrol" (actor police)))))

Figure 2.2: Example of a response plan case
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Response plan evaluation

Since the primary goal of the system is the creation of new response plans and the

system accomplishes this by reusing stored plans, identifying problems with the prior

plan in the new situation is a crucial precondition, however problem identi�cation is

not a research issue of this dissertation. DIAL examines the candidate plan using user

de�ned rules that describe the appropriateness of �llers in di�erent contexts. When

the rules are insuÆcient for evaluation, the user can provide backup evaluation.

In the mapping of the Los Angeles plan to the Liwa disaster, a straightforward

mapping from the old location to the new location is possible and does not cause

any identi�able problems. However, the suggestion of using the Red Cross to provide

aid and build shelters for the survivors of the disasters presents a problem. In most

situations, this �ller would be appropriate, however, the infrastructure in Liwa is

unable to allow access to the a�ected area. This identi�ed problem is then passed to

the case adaptation component which attempts to repair this problem by �nding a

�ller that can overcome this problem.

Methods of case adaptation

There are three primary methods of case adaptation in the DIAL system. Given

inputs describing a candidate response plan and a problem to be adapted, the process

performed by DIAL's case adaptation component is as follows:

1. Case-based adaptation: DIAL �rst attempts to retrieve an adaptation case

that applied successfully to a similar previous problem. If the retrieval is suc-

cessful, that case is re-applied and processing continues with step 3.

2. Rule-based adaptation: When no relevant prior case is retrieved, DIAL se-

lects a transformation associated with the type of problem that is being adapted

(e.g., role/�ller mismatches, such as the mismatch between unions and students,

are associated with substitution transformations: a mismatch can be repaired

by replacing the role being �lled or how the given role is �lled). Given the trans-

formation, the program generates a knowledge goal (Ram, 1987; Hunter, 1989)

for the information needed to apply the transformation. E.g., for substitutions

of role-�llers, the knowledge goal is to �nd an object that satis�es all the case's

constraints on the object being replaced.

The knowledge goal is then passed to a planning component that uses introspec-

tive reasoning about alternative memory search strategies (Leake, 1994a, 1995b)

to �nd the information needed. This search process generates a memory search
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plan whose operators include both an initial set of memory search strategies and

memory search cases stored after solving previous case adaptation problems.

3. Manual adaptation: If both automated approaches to case adaptation fail,

DIAL sends the problem to the user to be solved. The user guides the DIAL sys-

tem through \how" the case adaptation should be performed, which is recorded

and stored as an adaptation case.

The following subsections elaborate on the creation of knowledge goals, the mem-

ory search process, and the adaptation case representation using the Liwa earthquake

story as an example.

Knowledge goal creation

In the Liwa example, there are no relevant cases in the system with which to

perform case-based adaptation and consequently the system falls back on rule-based

methods. To guide the search for information needed for a case adaptation, a knowl-

edge goal is created. A knowledge goal stores the knowledge about the adaptation

problem that is available from the current problem description and the instantiated

plan. The knowledge goal is then used to provide guidance for a heuristic search of

memory to �nd the required information. When problems are encountered during a

search a knowledge goal will solve these sub problems by generating new knowledge

goals re
ecting the new problem.

The knowledge goal contains all available information relevant to beginning a

search through memory. The key components of the knowledge are:

� Slot: The slot in the response plan to be adapted.

� Current node: The candidate �ller suggested by the retrieved plan that was

determined to be problematic.

� Transformation type: The type of transformation to be performed. In this

research, we have focused speci�cally on substitution transformations. These

are modi�cations where one �ller creates a problem that is repaired by substi-

tuting a new �ller.

� Problem type: The problem that requires case adaptation.

� Constraints: Any known restrictions on the solution.

The knowledge goal produced for the search of a replacement for the Red Cross

in the Liwa response plan is given in �gure 2.3.



2. Overview of the DIAL System 31

Knowledge Goal

Name: "KG-14" *unique goal identi�er

Slot: relief-group *slot requiring new �ller

CurrentNode: ("actor" "person") *initial solution

Limit: 2000 *search limit

Transformation: substitution *transformation type

Problem: means-of-lack-of-access *problem-type

Disaster: (earthquake ((city "liwa") *current disaster

(country "indonesia")

(continent "asia")))

Constraints: *system designed �ller constraints

((has-abstraction? "organisation" ))

Figure 2.3: A system knowledge goal.

The memory search process:

The case adaptation processes in DIAL are guided by knowledge based searches

of memory. This memory search process is driven by two di�erent types of knowl-

edge. The �rst set of knowledge involves manipulation of the knowledge goal, as the

questions posed to memory by the knowledge goal may not be the precise questions

needed to solve the current problem. The questions can be reformulated using knowl-

edge goal transformation rules. For example, �nding a replacement �ller for the Red

Cross is diÆcult. The Red Cross would in most circumstances be exactly the �ller

desired to provide aid and shelter to the survivors. Other charitable groups such

as the Salvation Army will get the system no closer to a viable solution. Instead

the knowledge goal can be transformed to search �rst for ways of overcoming the

problem. When this problem is solved, the solution can be used as a guide for the

original problem. The Red Cross cannot access the a�ected area in Liwa, so rather

than searching for other groups, DIAL could transform the knowledge goal to �nd

possible ways to access the area. One type of possible access during an earthquake

is with helicopters. DIAL can use this knowledge to augment the original search and

look for groups that can provide aid and also have helicopters.

The second type of memory search knowledge provided to the system is a suite of

domain-independent memory search operations that depend on \weak methods" of
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memory search. These operations are basic movements through the system's mem-

ory such as ascending or descending concept hierarchies to �nd related nodes. By

repeatedly applying operations, a simple search of memory can be achieved that ex-

amines closely related concepts to an initial starting point and progressed towards

distant concepts. With appropriate constraints, theses searches can wander to po-

tential problem solutions. The reformulated knowledge goal described above suggests

looking for �llers that can perform the same role as the Red Cross but also has the

ability to use helicopters in the a�ected area of Liwa. With these constraints, one

search of memory results in the discovery of the \military" as a possible �ller.

In addition to providing the solution to the problem, the memory search process

results in the step by step reasoning path that was followed. Traces of this search can

be stored as memory search cases and made accessible for use during future memory

searches.

This memory search process allows for a type of reactive planning similar to the

RAPS system (Firby, 1989). The memory search process can respond to problems

that arise during a speci�c search such as when necessary intermediate information

cannot be found. As in the above example, the system can create sub-goals to cir-

cumvent problems encountered during the search. These sub-goals can be addressed

as independent memory search problems for which the entire process can be repeated

recursively.

Transformational case adaptations

The memory search process identi�es solutions to problems represented in knowl-

edge goals. However, these goals do not contain the necessary information about

the type of transformation that must occur to apply the memory search solution to

the new plan. Di�erent types of transformations can be applied in di�erent circum-

stances. In most cases, a substitution of the new �ller can replace the value of the old

�ller directly. In other situations, additional information must be added to the new

plan. For example, in order to substitute the military for the red cross, one of the

subgoals generated was to �nd a means of transportation (and thus �nd individuals

with that type of transportation). The means of transportation was added to the

plan to satisfy this goal. Plan transformations must be performed carefully such that

new types of con
icts are not created and that the original goal is still suÆciently

satis�ed.
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Representation of cases learned from case adaptation episodes:

DIAL's memory search cases comprise the initial knowledge goal, a trace of

knowledge-goal transformations and other memory search operations involved in the

search process, a record of the search outcome (failure or success), the cost of the

search in terms of primitive memory operations performed, and the resulting infor-

mation found. Memory search cases are indexed under the knowledge goals that they

satisfy, and can suggest search operations to attempt in the future. Memory search

cases are accessible to the knowledge planning process for memory search, augment-

ing the initial library of built-in operators. For future searches, successful search

cases that match the largest subset of the current knowledge goals are re-used. When

the result of the stored search case does not satisfy current constraints, the search is

continued by local search.

A memory search case contains:

� An index: The index for a memory search case includes the constraints of the

original search and the starting location in memory.

� The response plan: The original response plan is referenced to provide a

context for the solution the case provides.

� The search path: Each successful search results in a reasoning path that was

followed to the solution. This trace of memory search operations is stored for

future reuse.

� Statistical information: For later analysis, data about the amount of time,

number of operations and nodes that were used during execution of the memory

search is stored.

Figure 2.4 shows a memory search case taken directly from the successful solution

to the Liwa Red Cross problem. Recall that the initial problem was identi�ed because

the Red Cross had no means to access the a�ected area of the earthquake and requiring

instead a group with access. In this problem, the army was found as a plausible �ller

for the group to provide food and shelter to the survivors of the earthquake.

DIAL also packages adaptation cases including both the transformation used for

the case adaptation and pointers to the appropriate memory search cases. Adapta-

tion cases provide speci�c guidance about how to adapt cases to repair particular

types of problems. Adaptation cases in the DIAL system contain all of the following

information:
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Memory Search Case

"mem-search-case-504" *unique identi�er for case

index:

(constraint: *set of constraints used to �nd solution

(has-abstraction? "group*))

(original-node "red cross") *original suggested �ller

response plan:

(liwa-earthquake-response-plan *plan and role of original

relief-group) solution episode

search path:

((get-parent "organisation" ) *set of search steps taken

(get-child "force")

(get-child "military service")

(get-child "army" ))

solution:

("army" (parent: "military service")) *actual solution �ller

statistics:

(30170 1526 1406 1433 30460)) *statistical data

Figure 2.4: Example of a system memory search case

� Index: Adaptation case indexes are a description of the problem type that the

case solves, with the response plan context and the slot being �lled as secondary

indices.

� Transformation: The type of transformation required by the case adaptation

is stored. One type of transformation could be substituting for an invalid �ller.

� Memory Search Case: The memory search case that stores the reasoning

trace of the past solution is indexed by the adaptation case.

� Type: The type of adaptation represents the process used by the stored case to

solve its case adaptation problem. These types are weak-methods for problems

solved through undirected memory search, strong-methods for problems solved

using learned case knowledge, and manual-methods for problems solved through

user intervention.

� Statistical Information: As with other cases, this data is used to assess the
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Adaptation Case

"adaptation-case-15" *a unique name identi�er

15 *a unique numerical identi�er

adapt-case-index:

means-of-lack-of-access *the type of problem solved

(earthquake-response-plan *the originating plan for the

liwa-earthquake-response-plan identi�ed problem

relief-group)

((city "liwa") *the location of the disaster

(country "indonesia")

(continent "asia")

"red cross" *the proposed �ller

transformation: substitution *the repair required

memory serach case:

"mem-search-case-504" *the memory case associated with the search

solution: ("army" (parent: "military service")) *the �nal solution

statistics:

(30170 1526 1406 1433 30460) *statistical data

0 *the number of times this case has been reused

adaptation type:

weak) *type of solution episode

Figure 2.5: Example of a system adaptation case

relative cost of a particular adaptation case.

Figure 2.5 provides an example of an adaptation case solving the lack-of-access

problem described earlier. This case represents all of the information needed to reap-

ply it to new situations. In addition to the data described above, adaptation cases

store additional information used to support system processes. One of these types

of data is the number of times a given adaptation case has been reused successfully.

This value is used by the system periodically to reduce the number of adaptation

cases stored to limit the case base to cases with demonstrated relevance. Thus this

mechanism prevents the total number of adaptation cases from exceeding the sys-

tem's capabilities. With the case adaptation knowledge of the system represented as

adaptation cases, new case adaptation can be performed without additional system

knowledge.
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Adaptation case organization:

DIAL's adaptation cases are organized by the problems they address using a vo-

cabulary of problem types similar to those that guide case adaptation in numerous

other CBR systems (e.g., Hammond, 1989; Leake, 1992). For example, if a candidate

response plan is inappropriate because a role-�ller is unavailable (e.g., a police com-

missioner may be out of town and unable to be reached in an emergency situation), the

problem is described by the problem type filler-problem:unavailable-filler,

and that description is used as an index to retrieve adaptation cases for similar prob-

lems.

2.3 Learning methods and relationships

The DIAL system is supported by multiple learning processes that employ several

di�erent strategies. This section summarizes DIAL's learning processes and places

them in the context of the strategies that are employed and the relationships between

the processes. The strategies described included:

1. Response plan learning: The \baseline" learning method for DIAL is learn-

ing by case acquisition, the normal learning of case-based reasoning systems,

with response plans reapplied by transformational analogy (Carbonell, 1983).

2. Memory search learning: When DIAL generates a memory search plan, it

stores a trace of that plan as a memory search case for reuse by derivational

analogy (Carbonell, 1986).

3. Adaptation learning: DIAL adapts cases by an introspective reasoning pro-

cess deciding the transformations to apply and the knowledge goals to be satis-

�ed. If DIAL cannot generate an acceptable case adaptation, it asks a user to

guide the case adaptation process interactively. Traces of internally-generated

case adaptations and of user case adaptations are stored as adaptation cases for

reuse by derivational analogy.

4. Similarity learning: When similarity assessment is used to determine the case

to adapt in a new situation, the goal is to select the stored case that will be

easiest to adapt. DIAL's similarity assessment process uses prior experiences

with case adaptation to estimate case adaptation costs for new problems by a

transformational analogy process. Consequently, case adaptation learning

and similarity learning are coupled; when adaptation cases are learned, that
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learning provides not only knowledge to use during future case adaptation, but

to use during similarity assessment as well.

To better comprehend how the di�erent learning processes are related to one

another and the type of interactions that may occur, four characteristics describing

the learning processes have been identi�ed. How these various characteristics manifest

themselves in DIAL is summarized in table 2.1.

1. Reasoning method: Two di�erent methods of reasoning are prevalent through-

out the DIAL system. The �rst method uses rule-based reasoning as a set of

prede�ned knowledge that can be used to support early learning in the system.

The rules are carefully created to avoid many of the problems inherent to large

rule-based systems. The second reasoning method used in DIAL is case based

reasoning that drives the acquisition of new knowledge in the system.

2. Reasoning type: In support of each learning process, two di�erent types of

reasoning can be applied to solve problems. A transformational CBR approach

generates new solutions by adapting prior cases while derivational CBR reap-

plies the reasoning of a past solution by following the steps taken to �nd new

solutions.

3. Level of reasoning: The two primary learning processes in the DIAL system

exist at two di�erent levels. The main CBR process reasons about plans while

the internal CBR process performs a type of meta-reasoning (about guiding the

process for adapting plans to �t new situations).

4. Control of reasoning: A central issue in building multiple reasoning processes

is how the interaction between individual learning processes exist. The main

CBR process in the DIAL system sits in control of all other learning processes in

the system. As such it can be termed a master process. Other processes in the

system, such as the internal case based adaptation process, exist as subordinate

processes to the master process. We will see that interactions can exist between

a single subordinate process and the master process, and also between di�erent

subordinate processes.

The di�erent types of cases in DIAL, plan case, memory search cases, and adap-

tation cases, can all be applied and reused independently of one another. That is,

plan cases can guide plan generation and adaptation cases can guide case adaptation.

However, these cases (as well as other sources of knowledge) can be viewed as com-

plementary and able to support processes outside of their designated domain. DIAL
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Reasoning Reasoning Reasoning

Task method type Level

Domain planning CBR Transformational Task domain

Initial case adaptation RBR Internal processing

Subsequent case adaptation CBR Derivational Internal processing

RBR Internal processing

Initial similarity assessment RBR Task domain

Subsequent similarity assessment CBR Derivational Internal processing

Table 2.1: Characteristics of learning processes

attempts to exploit as many of the connections and interactions between the di�erent

learning processes in hope of each processes strengths overcoming the limitations of

the others. We will show that the bene�ts of multiple learning processes far outweigh

the costs associated with managing these interactions.

2.4 Overview of the di�erent reasoning processes

in DIAL

Several reasoning processes exist in the DIAL system that interact to support other

reasoning processes. These processes can be categorized into three unique classes of

reasoning.

1. Transformational analogy

2. Derivational analogy

3. Rule-based search

Figure 2.6 provides a schematic illustration of how each of the types of reasoning

processes �t into this system's overall process.

Transformational analogy

While case-based reasoning is used throughout the DIAL system to support dif-

ferent reasoning process, there are di�erent choices as to the type of knowledge the
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Figure 2.6: The integration of DIAL's di�erent reasoning processes to support top-

level transformational case-based planning.

cases should store. Transformational analogy (Carbonell, 1983), which modi�es the

solution of a problem, can be applied when a solution is known, but the rationale

for that solution may not be. However, without information about the rationale,

adapting the solution to �t new circumstances may be diÆcult.

For CBR tasks such as disaster response planning, derivations of solutions are not

generally available, and planning from scratch is not satisfactory because domain the-

ories are inaccurate and expensive to generate. However, examples of prior solutions

are readily available from news stories and casebooks used to train human disaster

response planners (e.g., Rosenthal et al., 1989 ). This favors a transformational ap-

proach to reusing disaster response plans. Thus the primary CBR process in DIAL

is a transformational process.

Derivational analogy

Derivational analogy requires the rationale of prior problem-solving, but provides

greater 
exibility. When a reasoning process is replayed in new circumstances, the

replayed decision-making process naturally takes into account the relevant features
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of the new situation; adaptation of a derivation to �t new circumstances requires no

additional mechanisms beyond those normally used for replaying cases.

On the other hand, derivational approaches can simplify the reapplication of a

case to a new situation, and the rational for the CBR system's choice of particular

steps during the adaptation of prior cases is available to a case-based adaptation

component. This makes it possible to use derivational analogy as the basis of acquiring

case adaptation knowledge from rule based memory search.

Rule based search

Rule-based search, using very general rules, enables initial case adaptation with

minimal knowledge acquisition e�ort. However, general case adaptation rules are

neither operation nor reliable. This supports using case-based reasoning when pos-

sible. Before cases can be successfully created a default reasoning process must be

present to support this knowledge acquisition. A rule-base is easily developed and

can re
ect exactly the knowledge needed to search memory. Even after case-based

reasoning becomes the primary reasoning process for case adaptation, the rule-based

search provides a mechanism for �lling in gaps in the case knowledge and providing

a fallback reasoning method.

Comparison of the three approaches

In DIAL, transformational analogy provides the foundation of the system as the

mechanism behind the case-based planning process. However, transformational anal-

ogy also supports some aspects of the case adaptation process as one simple method

for reapplying the stored case adaptation knowledge. Derivational analogy, however,

is more successful at case adaptation as it better encapsulates the reasoning process of

the prior search. The cost of reapplying a derivation is much higher as the system has

to asses or sometimes guess at the intent of each step in the reasoning trace. If a step

of the trace suggests examining more speci�c instances of a concept (i.e. examining

child nodes), it is an open question as the most appropriate way to focus of the �rst

of the many possible concepts to consider next. Rule-based search supports acts as

a subordinate process to each of the other two methods acting as both foundational

support and as a guide to �ll gaps in available knowledge.

Previous case-based adaptation systems store the solutions of a prior adaptation

and reapply them by transformational analogy (Sycara, 1988). This is appropriate
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when the derivation of the prior adaptation is not available. However, when deriva-

tions are available, derivational CBR is a natural means for providing 
exible reuse

(Veloso, 1994).

2.5 Integrating multiple processes

With several independent processes supporting di�erent types of problems in

DIAL, it is necessary to carefully manage how the system is integrated. DIAL pro-

vides a proof of concept for a system built of independent intelligent components.

Riesbeck (1996) described a possible role for CBR supporting other systems by cap-

turing the problems that occur and storing the generated solution to those problems.

This is precisely what DIAL has accomplished. In this context, CBR is an intelligent

component seamlessly integrated in a primary process and furnishes solutions to new

case adaptation problems with no need to repeat the initial reasoning process.

This research applies the intelligent component technique to improving the per-

formance of the CBR system itself. Each of the di�erent reasoning subprocesses acts

as a separate intelligent component providing the solutions to certain problems to

other system components.

Three central questions provide guidance for examining the integrated reasoning

components.

1. System design: How should the components' knowledge be represented and

organized?

2. Knowledge acquisition: How much specialized knowledge must be provided

to support component CBR processes, and how does this e�ort compare to hand

coding rules for these processes?

3. E�ectiveness of learning: How will the use of case-based components a�ect

the overall eÆciency of the top-level CBR system?

The �rst question has been addressed with the approach described in prior chapters

by combining case-based and rule-base approaches. With this approach, the knowl-

edge acquisition problem for case-based intelligent components has been controlled

by intentionally limiting the components' initial knowledge to general knowledge with

wide applicability, and using domain-independent \weak methods" as the foundation

for its internal processing. This minimizes the burden of supporting the internal CBR

process.
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The key issue is how much gain can be achieved by using various intelligent sub-

components to support the primary system reasoning process. DIAL does not attempt

to provide a general answer but demonstrates the feasibility of this type of approach.

The potential value can be assess by how well this approach performs for a single

sample system and task.

2.6 System knowledge sources

In case-based reasoning, the basic knowledge sources| plan cases and case adap-

tation knowledge|are overlapping in the sense that each can compensate for weak-

nesses in the other. For example, a large case library can compensate for limited

adaptation knowledge, by providing cases that require less e�ort to adapt. Con-

versely, good adaptation knowledge enables successful reasoning with a smaller case

library, by facilitating the reuse of existing cases. The internal CBR components

make it possible for the system to learn either domain cases or adaptation knowledge

(or both), learning multiple lessons from its experiences.

The interaction of DIAL's methods also helps each part to perform its processing.

When the rule-based memory search process uses a case to suggest a search path, the

case focuses its processing on a sequence of steps that|because it was useful in the

past|might be expected to be useful again. In turn, DIAL's rule-based reasoning

can be called upon by its internal CBR components. The case-based components

of DIAL are intentionally limited to using very simple CBR processes, to simplify

knowledge acquisition for these components. Consequently, reapplication of a single

case may result in only a partial solution, which is then augmented by RBR.

General knowledge bases

The learning processes in DIAL each generate new knowledge for the system by

solving problems and storing the solutions as cases. However, the success of each

of the learning methods depends in some part on the organization of the system's

general world knowledge. To this end, DIAL has been tested with two separate and

independent general knowledge bases. The �rst knowledge base was hand coded for

an initial set of tests in order to support the basic ideas of the system. This knowledge

base included nodes for close to 2000 concepts. While this memory was suÆcient for

the tests that were run, a potential for bias exists whenever a knowledge base is built

to correspond to the needs and requirements of a speci�c system. As DIAL's case

adaptation mechanism was based on an abstract set of memory search operations
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that were domain and knowledge base independent, there was concern that this bias

might skew the results of any experiments that were constructed.

To compensate for this bias, many of the same experiments were performed using

a second knowledge base built independently and externally of DIAL. The knowl-

edge base selected for integration was the publicly available Wordnet system (Fell-

baum, 1998). Wordnet is a hierarchical lexicon that provides relationships among

over 100,000 di�erent English words. Wordnet was designed to support various natu-

ral language tasks for computers and not speci�cally created to serve as a knowledge

base. As such, many of the relationships one might �nd in a frame based memory

(Minsky, 1975) or in the CYC ontology (Lenat & Guha, 1990), such as color-of or

is-relative-of, are not present and consequently the operations that can be performed

are limited to the scope provided by its authors. In addition, the Wordnet knowl-

edge base was not designed to be extended by third parties in order to maintain

system integrity. The result was a large knowledge base designed without many of

the connections that DIAL had exploited in the hand-coded knowledge base.

The goals of the Wordnet lexicon di�er substantially from those of traditional

knowledge representation systems. Traditional knowledge representations, whether

in the form of rules, cases or other common representations, are constructed to solve

certain types of problems. In fact, these representations are carefully designed so

that the appropriate new inferences can be drawn. Wordnet was not designed as

a knowledge representation system but most closely resembles a supporting system

for some forms of information retrieval. Wordnet, for example, could be used to

support web based search engines. Its lexicon could help augment or improve engine

queries by identifying shades of meaning or word choice alternatives that language

provides. For example, Wordnet could take a search query term such as \military"

and provide alternative terms that might produce desired results such as \armed

forces" or \national guard." To make use of Wordnet as a knowledge base places the

burden of knowledge organization and inference on the primary system. DIAL must

overcome poor knowledge connections in the Wordnet memory and learn to construct

new relationships externally to the knowledge base.

The basic operations supported by the Wordnet system are as follows:

� Hypernyms: A hypernym is the generic term used to designate a whole class

of speci�c instances. If X is a hypernym of Y, then Y is a (kind of) X.

� Hyponyms: A hyponym is the speci�c term used to designate a member of a

class. If X is a hyponym of Y, then X is a (kind of) Y.

� Meronyms: A meronym is the name of a constituent part, the substance of,

or a member of something. If X is a meronym of Y, then X is a part of Y.
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Figure 2.7: Wordnet interface

� Synonyms: Two equivalent terms in terms of their relationships to other

classes are synonyms. If X is a synonym of Y, then X and Y are equivalent.

� Antonyms: Two terms that are opposites in a language. If something is X

than it is not Y.

The DIAL system could make use of any of these operations, however, in prac-

tice hypernyms and hyponyms were the operations most often applied successfully.

Meronyms occasionally proved useful and synonyms and antonyms were not used.

DIAL has its own internal interface to the Wordnet system. However, to gain

a better understanding of what the output of an operation in Wordnet would be,

a screen shot is provided in �gure 2.7 of the graphical interface of the Wordnet

system executing a hypernym on the concept \tree." This �gure reveals one additional

diÆculty for DIAL to handle { multiple senses for a single linguistic term. The term

\tree" has two separate meanings: a type of plant, and a type of graph representation.

In DIAL's concept representation each sense of a word was tagged and thus each sense

could be treated as a unique concept. Unfortunately, not all senses of words had such

clear divisions of meaning and DIAL had to learn to navigate these gray boundaries.
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2.7 DIAL example

The remainder of the chapter presents an actual transcript of the DIAL system

handling a typical problem that requires case adaptation. Again the Liwa example is

used but unlike the above example a slightly di�erent outcome is seen in the particular

situation as disaster examples were presented in a di�erent order during this learning

trial.

The example highlights the retrieval component of the DIAL system. The example

begins with the presentation of the disaster to the system. The system uses adaptive

similarity techniques described in a later chapter to select the response plan case that

most closely matches the input example. To perform this similarity assessment an

evaluation of each potential plan is made with the outcome being the selection of

the ecuador-earthquake response plan. Comments are given in italic type within the

example.

The initial disaster is presented to the system

Current disaster is

(earthquake ((city "liwa")

(country ("indonesia" noun 1 ()))

(continent ("asia" noun 1 ()))))

Enter the retrieval component

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Retriever Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Selected 3 cases for similarity assessment

Similarity scores are given in parentheses. Lower scores indicate greater similarity.

The following cases have been ranked:

Case: neftegorsk-earthquake-response-plan (4)

Case: ecuador-earthquake-response-plan (5)

Case: la-earthquake-response-plan (5)

Using adaptive similarity techniques (if available)

Each part of the candidate plan is evaluated and a cost assigned

Evaluating the ecuador-earthquake-response-plan

------------------------------------------------------------------------
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slot filler problem type cost

------------------------------------------------------------------------

police "military personnel" no n/a 0

residents "resident" no n/a 0

location "liwa" no n/a 0

condition "catastrophic" no n/a 0

national-guard "military personnel" no n/a 0

fire-dept "fire department" yes filler-does-not-exi ??

relief-group "red cross" yes means-of-lack-of-ac ??

aid-group "red cross" no n/a 0

shelter "tent" no n/a 0

For each problem, the relevant adaptation cases are retrieved and compared

Best Adaptation Case:

Name: adaptation-case-9,

Evaluation: Ops: 4026 Nodes: 2250 CPUTime: 68510 RealTime: 69030

Best Adaptation Case:

Name: adaptation-case-5,

Evaluation: Ops: 150 Nodes: 78 CPUTime: 2350 RealTime: 2450

[some evaluation deleted]

The original plans are rescored with respect to their adaptability

Lower scores re
ect greater adaptability

The problem based costs are:

Case: neftegorsk-earthquake-response-plan - (3)

Case: la-earthquake-response-plan - (6)

Case: ecuador-earthquake-response-plan - (2)

The �nal retrieved plan is passed on to the next component

The Selected RP is: ecuador-earthquake-response-plan

The second transcript given below illustrates one part of the case adaptation

process that has been described. In this example, two problems are identi�ed with

the proposed plan including one problem that is similar to the relief-group example
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described above. This problem is solved using straightforward search methods culmi-

nating in adaptation cases and memory-search cases identical to the ones described

in the earlier sections.

The second problem proposes the �re department as an appropriate �ller for han-

dling many of the tasks required by the plan but it is determined that no such �ller

exists in the context of the new situation. Case-based adaptation is employed to �nd

a similar problem that existed earlier and determines again that the \army" is an

appropriate and available substitution.

Fire department is the current �ller and has a problem to be repaired

Adapter Module:

**Problem: filler-does-not-exist-in-current-context

**Old-Value: (fire-dept, "fire department")

A knowledge goal is created to guide the case adaptation process

Created knowledge goal: "KG-14"

First case-based case adaptation is attempted

Trying CBR Adaptation

The retrieved case is reapplied directly

Using Adaptation Case:

Name: adaptation-case-9,

Evaluation: Ops: 4026 Nodes: 2250 CPUTime: 68510 RealTime: 69030

The solution derivation for the �re dept problem is stored

as the following case

Storing AC:

Adaptation Case:

Name: adaptation-case-14,

Evaluation: Ops: 31 Nodes: 67 CPUTime: 1010 RealTime: 1150

((has-abstraction? ("group" noun 1 ())))

((has-abstraction? ("group" noun 1 ())))

A second problem exists with the relief group �ller

**Problem: means-of-lack-of-access

**Old-Value: (relief-group, "red cross")

Another knowledge goal is created to guide case adaptation
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Created knowledge goal: "KG-15"

Trying CBR Adaptation

An adaptation case is reapplied but fails

Using Adaptation Case:

Name: adaptation-case-5,

Evaluation: Ops: 150 Nodes: 78 CPUTime: 2350 RealTime: 2450

Failure

Rule based search commences

Trying RBR Adaptation

Solution Found: "army"

The solution is stored for future reuse

Storing AC:

Adaptation Case:

Name: adaptation-case-15,

Evaluation: Ops: 1526 Nodes: 1433 CPUTime: 30660 RealTime: 30940

((has-abstraction? ("group" noun 1 ())))

A report is produced detailing all successful case adaptations

Adaptation summary

Type: earthquake Location: "liwa"

-------------------------------------------------------------------------

slot problem solvedby solution ops nodes time

-------------------------------------------------------------------------

relief-group means-of-lac "army" rbr 1526 1433 30660

fire-dept filler-does- "army" cbr 31 67 1010

The �nal plan can now be applied and stored

Storing liwa-earthquake-response-plan

2.8 Summary

This chapter highlighted the major features of the DIAL system. Two extended

examples of DIAL's processing were given to motivate the various representations and

processes used while solving problems. Subsequent chapters will focus of the primary

aspects of DIAL's processing that relate to this research.
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Adaptation Learning

This chapter gives a detailed description and analysis of

the case adaptation learning component in the DIAL sys-

tem.

The previous chapter examined the architecture and 
ow of control in the DIAL

system. The next two chapters describe the primary learning processes that are inte-

grated in the DIAL system and examine some of the speci�c issues and rami�cations

associated with them. This chapter describes an algorithm for learning case adapta-

tion knowledge in the framework of our case-based planner. It begins by describing

the case adaptation problem and its importance to the case-based reasoning process.

Finally, a case-based model of acquiring case adaptation knowledge is presented and

motivated with a case adaptation example.

3.1 The case adaptation problem

In the �rst chapter, case adaptation was described as one of four primary processes

of the case-based reasoning process. However, many CBR researchers choose not to

perform any case adaptation in their systems or limit the system to simple rule

based methods to adapt proposed solutions. Avoidance of case adaptation is not an

acceptable approach to handling the case adaptation question. In many real world

situations, there is no exact solution to problems and each new situation mandates

changes to prior solutions. Avoidance has been accepted only because automated case

adaptation is diÆcult (Allemang, 1993; Leake, 1994b). Despite the practical bene�ts

of retrieval-only advisory systems, successful use of advisory systems may require
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considerable user expertise. Consequently, automatic case adaptation is important

from a practical perspective.

There are numerous advantages to a automated case adaptation algorithm for

case-based planning systems. For example, fewer plan cases could be stored because

a good automated case adaptation system would handle the increased problems en-

countered e�ectively. A bene�t of a reduced number of cases is that overhead due to

case retrieval is decreased and a greater number of cases can be examined as candi-

dates for reapplication. Additionally, the automated case adapter lessens the burden

on human users to correct each small problem that arises in the creation of new plans.

Reasons against automated case adaptation

Two central issues provide the primary arguments against deploying automated

case adaptation.

� Automated case adaptation may be not be computationally feasible.

� A case adaptation component that performs even moderately well would require

time and knowledge resources that are unavailable or unreasonable. This section

examines each of these issues and argues that automated case adaptation is not

only possible but that its deployment is and practical.

Issues for automated adaptation

Automated adaptation is a hard problem for at least three reasons.

1. The knowledge needed to perform automated case adaptation can be di�erent

from the knowledge needed to create new plans. This is a central issue to

a system such as DIAL. The knowledge needed by DIAL to form new plans

requires representing knowledge of events and their relationships to one another.

Case adaptation makes use of this information but requires speci�c knowledge

of the various candidates needed to �ll the roles of these events. Because of this,

knowledge gained by the addition of new plans and the knowledge represented

to support the creation of these plans are insuÆcient to perform the types

of case adaptations required. Thus knowledge acquisition for case adaptation

knowledge is a diÆcult task and separate from other knowledge acquisition in

the system.
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2. Context plays a pivotal role in determining the success or failure of a proposed

case adaptation. A case adaptation used to solve an access problem in a 
ood

in West Virginia may be very di�erent from a case adaptation used to solve the

same type of problem in Ecuador. Some possible case adaptations are available

in one context and not in another so the automated case adaptation component

has to understand and represent these inconsistencies by accounting for context

in each case adaptation performed.

3. A solution to one case adaptation problem may a�ect the remaining plan, poten-

tially invalidating other roles and �llers. It is diÆcult to assess the consequences

of a single case adaptation. A case adaptation that results in an unsatisfactory

plan has wasted substantial processing and moved no closer to a solution.

The second issue facing automated case adaptation is one of overhead cost versus

the payo� of that cost. If a problem is solved by case adaptation, then the total

cost incurred by this process should be less than if the problem had to be solved

from scratch. The design of the automated case adaptation procedure must provide

methods to reduce the added overhead to the system while achieving the greatest gain

in speedup and accuracy of the solution. Experimental data can provide a means of

analyzing and addressing the cost of the case adaptation process and any added

overhead.

This research presents one method for acquiring and reusing case adaptation

knowledge thus enabling good case adaptations to be performed autonomously by

the CBR system. In addition, it is shown that this method can be an eÆcient and

robust addition to the overall CBR planning process.

Background for case-adaptation learning

To successfully automate the case adaptation process, appropriate knowledge must

be available to guide the process. Several di�erent suggestions have been made as to

the type of knowledge to use. One popular method has been to encode a set of rules.

A rule could be used when certain system conditions are met. The rule would describe

the appropriate action or set of steps needed to solve the problem. For example, a

rule could read \If the red cross in unavailable and a lack of access problem exists

then replace the red-cross with the local military organization." This rule quickly

and e�ectively solves all problems of these types.

Rules themselves can take many forms. They could be abstract such as add a

new step to remove a harmful side-e�ect as in the CHEF system or more speci�c

such as replace red-cross with army. Abstract rules enable a system to function on a
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relatively small rule set. However, abstract rules can be diÆcult to apply. An abstract

description gives no clues as to when a certain rules in relevant to a situation or even

if it would solve the problem if relevant. Of course, on way around this is to build

a second set of rules to identify when to apply but that eliminates the bene�ts of

abstract rules.

Other systems use speci�c knowledge to circumvent the problem of abstract rules.

One example, the ROENTGEN system, attempts to generate X-ray treatment plans.

In one instance, the retrieved plan administers the minimum X-ray dose required

to destroy a tumor, but also has the bad side-e�ect of exposing the spinal cord to

excessive radiation. With only the abstract rule given above, deciding which step to

add in order to remove the bad side-e�ect may require considerable domain knowledge

(in addition to the potential dangerous application of adding an additional harmful

step). The abstract rule could be replaced by speci�c rules such as add the step

\rotate radiation sources" to remove harmful side-e�ect \excess radiation" (Berger &

Hammond, 1991).

However, neither abstract nor speci�c rules are suÆcient. They demonstrate the

operationality/generality tradeo� seen in explanation-based learning (e.g., (Segre,

1987)). Abstract rules have generality: a small set of transformations appears suf-

�cient to characterize a wide range of case adaptations (Carbonell, 1983; Kolodner,

1993). However, abstract rules are diÆcult to apply. Speci�c rules, on the other

hand, are easy to apply but have limited generality. In addition, de�ning such rules

is diÆcult because of the speci�c knowledge that they require.

Kass (Kass, 1994) proposed one way to address the operationality/generality

tradeo�. His approach uses hand-coded case adaptation strategies that combine gen-

eral transformations with domain-independent memory search strategies for �nding

the domain-speci�c information needed to apply the strategies. However, coding the

case adaptation strategies can require extensive knowledge of the CBR system's task,

its domain, and the contents of its memory. This knowledge may not be available a

priori. Thus in de�ning these case adaptation strategies, developers face the same

problem of knowledge acquisition in imperfectly-understood domains that often im-

pedes the development of rule-based systems in other contexts.

3.2 A proposal for case adaptation learning

The DIAL approach to case adaptation builds on the idea from Kass and related

work (Leake, 1994a) of treating case adaptation knowledge as a combination of knowl-

edge about general transformations and about memory search. However, instead of
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relying on hand-coded memory search strategies, this approach builds memory search

strategies as needed and remembers the strategies for future use. When presented

with a novel case adaptation problem, it performs a planning process that reasons

introspectively to determine the information required to solve the particular case

adaptation problem and to decide which memory search strategies to use to �nd that

information. This process guides the search for information needed to perform the

case adaptation. Further, once a particular case adaptation is performed, the reason-

ing required to solve the problem can be stored as part of a case-based adaptation

process enabling future similar case adaptations to circumvent this lengthy reasoning

process.

Initially, little or no speci�c knowledge about case adaptation is stored. A few

classes of transformations are maintained such as substitutions, additions, deletions

and act on various levels of the generated plan. In addition, a small set of memory

search operations exist to enable the system to search from the appropriate informa-

tion in the knowledge base.

This part of the process is primarily rule based but di�ers from prior rule based

systems by requiring little domain knowledge to �nd a solution. This rule-based pro-

cess, however, enables the system to transform itself from the default case adaptation

mechanism to a case based adaptation process.

From rule-based adaptation to CBR

Successful sets of applicable rules can be stored as adap-

tation cases for later reuse.

After a case adaptation problem has been solved by reasoning from scratch, a nat-

ural question is how to learn from that reasoning. It might appear that explanation-

based generalization (EBG) (e.g., (Mitchell, Keller, & Kedar-Cabelli, 1986)), would

be the appropriate learning method, because it allows forming new generalizations

that can aid in solving a wider range of problems. The memory search plan that

found the needed information could be generalized and stored. However, using EBG

to learn memory search rules is not practical (Leake, 1994a). For EBG to apply suc-

cessfully to memory search rules, those memory search rules must provide a complete

and correct theory of the contents and organization of memory. Unfortunately, the

contents and organization of a speci�c memory are highly idiosyncratic (Kolodner,

1984; Schank, 1982) and thus hard to characterize precisely. Consequently, a chain of

memory search rules that �nds desired information in one instance is not guaranteed
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Figure 3.1: DIAL case adaptation process

to apply to other problems that appear to be within the scope of those same rules:

explanation-based generalization may not yield reliable results.

In contrast, using case-based reasoning as the learning method for case adaptation

knowledge makes it possible for learned knowledge to re
ect the memory's idiosyn-

cratic organization and its contents. Unlike abstract case adaptation rules, cases that

package particular case adaptation episodes encapsulate the system's experience on

speci�c case adaptation and memory search problems and re
ect the system's spe-

ci�c task, domain, and memory organization. Consequently, DIAL applies CBR to

learning adaptation cases. Thus this model acquires not only a library of problem-

solving cases, but also a library of cases representing episodes of case adaptation. Case

adaptation is realized in this system by three distinct mechanisms: case adaptation

from scratch in response to novel case adaptation problems, case-based adaptation to

re-use the results of previous case adaptation episodes, and manual case adaptation

with the user providing guidance to lead the system through diÆcult or potentially

intractable case adaptations. The following section presents an example of a case

adaptation being performed from scratch and later being reused to solve a di�erent

case adaptation problem.
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Figure 3.1 presents a high level model of this process. Greater detail on each facet

of this process will be presented in the next section.

3.3 The case adaptation algorithm

The central case adaptation algorithm shown in �gure 3.2 is given the knowledge

goal encapsulating a description of the problem and the current problem situation.

The knowledge goal, as described in the previous chapter, contains all the information

available on the current problem requiring case adaptation. Other context information

including the current disaster description and the proposed response plan are also

given to the case adaptation component.

The case adaptation component has a hierarchy of sub-processes that are used

to perform the case adaptation. Given the input to the case adaptation process, the

case-based adaptation component is passed the knowledge goal and any adaptation

cases deemed applicable by the evaluator. This process, described in more detail later,

either is successful and returns a new knowledge goal containing the solution to the

case adaptation problem along with other statistical information or it returns failure.

When case-based adaptation is successful, the solution is applied to the response plan

and the case adaptation component returns.

When the case-based component fails, either because no applicable adaptation-

cases were available or a reapplication did not result in a solution, the rule-based adap-

tation component is called. The rule-based component applies weak search methods

to the problem described by the knowledge goal. As with the case-based component, if

the search is successful in discovering a solution, a new knowledge goal encapsulating

the solution is returned to the adapter { otherwise a failure is signaled.

When both automated methods of case adaptation fail, the DIAL system relies on

a manual case adaptation component that allows a human user to guide the system

through a possible case adaptation.

Three independent sub-components form the foundation

for the automated case adaptation process.

The following subsections examine each of the three case adaptation sub-processes

in more detail focusing on the algorithms used for each.
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Input : A knowledge goal, the current response plan, the current disaster,

and the problem-type

Output : The modi�ed response plan with the knowledge goal satis�ed for

the given problem type

procedure Start Adaptation(knowledge goal, response plan, disaster, problem type)

1. solution  CBR Adaptation(knowledge goal)

2. if (solution)

3. Update Response Plan(solution, response plan, knowledge goal)

4. return

5. solution  RBR Adaptation(knowledge goal)

6. if (solution)

7. Store Adaptation Case(solution, problem type, disaster, response plan)

8. Update Response Plan(solution, response plan, knowledge goal)

9. return

10. solution  Manual Adaptation(knowledge goal)

11. Store Adaptation Case(solution, problem type, disaster, response plan)

12. Update Response Plan(solution, response plan, knowledge goal)

13. return

Figure 3.2: General algorithm used for case adaptation

Rule-based case adaptation

The description of case adaptation in the DIAL system begins with the rule-

based process because it is the basic fallback reasoning process for the adaptation

component and the foundation for the case adaptation learning process. Therefore

all automated case adaptation in the DIAL system has its roots in a rule-based

process. The rule-based methods can be ineÆcient and sometimes ine�ective but

when successful provide both a solution and the exact information needed to create

adaptation cases. The algorithm given in �gure 3.3 illustrates the basic outline of the

rule-based process. This algorithm contains methods to create new adaptation cases

from the results of a successful search and stores these new cases in the case library.

The search method takes a list of operators that can be applied and the current

knowledge goal describing the problem to be solved. The search expands concepts that

most closely match the constraints from the knowledge goal �rst by applying the set

of possible memory search operations to the current memory nodes being examined.

While this search potentially is exhaustive in its examination of the memory space, it

is limited to the guidance provided by the knowledge goal. Since this knowledge may

not match the information needed by the search, the resulting search can be expensive.
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As such, a limit on the number of nodes that can be examined was imposed on all

rule-based searches to prevent . Once this limit is reached, the current search is

stopped. Thus some problems may have solutions that exist but are unreachable in

the search space given the time constraints.

The use of Wordnet as a knowledge base increases the cost of the search process

as each node in the knowledge base may have hundreds of direct connections to other

nodes. In tests of the rule-based methods, problems are solved more frequently than

left unsolved but despite the system imposed limit, the time required to complete

some of these case-adaptation is much higher than desired.

Currently in the DIAL system there are seven di�erent operations making up the

basic memory search rules of the system. The operations were selected on the basis of

the organization of the memory being used and the representation of the knowledge

goals. The operations available are as follows:

� get-parent { Selects the hierarchical ancestors of the current node. For exam-

ple, the parent of the automobile node would be the vehicle node.

� get-children { The inverse of the get-parent operation, this selects all of the

hierarchical descendants of the current node. One of the many possible children

of the vehicle node is the automobile node.

� goto-node { Allows the system to jump from the current node to some other

node in memory. Most often, the new node provides a new starting point for

search to begin.

� get-plan-�llers { For some situations, �llers that have already been selected

and are non-problematic in the plan can be used either as starting points for

new searches or as �llers for newly created constraints. For example, a disaster

problem might state that the police are already involved with the current disas-

ter. This �ller value might make a useful starting point for other problems with

related constraints. This operation allows the searcher to immediately examine

this area of the memory for other possible solutions.

� value-from-constraints { Takes a value or values from the constraints and

uses them directly to guide search. For example, a new constraint may be

added to a knowledge goal which de�nes an abstraction relationship with the

goal �ller. This abstraction might be used as a starting place for the new search

to begin. A search may have a more restrictive constraint placed on it. For

example, the group being searched is thought to be a military organization.

This rule guides the searcher to move to the concept of military organization

and begin the search from that point.
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� del-constraint { Allows the search to remove a restrictive constraint from the

knowledge goal. Constraints are normally assumed �xed in order to reduce the

amount of searching required before failure is determined. By allowing deletion

of some constraints, a wider search area can be examined. One such example of

a restrictive constraint is when a speci�c type of organization such as the Red

Cross constrains the solution. It may be possible that a di�erent organization

is more applicable to the new situation and the deletion of the constraint will

free the searcher to examine these possibilities.

� add-constraint { For reasons similar to the deletion of a constraint, certain

knowledge sometimes becomes available during a search that the addition of a

constraint helps re�ne the search and eliminate many potential non-solutions

from consideration.

These rules make the case adaptation search process e�ective and capable of solv-

ing a wide array of case adaptation problems. However, the cost to apply these rules

in an ad-hoc manner with ill-speci�ed constraints make them unsuited for general

purpose case adaptation. The rule-based approach does make an excellent founda-

tion for the internal case-based reasoning adaptation learner. This process forms the

discussion in the next subsection.

Case-based adaptation

Figure 3.4 shows the algorithm used by the case-based adaptation component.

The key aspect of this algorithm is the reapplication of the reasoning trace stored

by the adaptation case. This trace coupled with the knowledge goal enables the

case adaptation component to perform a directed search of memory on the current

problem.

The same operations used by the rule-based process can be reapplied in two sep-

arate ways. The �rst approach reapplies the same operations to the knowledge goal

that are described in the adaptation case's prior reasoning trace. As each operation

is reapplied, a new set of knowledge goals are created as the result of the reapplica-

tion. For example, when applying the get-parent operators to a knowledge goal that

is currently examining \groups of force" the resulting knowledge goals will include

representations for the army, the national-guard and the police. The constraints are

used to eliminate knowledge goals that do not apply to the current situation.

As the reapplication progresses and pruning occurs on the resultant knowledge

goals, a set of potential solutions to the case adaptation problem are identi�ed. These

potential solutions are ranked for applicability and evaluated. It is possible at this



3. Adaptation Learning 59

Input : A knowledge goal

Output : A structure containing the solution to the problem,

and statistical data regarding the case adaptation or failure if no solution found.

procedure RBR Adaptation(knowledge goal)

1. solution  Search(operator list, knowledge goal)

2. if (solution)

3. new adaptation case  Create New Case(solution, adaptation case)

4. Update Case Library(new adaptation case)

5. return solution

6. else

7. return failure

Input : An list of available operators and a knowledge goal

Output : A knowledge goal or knowledge goals re
ecting the result of the search

procedure Search(operator list knowledge goal)

1. kg queue  Make Queue(knowledge goal)

2. while (Goal Not In Queue(kg queue))

3. if (System Timeout) exit

4. for each operator � operator list

5. for each kg � kg queue

6. new kg list  Apply(operator kg)

7. kg queue  Replace(kg queue kg new kg list)

8. return Get Goal(kg queue)

Figure 3.3: Algorithm for rule based adaptation and memory search
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Input : A knowledge goal and an adaptation case

Output : A structure containing the solution to the problem

and processing statistics

procedure CBR Memory Search(knowledge goal, adaptation case)

1. solution  Reapply Derivation(knowledge goal,adaptation case)

2. if (solution)

3. new adaptation case  Create New Case(solution, adaptation case)

4. Update Case Library(new adaptation case)

5. return solution

6. else

7. return failure

Figure 3.4: Algorithm for reapplication of adaptation cases.

stage of reapplication that the desired solution has not been discovered despite the

appropriateness of the derivation. To handle this situation, a limited local search is

performed around the best memory nodes found from the reapplication. In situations

where no acceptable solution is found, the case based case adaptation reports a failure

and the case adaptation problem is passed to the rule-based component.

A second method of case adaptation uses the adaptation cases with straightfor-

ward transformational analogy and presumes the solution to the prior case adaptation

problem can be reapplied directly without modi�cation. Since this method has high

utility with a low cost of application it is always attempted, and often solves trivial

problems instantly.

If the case adaptation is successful, a new adaptation case is formed and stored in

the case base. The overhead involved in this process is greater than with rule based

methods alone, but because rule based methods may involve considerable backtrack-

ing in their search, a successful reapplication of an adaptation case may give a quick

start to such a search. The success of the case adaptation approach can be measured

by the time reduction in the processing of case adaptation problems including the

additional overhead of maintaining the internal CBR process. It is critical in this

research to accurately test the time savings of this method when compared with the

additional system overhead.

Manual adaptation

In the event that neither automated method of case adaptation is successful,

the DIAL system has a backup case adaptation component that provides for user
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Input : A knowledge goal

Output : A structure containing the solution to the problem.

procedure Manual Adaptation(knowledge goal )

1. while (NOT (Goal Satis�ed(knowledge goal)))

2. knowledge goal  Select Modi�cation(knowledge goal)

3. Search(operator list knowledge goal)

4. return knowledge goal

procedure Select Modi�cation(knowledge goal)

1. repeat until done

2. Select a modi�cation to perform

a) Add a constraint

b) Delete a constraint

c) Replace a constraint

d) Continue as is

e) Manual Modi�cation

Query Your Choice =)

3. knowledge goal  Apply Selection(knowledge goal)

4. return knowledge goal

Figure 3.5: Algorithm for manual adaptation

intervention. Figure 3.5 shows the general outline of this manual case adaptation

approach. Manual case adaptation provides a mechanism for handling diÆcult case

adaptation problems for which the appropriate knowledge does not currently exist in

the form of either cases or rules.

This method allows the user to interact with the system at di�erent reasoning

levels to repair an identi�ed problem. In the simplest scenario, the user may suggest

relaxing constraints or specify a new concept related to the unknown solution. In

other instances, the user may guide the system through the reasoning needed to

solve the problem. In either situation, the system captures a trace of the human

user's reasoning { albeit within the constraints of the system's representations { that

augments and improves on its built in reasoning. The derivation provided by the user

becomes an adaptation case within the system's memory that could be reapplied in

similar circumstances. The potential for new types of reasoning, otherwise unavailable

to the DIAL system, is made possible by adding cases to the system from the results

of the manual adaptation.
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System example

To review the processing and interaction of the three case adaptation subprocesses

a new example is presented from the DIAL system. This example begins with a

reported chemical spill problem at the A&D manufacturing plant. An emergency plan

is needed to handle the situation. One of the problems to solve is the appropriate

way to handle the evacuation of the plant and process the numerous workers who will

be unable to work until the problem is resolved. The candidate plan suggests that

the employees act as their own representatives in this situation and the plant interact

directly with them. A user identi�es this solution as an inappropriate �ller. It is not

productive for a factory to attempt to process each individual directly. Case-based

case adaptation �nds no relevant cases to this problem and the system falls back

on rule-based methods. A local search of memory, made by applying the rule-based

operations and searching for groups related to the workers, discovers several possible

solutions. With a user performing backup evaluation, the proposal suggesting that

the union of the workers is selected as the most appropriate �ller to be added to

the plan. With the union added to the plan, the factory has a means of notifying

employees of current situations and handling any additional employee concerns.

With the success of the search, a new adaptation case is created and added to

the case base. This case encapsulates the set of steps from the memory search from

the original worker concept to the more appropriate concept of the workers' union.

While there are many potential paths this derivation could take (according to the

order of application of various operators), one possible approach is discovering that

workers have a relationship with the union and that the union acts in an authority

role towards the workers. This case is now stored as a case adaptation for future use

when other similar problems are encountered.

With the previous knowledge now stored in the system, a second disaster was

presented to the system. The Beaver Meadow Elementary school reports an indoor

air-quality problem. A candidate response plan suggested that the students be no-

ti�ed directly of evacuation plans and of plans to return to school. However, as

before, the user identi�es this as an inappropriate �ller as elementary students are

not able to make their own decisions in these matters. The adaptation component

�nds the adaptation case describing the workers-union solution and suggests that the

same case adaptation be applied to the current situation. The case cannot be used

transformationally in this example as students do not have unions. The derivation

of the solution can be applied to this example and results in several groups who may

have an appropriate relationship to the students. One of these �llers \the parents of

the students" is selected by the evaluator as an appropriate solution and the plan is

updated.
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In some examples neither the case-based methods or rule-based methods produce

any useful solutions in the time provided. In these situations the manual adapter

allows the human operator to suggest the same types of relationships and operations

to explore to focus the search e�orts on relevant parts of the system's memory.

3.4 Issues for case adaptation learning

The addition of a case-based adaptation learner to a stand-alone case-based plan-

ner increases the complexity of the interactions between knowledge sources. When

only the response plan case exists, it provides the sole guidance in determining the

type of past case that will be reused. All other components of the system rely on

the response plan case. However, when a second independent case base is introduced

such as our adaptation case library, multiple knowledge sources are available to guide

the creation of new solutions for some problems. The ideal approach would be to

use both knowledge sources in a synergistic manner thus achieving maximal bene�t.

However, to achieve this synergy requires special consideration for how the two case

bases interact with one another. Managing this interaction is another central theme

of this research. We focus on this relationship in the next chapter. However, several

potential problems can arise from the existence of multiple case bases.

� The cost of retrieval can be in the worst case n + mp where n is the size of the

response plan case base, m is the size of the adaptation case library and p is the

number of identi�ed problems. This assumes a linear search of each case base

and that each response plan must examine every adaptation case at least once.

The organization of the case bases is pivotal in reducing this retrieval overhead.

� Related to the previous point, maintenance of these case bases plays a key role in

both reducing system overhead and �nding relevant and useful cases with which

to solve the disaster problems. The DIAL system does not directly perform

an analysis of the two case bases to judge the coverage of the solution space

and prevent the addition of redundant or useless cases. However, DIAL does

implement a policy of forgetting where little used cases are removed from the

case base when dormant for a length of time. This approach while conceivably

removing cases with a high utility in the system when used assumes the savings

in overhead from the removal of the case will outweigh the cost of reconstructing

the case at a much later time.

� Directly linking adaptation cases to the response plans that initiate their cre-

ation is another issue of consideration. By attaching the adaptation cases to
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the response plans the information needed to solve certain problems is directly

available to the response plan that may need that knowledge. However, this

can also be viewed as a limitation in the 
exibility that is provided to response

plans and adaptation cases. By permitting any set of adaptation cases to inter-

act with any other response plan case provides the greatest maneuverability in

the solution space.

Subordinate reasoning processes

Case adaptation learning is not a stand alone reasoning process. It is necessary

to consider the a�ect and role of two subordinate reasoning processes that exist to

support case adaptation learning: a rule-based system and a case-based system. Both

of these processes are needed for the success of the case adaptation component. The

rule-based system depends entirely on the prede�ned memory search operations. This

rule system is unchanging during DIAL processing. The subordinate case base is

constructed from learned memory search cases. These cases provide the trace of a

successful memory search to a corresponding adaptation case. However, it is bene�cial

to distinguish between memory search cases and adaptation cases. Adaptation cases

store how a certain case adaptation problem was solved. A memory search case holds

only the information directly relevant to the search performed. Viewed separately,

the memory search cases are then available as an independent knowledge source for

the system. Memory search cases may suggest new relationships between concepts in

memory, or could be used by the retrieval or storage components to guide the search

for knowledge unrelated to case adaptation.

The bene�ts from these subordinate knowledge sources come without additional

overhead as the cost is already encapsulated in its parent process. We will show

the use of multiple independent processes to support a single task can be e�ective

at reducing the diÆculty of solving many di�erent problems. This bene�t will exist

because the processes acquire di�erent types of knowledge that can be shared between

the them. This gain comes at little additional expense in the form of system overhead.

3.5 Conclusions

Automatic case adaptation is necessary to enable CBR systems to function au-

tonomously and to serve naive as well as expert users. However, knowledge acqui-

sition problems for the rule-based adaptation methods used in many CBR systems

have proven a serious impediment to developing CBR applications that perform their

own case adaptation.
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This chapter described a framework for representing case adaptation knowledge

and discussed how that framework is being used as the basis for a model of automatic

learning of case adaptation knowledge.

The model combines reasoning from scratch and case-based reasoning to build

up expertise at case adaptation. The motivation of this approach is to enable CBR

systems to make the transition from case adaptation guided by general rules (which

may be unreliable and expensive to apply) to case adaptation guided by adaptation

cases that re
ect speci�c case adaptation experience. Thus this method is a way for

CBR systems to learn to become more e�ective at applying their existing cases to

new situations.

The next chapter describes how this newly acquired case adaptation knowledge

can be exploited to support other aspects of the case base planning process. It

provides an algorithm for augmenting other knowledge in this system based on its

ever changing knowledge on case adaptation.



4

Similarity Learning

This chapter introduces a method for reusing case adap-

tation knowledge to assess the similarity between stored

response plans and a current problem description. Case

adaptation knowledge can augment initial similarity cri-

teria, improving overall system retrieval.

The previous chapter described an internal CBR process for case adaptation. This

process built a repository of adaptation cases giving a foundation to solve other sim-

ilar case adaptation problems. As these adaptation cases are acquired, a new type

of knowledge is created in the system that was previously unavailable { experience

based case adaptation knowledge. This chapter describes one method of reusing the

case adaptation knowledge to re�ne similarity criteria in a process called similarity

learning. The chapter begins by de�ning and discussing the motivations for simi-

larity learning. Next it presents how DIAL reuses its own acquired case adaptation

knowledge to improve similarity assessment.

4.1 Adaptability and similarity

One of the �rst steps in the case-based reasoning process is the retrieval of past

similar cases to reapply to the new situation. Better retrieval results in better plans.

Accurately assessing similarity is necessary to facilitate this retrieval process. One

traditional approach to similarity involves comparing prede�ned features from the

problem description with stored response plan cases and selecting the one with the

most matching features. For example, two earthquakes in Los Angeles would be

66
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similar because both involve the same type of disaster, and the location feature is

the same for both disasters. For situations where past cases can be applied directly

to the new situation, this similarity metric is e�ective. However, when most stored

cases require some level of case adaptation, prede�ned features for similarity may not

indicate the amount of e�ort required to adapt the cases. To better assess the cost

of reapplying these cases a di�erent method of computing similarity is proposed.

If the goal of retrieval is to reduce the total processing required of the system

while still producing acceptable plans, the similarity metric should account for the

work required to modify a stored case (Smyth & Keane, 1994; Leake, 1992a). After

retrieval, the remaining work of a case-based system is to evaluate the proposed plan

for problems and to adapt any identi�ed problems. Therefore, if stored cases can be

selected to reduce the number of problems or the amount of case adaptation required

then overall system processing would be improved. Thus instead of selecting cases on

the basis of prede�ned features a better method would select cases by comparing the

adaptability of the di�erent candidate plans. Cases that can be easily adapted are

retrieved for reuse over cases that might be expensive. A plan might be adaptable

either because there are few identi�ed problems or because the problems identi�ed

require little additional e�ort to repair. By using a similarity metric not based on

prede�ned features, more usable plans will be selected.

4.2 Reevaluating similarity

The addition of a case adaptation learning algorithm to the case-based planning

system signi�cantly changes the case landscape that must be navigated when new

problems are encountered. Traditional case-based techniques have relied on the use

of �xed similarity criteria and indexing to enable quick lookup of appropriate cases for

a new problem. With the addition of a second case-base { in the form of adaptation

cases { the issue of synchronizing similarity and case adaptation knowledge becomes

important.

Static similarity techniques must be reevaluated when

case adaptation knowledge changes.

The four-step view of case-based planning dictates that the plan case is retrieved

before the case adaptation component takes control. However, since similarity assess-

ment should re
ect the potential adaptability of the retrieved case, the two processes

cannot remain independent. Thus, this research examined alternative methods for
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assessing similarity. It focused on methods that gauged the adaptability of candidate

response plans. Our discussion of similarity assessment methods begins by reviewing

other research that provided inspiration for the similarity learning method used by

DIAL.

4.3 Related research

Several researchers have described work on modifying similarity criteria to re
ect

changes in system knowledge and experience. This section examines some of the work

that provided the inspiration and insight for the similarity learning approach used in

DIAL.

Similarity assessment for case-based reasoning systems often relies on semantic

similarity or other criteria that may not re
ect the diÆculty of case adaptation. Other

researchers have suggested that case selection should re
ect anticipated usefulness as

directly as possible (Kolodner, 1988b; Smyth & Keane, 1998; Leake, 1992a; Keane,

1994).

There are several methods of judging the utility of selected cases. One approach

is to re�ne similarity criteria to re
ect the most relevant similarities. For exam-

ple, explanation-based indexing (Barletta & Mark, 1988) and the Prodigy/Analogy

(Veloso & Carbonell, 1994) system's \foot-print" similarity metric focus attention on

goal-relevant features, in order to retrieve cases that refer to the prior problem situa-

tions with the most relevant similarities. Other approaches do failure-driven learning

to re�ne similarity criteria after detecting retrieval of a case that is needlessly diÆcult

to adapt (Birnbaum, Collins, Brand, Freed, Krulwich, & Pryor, 1991; Fox & Leake,

1995). All these approaches are worthwhile, but do not directly take adaptability into

account.

Adaptability is the basis for similarity assessment in Smyth and Keane's (1996)

D�ej�a Vu, a case-based design system which computes similarity as follows. First, it

selects a set of case adaptation procedures to �t a stored plan to new needs. Next, it

uses a �xed estimated cost �gure for each procedure to estimate the cost of the entire

case adaptation. Finally, it favors the plan with the lowest estimated case adaptation

cost. This process requires all adaptation knowledge to be pre-speci�ed and does not

require any user intervention to detect problems. Experiments demonstrate that this

improves performance compared to using traditional semantic similarity.

D�ej�a Vu assumes that an initial �ltering stage retrieves a subset of the case library

for �ne-grained consideration. In D�ej�a Vu, this step checks all stored cases to select
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those for which the system has case adaptation rules that potentially can adapt the

features of the retrieved case to the new situation.

4.4 Learning new similarity criteria

This prior work strongly suggests that in order to facilitate later case adapta-

tion, similarity criteria should re
ect adaptability. Thus when new case adaptations

are learned, similarity criteria should be modi�ed to re
ect changed case adaptation

abilities. However, early versions of DIAL relied on static similarity criteria. Conse-

quently, DIAL could select plan cases that are diÆcult or impossible to adapt while

other plan cases exist with manageable adaptation requirements.

One straightforward method of assessing plan adaptability is to record system cost

averages for typical problem types. However, knowing the cost of di�erent problem

types is only e�ective if these cost are known and are unchanging. In DIAL, the

system's ability to perform di�erent case adaptations is constantly changing as new

case adaptation knowledge is acquired. Further, as the system has little initial case

adaptation knowledge, it is impossible to accurately assess the costs of di�erent types

of problems prior to system execution. Instead a method achieving the same e�ect as

the prede�ned costs for case adaptation is desired but also accounting for the system's

changing case adaptation abilities. The next section focuses on the method used in

DIAL to dynamically modify the similarity criteria to re
ect plan adaptability and

therefore account for both types of case knowledge found in the system.

4.5 The similarity learning algorithm

The linking of similarity assessment to the stored case adaptation knowledge was

achieved by developing an adaptation algorithm involving the following sequence of

steps.

1. First, a small set of potentially relevant cases from similar prior disasters is

retrieved. This process uses coarse-grained semantic similarity criteria (based

on the distances in memory between role-�llers in the problem descriptions) to

retrieve a user-de�ned number of prior cases. This step is necessary to limit the

amount of processing dedicated to retrieving adaptation cases. This �ltering

selects only those response plan cases that are relevant to the current problem

description.
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2. The system determines correspondences between old and new disasters and does

an initial mapping of the prior response plans to the new situation, identifying

roles for which this initial simple case adaptation fails.

3. Additional problems are identi�ed by a combination of automatic stereotype-

based problem detection (Leake, 1992b) and user feedback (possibly rejecting

system mappings).

4. The similarity assessment process takes prior response plan cases and their prob-

lems as input, retrieves available information on the expected cost of adapting

each problem, and estimates the total expected cost by summing the costs over

the entire plan. This information is used to select the response plan case ex-

pected to be easiest to adapt, i.e. the case with the least total expected cost.

5. Problems in the response plan suggested by the selected case are repaired by

the case adaptation component.

These steps are now examined in greater detail in the following subsections.

Filtering and selecting cases

The primary issue in the deployment of similarity learning is the mechanism used

to �lter both response plan and adaptation cases and select those most appropriate to

the current situation. If the �ltering does not occur, the system would need to score

every system case for adaptability. Most of these stored cases would prove useless

when examined and waste valuable processing time. Since one of the primary goals of

using case adaptation knowledge to support case adaptation is speedup learning, any

savings made in the case adaptation component would be lost in the retrieval com-

ponent if �ltering did not occur. Therefore the �ltering must �nd a balance between

eliminating potentially useful plans and the expenditure of unnecessary resources by

the retriever. Fortunately, the case base is organized such that �ltering can be done

quickly and without signi�cant danger from over or under �ltration. This organization

described in the example below was developed speci�cally to alleviate this problem.

To illustrate, a new example from the DIAL system is given. When presented

with a new story about a 
ood disaster in West Virginia, DIAL retrieves a pool of

response plan cases using static feature-based similarity measures. In practice, DIAL

examines a set of predetermined �llers from the story and compares these �llers to

values in the set candidate cases. The organization of the case base is divided along

these same predetermined �llers giving the system the ability to select all cases with

the same value in one retrieval of the case base. For example, the most commonly

used �llers are the problem type, the location of the disaster and the severity of the
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disaster. In the West Virginia example, the problem type is a 
ood of catastrophic

severity that takes place in Wheeling, West Virginia in the United States. The case

base is divided into separate sub-trees based on problem type and these trees are

further subdivided by severity and then by geographical region. If after this retrieval

of cases the number of selected candidate cases is large then the number is further

reduced by applying semantic similarity techniques to each and selecting only the

top �ve cases for further consideration. For the West Virginia problem, only three

candidate response plans were discovered: one in Alaska, one in Georgia, and one in

Oregon. After an initial mapping of the new situation on to the prior situation, these

candidate cases are passed on to the next step of the similarity assessment sequence.

Problem detection

The second step of the similarity assessment sequence is the identi�cation of prob-

lems that require case adaptation in each of the candidate plans. This is one potential

bottleneck of the similarity assessment process. Problem identi�cation is a critical

step in the planning system that this dissertation describes, but is not the central

focus of this research, and other researchers have provided adequate methods for

handling evaluation.

Several researchers have described methods of identifying problems requiring case

adaptation. These methods range from explanations of problems (Hammond, 1989)

to pattern-based veri�cation (Leake, 1992b). External information may also directly

identify needed case adaptations. For example, a failure during plan execution could

signal that additional case adaptation is necessary (Alterman, 1988).

DIAL relies on a combination of pattern-based methods|which can detect po-

tential problems at minimal cost (Leake, 1992b)|and user feedback for information

not available in the system's prior knowledge. In the disaster response domain, user

input might re
ect situation-speci�c information (e.g., that a road is impassable, or

that a region is not under the jurisdiction of a particular agency). The DIAL model

assumes that the planner's knowledge is incomplete, so the system may not be able

to detect all problems internally.

For each candidate response plan, DIAL identi�es problems detectable from its

knowledge, and the user identi�es and describes additional problems. For example, in

the aftermath of the Oregon 
ood, the police forces maintained order. This response

would not work for the new disaster in West Virginia, because the police force is

not equipped to deal with the access problems posed by the 
ood. This results in a

problem categorized as \lack of access" to the area. Re-applying the Oregon plan to
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the new situation will require case adaptation to overcome this problem. DIAL also

identi�es additional problems in each of the candidate cases.

Scoring adaptability

Once each case is evaluated and the problems requiring case adaptation are identi-

�ed, the plans are ranked based on their adaptability. Several di�erent approaches of

assessing adaptability were developed in this research and comparatively evaluated.

These approaches are discussed in some depth in the next section. Once adaptability

is scored, a cost value is determined based on the system's estimate of the amount

of processing required to solve each of the identi�ed problems. For each candidate

plan, the costs for each problem are summed to arrive at a �nal score for the plan.

This score re
ects an estimate of the total amount of processing needed to solve all

identi�ed problems. Higher scores re
ect larger costs and therefore less desirable

plans. These costs are not absolute but are system predictions of relative cost. The

accuracy of the prediction is dependent on the validity and utility of any stored case

adaptation knowledge.

In the Oregon candidate plan this process would entail retrieving stored knowledge

about \lack of access" problems in the context of a 
ood. Stored knowledge might

suggest that this type of problem has a very high cost to solve, and therefore the

candidate plan should be less desirable to reapply. When new system knowledge is

acquired, this same type of problem may become easier to solve and in future similar

situations this candidate plan might be highly desirable for reapplication. In other

situations, there may be no available knowledge on this problem type and the system

would have to rely on other methods to assess the diÆculty of the problem.

4.6 Case adaptation knowledge and similarity learn-

ing

Several di�erent approaches to similarity assessment using adaptation cases were

implemented and compared in DIAL. Some metrics were selected as analogues to

case adaptation based similarity metrics already suggested by researchers such as

Smyth&Keane. Other methods were selected to exploit unique opportunities pre-

sented by the organization of knowledge in the adaptation cases. These methods are

summarized in table 4.1.

Two of the approaches to similarity assessment are modi�cations of approaches
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described by other researchers. These two methods do not directly apply any knowl-

edge stored by adaptation cases and provide a useful base line criteria for assessing

the performance of other methods. The �rst approach, the problem count method,

assumes that all case adaptations have equal cost and therefore a plan with the fewest

problems is the most adaptable. This method counts the number of problems in a

candidate plan and thus requires no additional case adaptation knowledge. All case

adaptations do not have the same base cost so the expectation was this approach

would select cases with few problems but these cases may require signi�cant process-

ing time to solve. Nonetheless, the overhead of this method is negligible and could

compensate for these expensive case adaptations.

The second benchmark method requires the system maintain average costs for

solving case adaptations of each problem type. These average costs are stored by the

system and updated whenever new case adaptations are performed. So unlike sys-

tems such as D�ej�a Vu, these averages are dynamic and not provided to the system at

startup. This method should provide a fair indication of the general diÆculty of di�er-

ent classes of problems. However, it does not accurately re
ect the current knowledge

that is stored in the adaptation cases. Early problems of a speci�c type could require

substantial processing time to solve, but once adaptation cases are stored for these

problem they may become straightforward and require little processing. With this

method, the in
uence of those early time consuming problems will linger long after

the addition of the new knowledge. Thus while neither benchmark approach was

expected to improve system performance, they provide a starting point to compare

other methods.

Three di�erent methods were developed to apply the knowledge stored in adap-

tation cases to the process of similarity assessment. Each of these methods begins

in the same manner by retrieving the most applicable adaptation cases for the iden-

ti�ed problems. Adaptation cases are retrieved in two steps. The �rst step �lters

all the adaptation cases by problem type. So only adaptation cases describing \lack

of access" problems are selected as candidates for the same type of problem in the

response plan. Each selected adaptation cases is given a score based on how closely it

matches the features of the current problem. The best matching case is then attached

to this problem for reuse in the case adaptation component.

The di�erences in the three similarity methods using case adaptation knowledge

stored in the cases is the type of knowledge used to score similarity. The three new

methods are listed here followed by descriptions of each.

� Prior adaptation cost

� Solution derivation length
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� Reapplication costs and relevance

The �rst method uses the prior cost of each case adaptation episode as a prediction

of the diÆculty of the new case adaptation problem. The prior cost is taken as the

total number of memory search operations that were applied during the prior solution

episode. These costs can then be added together to arrive at a numerical value that

o�ers a prediction of the diÆculty of the new case adaptations. The candidate plan

with the least expected case adaptation cost is selected to form the foundation of the

new solution. This approach avoids case adaptation problems that previously had a

high cost associated with them. Using the prior case adaptation costs is similar to

applying the average cost method but it uses more relevant information stored in an

adaptation case that is similar to the current problem. However, the method is likely

to overestimate the total cost required to adapt a response plan as some problems that

were previously expensive will be less expensive when reapplying the adaptation case.

Nonetheless, it does provide a good indicator for the cost of adapting a candidate plan

with only weak search methods.

The second approach that applies stored knowledge in adaptation cases uses the

length of solution derivations as a method of scoring the adaptability of a problem. A

solution derivation from an adaptation case is the exact set of operations required to

perform the prior stored case adaptation. If each selected adaptation case provided the

exact solution to the new problem, then these operations could be reapplied directly

and would solve the new problem. Thus a lower bound for the case adaptation cost

for each candidate response plan can be determined. Again this is only an estimate

of cost as adaptation cases generally provide inexact solutions to new problems and

occasionally suggest no solution at all.

One problem with using solution derivations as a measure of cost is that the case

adaptation selected may be an imperfect match to the new situation. This could

result is additional processing time as the derivations could require adjustment or

further case adaptation. To account for the selection of imperfect adaptation cases,

a �nal similarity assessment method was developed called RCR (for Re-application

costs and relevance) (Leake, Kinley, & Wilson, 1996). RCR estimates the cost of

performing case adaptations by assessing both the prior derivation length and scoring

how applicable the selected adaptation case is to the current situation. For each

adaptation case that is selected for a problem in the candidate response plan, its

similarity to the current situation is scored used coarse-grained feature similarity.

This value is adjusted such that two identical situations would score a one and less

similar situations would be given progressively larger scores. This score is multiplied

by the length of the solution derivation from the adaptation case. This gives DIAL

the ability to estimate what the future cost of correcting this problem might be and

account for the relevance of the adaptation case to the current problem.
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Methods Description Knowledge Source

Problem count Counts the number of problems in

each candidate response plan

None

Average problem cost System keeps running tallies on

the average cost of case adapta-

tion for each problem type.

Stored system values

Prior case adaptation

cost

Uses the previous cost of complet-

ing the similar case adaptation

Adaptation cases

Derivation cost Counts the number of steps that

were actually used to solve the

similar case adaptation

Trace of solution from

adaptation case

RCR Used the derivation cost by scaled

by a factor of how dissimilar the

prior adaptation case is to the

current problem

Adaptation cases

Figure 4.1: Summary of adaptability based similarity methods.

By making the re�nement of similarity criteria a natural side-e�ect of case adap-

tation learning, better pairings between response plan cases and adaptation cases

should be achieved. However, the �nal three methods have two potential drawbacks:

either generating inaccurate similarity judgments (if the costs of the previous case

adaptations retrieved turn out to be poor predictors), or imposing excessive compu-

tational overhead in retrieval and evaluation of cases. Both of these properties must

be tested.

The bene�ts of a dynamic similarity process are numerous and include:

� There are few initial rules that have to be provided to the similarity process.

� The adaptation cases drive the types of response plans that are retrieved { some

plans may not be selected because the requisite case adaptation knowledge does

not exist.

� As new case adaptation knowledge is acquired, changes can be made to the sim-

ilarity criteria. Problem situations that were previously diÆcult or impossible

to adapt may now be solvable or even trivial.

By incorporating these methods, DIAL transforms from a rule based similarity
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process to a primarily case-based similarity process. However, to understand the

e�ectiveness of these new learned similarity methods three questions were posed:

1. Does the linkage between similarity and case adaptation knowledge created by

similarity learning decrease the total system e�ort when case learning and case

adaptation learning are used together?

2. How is the overall planning eÆciency of DIAL a�ected by similarity learning

and case adaptation learning and what is the comparative performance of the

two?

3. How should the cost of similarity assessment be calculated? In this process, is

there a clear division between the role of the retrieval/similarity system and the

case adaptation system?

There are several potential drawbacks to implementing these similarity learning

approaches. The next section provides a discussion of the most serious of these pitfalls.

Issues for similarity learning

The similarity learning algorithm is a promising approach to link the retrieval

of response plans with the selection of relevant adaptation cases. However, some

potential drawbacks can be identi�ed. DIAL's �ltering stage currently uses semantic

similarity to retrieve a small set of candidate response plans for consideration. There

is the potential of incurring a high cost when retrieving adaptation cases for each

candidate response plan. For example, if ten candidate cases are selected and each

has three problems requiring case adaptation then 30 di�erent adaptation cases might

need consideration. Further, the desire to retrieve even a single adaptation case

could entail examination of several di�erent cases to �nd the most applicable one.

To compensate only �ve candidate cases are allowed in order to reduce this burden.

The tradeo� of �ltering out useful cases to achieve less overhead in adaptation case

retrieval is a gamble. If none of the �nal set of cases is considered adaptable then little

is gained by using the adaptation case knowledge. However, without this �ltering the

overhead could become prohibitively expensive and eliminate any system gains. As

long as at least one comparatively adaptable case is in the �nal set of candidates, this

tradeo� appears worthwhile. Filtering by semantic similarity seems reasonable, in

light of evidence in prior CBR systems that semantic similarity can provide general

estimates of similarity.

A second potential problem results from the selection of adaptation cases relying

on static semantic similarity criteria { the same type of similarity DIAL attempts to
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eliminate at the response plan level. Semantic similarity was replaced for response

plans since the plans would later require case adaptation and thus this similarity

should be based on the processes that will be applied to the plans. Unlike the re-

sponse plans, selected adaptation cases are applied directly to the problems for which

they were retrieved and do not require further processing before they can be used.

However, it semantic similarity fails to �nd useful adaptation cases to reapply then

extra processing cost will occur. We believe that similarity learning will improve the

interaction of the case based planner and case adaptation component. Many of our

concerns will be alleviated by the presentation of the test results.

These problems will be addressed by the system test results.

4.7 Conclusions

This chapter addressed the issue of how traditional similarity assessment meth-

ods can be modi�ed when case adaptation knowledge is available. The approaches

presented here couple similarity judgments directly to a case library containing the

system's case adaptation knowledge. This case-based approach simpli�es knowledge

acquisition for similarity criteria, because similarity is learned from experiences with

case adaptations rather than based on a priori analysis. Similarity learning provides

�ne-grained estimates of case adaptation costs, re
ecting knowledge of individual

prior problems, and provides a natural way to re�ne similarity criteria as new case

adaptations are learned.

One open question is what is the appropriate information to reuse from adaptation

cases to score the adaptability of response plans. This chapter presented several

di�erent methods for approaching this problem including using past costs, expected

future costs and a method combining the relevance of a selected adaptation case to

the amount of work required by the case adaptation.

Similarity criteria for selecting cases must change as case adaptation knowledge

is learned; neither coverage of the case library, nor case adaptation abilities, can

be judged in isolation from the other knowledge sources. In developing a combined

method, how one type of learning a�ects the eÆciency of one component of the CBR

process is secondary to the eÆciency e�ects of the learning on the CBR process

as a whole. The close coupling of multiple processes and knowledge sources in CBR

complicates the application of learning to each one, but also provides a new motivation

for combined learning: Combined learning can enable a CBR system to better exploit

the relationships between multiple types of knowledge.

The next chapter presents an empirical evaluation of the methods presented in
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this and the prior chapter examining the hypotheses and questions that have been

identi�ed to this point.



5

Experiments

This chapter presents empirical evidence on the e�ect of

case adaptation learning and similarity learning.

This chapter presents empirical evidence supporting the e�ectiveness of our case

adaptation learning method. Using this evidence, questions can be answered about:

the improvement of the case adaptation process, the improvement of the entire system

process, and the role of similarity learning on the case adaptation process. The system

is examined under various learning conditions in order to draw conclusions about the

advantages and disadvantages of our approach.

The chapter is organized as follows: it begins by stating the hypotheses to test.

Next, the experimental methodology and terminology for the experiments is summa-

rized and explained. Finally, it presents the empirical results. These compare case

adaptation learning and plan case learning, and the bene�ts of di�erent similarity

assessment methods.

5.1 Summary of system hypotheses

We have proposed the following hypotheses that will be addressed by the experi-

ments:

1. A combination of plan case learning and case adaptation learning will result in

acceptable plans generated in less time than with case learning alone.

2. As case adaptation knowledge is acquired, the cost of performing individual

case adaptations will decrease.

79
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3. Case adaptation knowledge will result in a greater coverage of the solution space,

so fewer problems will be unsolvable.

4. The addition of a similarity learning improves the retrieval of both adaptation

cases and plan cases. This process enhances the interaction between the two

case based processes.

5. The initial cost of learning will increase with multiple learning processes, how-

ever, the ultimate bene�ts in terms of speed and quality of solution will outweigh

this expense.

5.2 Methodology

The DIAL system was evaluated with a set of ablation studies to measure the

contributions of the di�erent learning components and knowledge sources. The system

was tested using two di�erent knowledge bases:

� Hand-Coded Knowledge Base: A knowledge base was built to support

early testing of the DIAL system. The knowledge base contained the informa-

tion needed to solve any problem encountered in the set of disaster examples

presented. In addition to the necessary knowledge, a large number of irrelevant

but related concepts were added to make standard search more diÆcult. How-

ever, it was limited to approximately 2000 di�erent concepts and subject to the

designer's bias.

� Wordnet lexicon: The Wordnet lexicon contains over 100,000 di�erent En-

glish language concepts and is organized in a hierarchical model with linguistic

relationships existing as the connections between concepts. This lexicon is suf-

�ciently large that exhaustive search is not practical. Also, as it was built by

research groups unassociated with the DIAL project, it does not exhibit any

inherent bias for the types of problems DIAL attempts to solve.

A series of test examples was constructed from real world disasters as reported by

the AP newswire and presented to the system for plan development. There were 22

disaster examples presented to the system and are listed in table 5.1. An expanded

listing is included in appendix A.

During a single pass of the disaster examples the following steps occurred in our

experiments.
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Disaster Type Disaster Location

Earthquakes

Los Angeles

Liwa, Indonesia

Ecuador

Biak, Indonesia

Neftegorsk, Russia

Jiashi, China

Yunhuan, China

Rustaq, Afghanistan

Bogota, Colombia

Floods

Wheeling, WV

Bainbridge, GA

Oregon

Allakaket, AK

Kabul, Afghanistan

Izmir, Turkey

Johannesburg, South Africa

India

Khartoum, Sudan

Grand Forks, ND

California

Guizhou, China

Air Quality

Beaver Meadow School indoor air quality

A&D Manufacturing indoor air quality

Brookview Elementary indoor air quality

Table 5.1: Disasters processed by DIAL during experiments
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1. The system learning parameters are set (as described below) to assign the de-

sired system.

2. Next, each example disaster is fed to the system and processed until a satis-

factory response plan is generated. This may involve several episodes of case

adaptation and require user interaction.

3. Finally, statistical data on the problem solving costs and the results are gathered

and stored for later analysis.

System parameters

The system has several independent learning parameters. These can be set to

achieve a desired learning combination. The parameters available to the system are:

� *case-learning* (boolean) { This parameter enables learning in the system.

If set to false, newly generated response plans are not stored in the case base,

otherwise all generated response plans are stored and available for future reuse.

� *adaptation-learning* (boolean) { This parameter toggles the internal case

adaptation learning process. If set to false, successful case adaptations are

not stored for reuse, otherwise all generated adaptation cases are stored and

available for future reuse.

� *similarity-learning* (integer) { This parameter determines the type of

similarity assessment performed by the system. If false, the system relies on

static similarity criteria. Otherwise the system attempts to apply the knowl-

edge stored in adaptation cases to support similarity assessment. When no

adaptation cases are available in the system, this parameter is ignored.

� *similarity-type* (integer) { This parameter allowed the user to specify

which of the �ve di�erent similarity methods would be used when similarity

learning was activated

System measures of cost

Several di�erent measures of cost were used to compare the performance of the

system in the experiments. The �rst types of units were internal measures based on

the architecture and construction of the testbed system. The number of concepts

visited in memory was a type of internal unit. The second type of units was external
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measures scored independently of the system. Processing time was an example of an

external measure. Internal units were a preferred method of evaluating experiments

as all overhead cost not speci�c to the system processing would be eliminated. For

example, access times for the Wordnet database varied according to the speed and

memory of the machine used whereas the number of accesses to the knowledge base

remained constant. The following units of measure are used and recorded for each

experiment.

� Operations: An operation in the system is the number of primitive search

methods required to solve a case adaptation. These search methods correspond

to the smallest movements permissible in the knowledge base. Moving from

a concept in the system memory to a parent concept is one example of an

operation.

� Nodes: Nodes are the number of unique locations visited in the knowledge base

while searching for the solution. Each concept represented in the knowledge base

corresponds to a single node. Nodes visited more than once in a search are only

counted a single time. A single operation may lead to a single node or could lead

to a hundred nodes. For example, the concept \tree" in the Wordnet knowledge

base has over 150 di�erent child nodes. By applying a single get-child operation

to this concept, 150 new nodes are introduced. However, the concept of \oak

tree" only has a single parent in the knowledge base and therefore one operation

would yield only one concept. Thus it is possible for the number of nodes and

operations to vary widely across a trial.

� Time: Time is the amount of actual CPU time spent searching for the solution

to a case adaptation problem. Most of the results here are taken from a Sun

Sparc Ultra 5 workstation.

Outline of experiments

For the set of experimental trials presented, up to 26 disaster response plans were

created with each requiring between 0 and 6 case adaptations with a maximum num-

ber of 119 total adaptations performed in one of the trials. Small variations occurred

based on the type of learning performed. One combination of learning parameters

might require very few case adaptation episodes while other combinations (e.g., in-

cluding case adaptation) learning might require several inexpensive case adaptations.

The set of 26 response plans was selected for its manageability and because longer

sequences of examples generally provided no additional learning improvements, al-

though a complete scale up of the system is left as a future direction of work.
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Our description of the system results follows the following organization:

� The hypotheses generated for the experiment are stated.

� The system results are presented.

� An explanation and analysis of the results provides perspective of the results

and highlights anomalous data.

Additional analysis of the results and any conclusions drawn in terms of the system

as a whole will be left for a �nal discussion of all of the data.

5.3 Value of case adaptation learning

As part of the initial assessment of the DIAL system, the direct contribution of

case adaptation learning to the case-based reasoning process was examined. The �rst

experiment was viewed along two distinct cross sections to understand the a�ect of

case adaptation at both the plan level and the case adaptation level. The �rst analysis

described examines the cost of individual case adaptations across various learning

conditions. Based on these results, a second analysis of the same data is described

which partitions the data in terms of the cost of response plan creation. From these

results some conclusions can be drawn to support the use of case adaptation learning

in certain types of systems.

For this set of experimental trials the system was examined under �ve di�erent

learning conditions.

1. No Learning (NL): A baseline for the system where no learning occurred.

2. Case Learning (CL): This is traditional CBR with response plan cases stored

and reused but no adaptation cases are saved.

3. Case adaptation Learning (AL): Only adaptations cases are stored and

reused, completed response plans are discarded.

4. Case adaptation Learning and Case Learning (AL+CL): Both response

plan cases and adaptation cases are saved for reuse.

5. AL + CL + RCR: This is identical to the prior condition except the RCR

method for similarity learning is added as described in chapter four.
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Figure 5.1: Average Cost of a single case adaptation on original KB

Case adaptation learning vs. plan case learning

The �rst experiment examined the direct contribution of learning to the cost of

solving problems requiring case adaptation. The experiment was conducted using

both knowledge bases. The results from the hand-coded knowledge base are repli-

cated here from (Leake, Kinley, & Wilson, 1997) and are augmented here with results

from Wordnet. This analysis should either support the use of case adaptation learn-

ing under di�erent knowledge bases or provide insight as to the characteristics of a

knowledge base that bene�t case adaptation learning.

Hypothesis. Case adaptation learning alone was expected to result in a slightly

higher processing cost than case learning alone. Without case learning, there are few

starting points from which case adaptation learning can arrive at solutions. With-

out adequate case coverage of the space of possible case adaptation solutions, some

problems will require much longer searches to complete. Additionally, the smaller

coverage of the potential solution space could result in a much steeper learning curve

for the case adaptation learner. Thus more e�ort would be expended early by the

case adaptation learner and only over a time would this cost decrease. The combina-

tion of learning methods was expected to produce the best results as de�ciencies in

one learning method would be compensated by the other method. As the number of

plan cases and case adaptation cases increased, the likelihood of identifying a solution

increases due to a wider coverage of possible problems.
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Figure 5.2: Cost of case adaptation with Wordnet

Results. Results from this trial are shown in �gures 5.1 and 5.2. These results

report the number of operations performed per case adaptation and the number of

nodes visited per case adaptation over the course of the entire experiment. Fewer

operations and nodes on average implies a better search. In �gure 5.1, case learning

performs better than only the no learning condition. As additional learning methods

are combined, their interaction produces the best overall results for case adaptation.

One surprising result from this data shows case adaptation learning without plan case

learning to be superior to traditional plan learning alone.

Results from the same set of examples using the Wordnet knowledge base, shown

in �gure 5.2, provided several surprises. Case adaptation learning alone has a lower

cost than all other methods, both in terms of the number of operations performed

and the number of nodes visited. Also, the combination of case adaptation learning

and plan case learning had a cost for the nodes visited measure comparable to the

no learning case. It is interesting from this data that when counting the number

of nodes visited, the combination of learning methods is much worse than either

individual method. Also, the number of operations performed using only the case

adaptation learning method seems out of place as it was almost twice as fast as the

next best combination. These anomalies are described more in the following section.

For a quantitative view of these same results, table 5.2 is provided.
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Avg Ops Avg Nodes

No learning 529 280

Case Learning 439 225

Case adaptation Learning 165 186

AL/CL 367 292

AL/CL/RCR 303 250

Table 5.2: Average e�ort expended on case adaptation for the �ve learning situations.

Discussion. Despite some surprises, these results are encouraging. Case adapta-

tion learning does reduced the amount of e�ort required to perform case adaptation

on average for at least the examples given.. This result was consistent across both

knowledge bases demonstrating the e�ectiveness of this approach is independent of

the organization or content of its knowledge. However, the ine�ectiveness of com-

bined learning methods when using the Wordnet knowledge base particularly given

the success of the adaptation learning method raised new questions not previously

asked.

First, we expected that the combination of learning methods would improve the

overall eÆciency of the case adaptation process. With more plan cases available for

retrieval and more adaptation cases available to support the case adaptation process,

eÆciency was expected to at least equal the other two methods. Instead, the two

separate learning processes interfered with one another.

Case adaptation learning performed well above expectations. This is surprising as

it was not designed as a stand alone learning method but as an integrated part of a

larger CBR process. However, reducing the cost of case adaptation is only bene�cial

if the number of case adaptation problems that need to be solved does not increase.

Thus the savings in cost of case adaptation alone is not enough to suggest overall

improvement to the system.

To summarize, we can draw several conclusions from this data. Each conclusion

is stated followed by a detailed discussion of the conclusion.

� Case adaptation learning reduces the system cost of performing case adapta-

tions.

� Learning response plan cases does not reduce the cost of performing case adap-

tations. When case adaptation learning is not present, case adaptation took

longer. However, when plan learning was present the number of case adapta-

tion performed was reduced.
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� The combination of multiple learning methods without similarity learning per-

forms worse on average then any of the individual learning methods alone. This

was an unexpected result.

The �rst conclusion is drawn straight from the presented data. Case adaptation

learning does appear to reducing the e�ort required for case adaptation. Taken alone,

this result is precisely what our hypothesis stated. However, these data also suggest

that using case adaptation learning alone was signi�cantly better than using case

learning alone. This research does not attempt to make that claim. Instead, this

data provide one perspective on the case adaptation process. When case learning

is used, more plan cases exist to select from when new problems are encountered.

Thus, retrieved plan cases are likely to be better matches to the problems can be

found resulting in fewer total case adaptations. The few required case adaptations

in this situation tend to require expensive search processes to solve. This ends up

in
ating the average case adaptation cost for each of these problem types. With case

adaptation learning, adaptation cases are frequently retrieved to solve problems in

the retrieved plan cases. Many of these case adaptations are simple and require little

time to solve. A few case adaptations may be of the same diÆculty as those handled

in the case learning situation alone. However, the total number of case adaptations

performed is high and thus reduces the system wide average for case adaptation.

A di�erent, and perhaps more e�ective, perspective for analyzing the data is to

examine case adaptation costs at the response plan level. The creation of a new

response plan incorporates all aspects of the external CBR process and thus better

re
ects the total costs to the system. The next section will examine this same data

from this new perspective to identify how case adaptation learning a�ects system

processing as a whole.

Our �nal conclusion is that by combining the learning methods there actually

appears to be a decrease in performance compared to each method alone. The com-

bination of learning components does not guarantee better performance than using

any single learning method. At least two factors contribute to this unexpected lack

of synergy exhibited by DIAL in these results. These are system overhead and learn-

ing interference. Learning interference describes a situation where multiple learning

methods are applied and tend to handicap each other. For example, both case learn-

ing and case adaptation learning proceed independently of one another with each

adding new cases to their case bases when new problems of the appropriate types are

solved. However, when plan cases and adaptation cases are selected, the adaptation

cases are used to repair the problems identi�ed in the plan case. If the plan case

retriever selects plans for reuse that do not utilize available case adaptation knowl-

edge, then case adaptation is performed at a sub par level. Ideally, both the case
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Figure 5.3: Average cost of case adaptation per response plan

learner and the case adaptation learner would store exactly the type of information

most usable by the other method. The addition of similarity learning may assist the

learning methods to better coordinate their actions in order to avoid this interference.

The e�ect of case adaptation on the system

A di�erent perspective on the data is provided by examining at the level of the

response plan as opposed to the level of the case adaptation. The response plan

is a standard unit of processing to the DIAL system. The creation of a response

plan encompasses all of the actions and processing the system can do. By viewing

adaptation costs at the response plan level a more accurate view of the total system

costs during processing may be achieved.

Hypothesis. Adaptation learning will reduce the cost of plan generation when

costs are measured at a response plan level.

Results. The results, presented in �gure 5.3, re
ect the total cost of case adap-

tation for each response plan while using the Wordnet knowledge base. All of the

learning combinations were superior to the no learning condition. However, the scale

of this graph does not clearly distinguish between each of the learning methods. To
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Avg Ops Avg Nodes

No learning 1979 1048

Case Learning 717 368

Case adaptation Learning 661 747

AL/CL 600 477

AL/CL/RCR 542 447

Table 5.3: Average e�ort expended on case adaptation for the the �ve learning situ-

ations per response plan.

provide for this information, table 5.3 reports the exact performance of each method.

The table shows a small decrease in the number of operations required for each re-

sponse plan with each added learning method. There is still a small di�erence in

the number of operations performed by case adaptation learning and standard case

learning but we make no claims of its signi�cance. However, the number of nodes

visited during case adaptations is substantially smaller for case-learning alone that

for any other combination tested. This unexpected result will be analyzed further in

the following discussion section.

Discussion. With the exception of the result for case-learning, the results support

our claim that case adaptation learning contributes eÆciency to the case-based rea-

soning process. However, the unexpected result requires additional discussion. There

is a di�erence in the information gained from the reporting of the number of nodes

visited and the number of operations performed. Nodes indicate the total number of

concepts from memory that were placed into consideration for additional processing.

If one area of the knowledge base is particularly dense with concepts, the number of

nodes can quickly increase. In practice, this number is reduced by pruning repeated

nodes and applying constraints to eliminate nodes from consideration. In contrast,

the number of operations performed shows the number of decisions that were made

with respect to the search process. Application of a single operation could result in

the addition of multiple nodes to the pool of nodes to be considered. Further with

case adaptation learning, each node that is encountered must be examined to ensure

that the directed search follows the most appropriate node, whereas blind search can

select nodes arbitrarily for expansion. This has the net a�ect of in
ating the nodes

visited number for case adaptation learning.
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Case adaptation knowledge reduces the

amount of e�ort required to solve certain

types of case adaptation problems.

The e�ect of case adaptation learning on problem coverage

The results presented in the prior sections focused on case adaptation problems

that were solved automatically by system methods. However, certain types of prob-

lems may be unsolvable if the coverage of the solution space by the stored cases is

insuÆcient. These problems must eventually be solved by manual case adaptation of-

ten after substantial system resources have been expended attempting to perform the

case adaptation. Thus the frequency with which the manual adapter must be used is

a measure of the case adaptation ability of the system. In this analysis, the number

of unsolved problems is examined { these are the problems that were attempted using

automated system methods but required manual intervention to complete.

Hypothesis. Each learning method should require approximately the same num-

ber of manual adaptations.

As each trial begins with identical system knowledge and is presented with the

same set of disasters for each learning situation, the set of reachable solutions should

not vary widely in the system. One learning method might have the capability of solv-

ing a given problem faster but if a problem is unreachable with the given knowledge it

will require manual case adaptation regardless of the learning method used. A few of

the expected di�erences include case adaptation learning methods that would be able

to reapply the knowledge from a prior manual adaptation. Thus an unreachable prob-

lem once solved will no longer be categorized as unreachable under those conditions.

Therefore, case adaptation learning may record slightly fewer unsolvable problems.

Accordingly, the no learning condition might require more manual case adaptations

since new knowledge is never acquired and diÆcult problems remain diÆcult.

Results. The graphs for the two knowledge bases are presented in �gure 5.4

and �gure 5.5. As expected, the learning methods do better than the no learning

condition in the coverage of the problem solution space. However, the two graphs

di�er between the case learning results and the case adaptation learning results. In

the latter case, case adaptation learning actually requires a larger number of manual

case adaptations than case learning. As expected, the combined learning methods

require the least number of user interventions to solve diÆcult problems.



5. Experiments 92

0

5

10

15

20

25

30

35

40

NL CL AL AL+CL AL+CL+RCR

Figure 5.4: Number of unsolvable case adaptations using hand-coded knowledge base

Discussion. These results did not match the initial expectations described ear-

lier. Case adaptation learning should bene�t the most from the manual adapter and

thus require fewer manual case adaptations over the course of the entire experiment.

However, when using the Wordnet knowledge base, the opposite occurred. Two fac-

tors account for this disparity: the inability of the system to generalize from manual

case adaptations, and the much larger size of the Wordnet knowledge base.

When case adaptation learning alone is used there is only a small pool of plan

cases from which to adapt. Earlier, it was established that more case adaptations

would be required when there are fewer plan cases because there is less diversity from

which to create new plans. The appearance of new problems for which no applicable

adaptation cases exist and with solutions that are unreachable using standard search

techniques is more likely. Thus it is not surprising that more manual case adapta-

tions may be required. However, compared to the total number of case adaptations

that are needed when using case adaptation learning, the raw number of manual

case adaptations is still small. Further, the case adaptation component has a strong

preference for attempting to solve problems even if the adaptation cases selected are

inappropriate for the given problem. This results in more time being spent by the

adapter attempting to �nd a solution using adaptation cases that will not result in

a satisfactory outcome. While this occurred infrequently, it does provide the �rst

suggestion that case adaptation learning alone can lead to some potential diÆculties

when limited to a small set of plan cases from which to begin.
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Figure 5.5: Number of unsolvable problems using Wordnet

This discussion prompts a question of whether unsolvable case adaptation prob-

lems can be avoided under any of the learning methods. While this question cannot

be answered from this data, insights can be gained on the relative contribution of each

learning method towards the avoidance of these diÆcult problems. It appears that

plan case learning is a necessary component in the reduction of unsolvable problems

that are encountered. This is likely due to all solutions to case adaptation problems

initiating with values from a selected plan case. As the number of stored plan cases

increases, a larger range of starting points exist on which to begin case adaptation.

Without this variety the reach of adaptation cases is restricted. Even in situations

where case adaptation learning is not used, the more plan case that exist allow the

rule-based search methods a greater likelihood of �nding acceptable solutions before

reaching the imposed search limit. Thus one conclusion that can be drawn is that

case adaptation learning is more e�ective if used in conjunction with case learning,

at least in the reduction of unsolvable problems.

Perspective on the contribution of case adaptation learning

From the above data at least one strong conclusion can be drawn:
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Case adaptation learning can be as e�ective as case learn-

ing and in some situations more e�ective.

The results demonstrate that the addition of case adaptation learning as a com-

ponent of the CBR process can reduce the time needed to perform case adaptations.

Several additional points can be drawn from the data as well:

1. Storing generated plans for later reuse (plan case learning) alone re-

duces the number of case adaptation problems encountered: This point

is a fundamental property of case-based reasoning. In the trials using only plan

case learning, some examples required zero case adaptations while others only

needed trivial modi�cations for which local search of the knowledge base was

suÆcient. To some extent, case learning avoids the case adaptation problem.

With appropriate selection of retrieved cases, the number of case adaptations

that need to be performed is reduced, decreasing total case adaptation time.

Of course a retrieval system that makes use of good similarity criteria to select

the best plans is a necessary requirement.

However, without a complete domain theory, �nding suÆcient similarity criteria

is challenging. Further, the elimination of case adaptation problems may unnec-

essarily restrict the 
exibility of the system to create new plans. The few case

adaptations that are left for the case learning system to contend with can be

problems that require a large amount of processing time to solve. Whereas other

plans that have more initial problems may require less total case adaptation ef-

fort. Thus avoidance of case adaptation problems alone does not eliminate the

need for case adaptation nor for building methods to handle case adaptation

problems.

2. Decreasing the diÆculty of case adaptation problems is more bene-

�cial than reducing the total number of case adaptations: Case adap-

tation problems that require large amounts of processing time or manual case

adaptation account for the largest portion of the total cost of case adaptation.

These problems are so costly that solving one case adaptation of this type can

cost more than all other case adaptations in a single plan combined. Therefore

retrieving a plan containing a single unsolvable case adaptation will require more

processing by the case adaptation component than �nding any other stored plan

that would contain no unsolvable case adaptations. An e�ective case base sys-

tem employing case adaptation should reduce the total time spent solving case

adaptations irrespective of the number of case adaptations being performed.



5. Experiments 95

3. Memory search learning augments the reachable areas of memory: In

traditional case-based reasoning systems, each case provides coverage for some

area of the solution space. The larger this space, the larger the number of cases

that need to be stored for suÆcient coverage. The increase in cases is costly

from the retrieval perspective as more cases require consideration when each

new problem is presented. In addition, as cases are added there is a potential

for redundancy in the case base as new cases overlap with existing cases. Using

adaptation cases in conjunction with plan cases has the potential to extend the

system solution space more than with only a single type of stored cases. Each

adaptation case could be used to alleviate a certain type of problem in each of

the stored plan cases. In other words, the addition of a single new adaptation

case can augment the solution areas reachable for every available plan case. For

example, if an adaptation case is added to the system that can solve certain lack

of access problems. A stored plan case for a 
ood in Georgia that under reuse

exhibits this same problem now might be solved without relying on unguided

rule-based methods. In fact, all reused plans exhibiting this same problemmight

reapply this adaptation case towards solving this case adaptation problem. Thus

the addition of even a few adaptation cases can improve the ability of the system

to reapply its current set of stored plan cases.

5.4 Comparison of similarity criteria

To support the interaction of case-base planning and case-based adaptation learn-

ing we developed a new similarity method. In order to evaluate our adaptation

knowledge based similarity method, we examined several di�erent similarity meth-

ods.

The e�ect of di�ering similarity criteria on case adaptation

performance

The �rst set of data is analogous to the case adaptation data given above. A

set of trials was performed with varying similarity criteria in an attempt to support

the bene�t of the RCR approach. Five di�erent similarity criteria were each used

separately to score candidate response plan cases in order to decide which to adopt.

The �ve criteria are:

� Number of case adaptation problems: The number of problems that re-

quire case adaptation in the candidate response plan are counted independent
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of the adaptation cases that can be applied. In essence, this method weighs all

case adaptation equally and gives preference to response plans that will require

the fewest case adaptations.

� Average problem cost: This criteria was inspired by a similar method used

by Smyth and Keane (1994). However, this method uses historical data from

past case adaptations to rank cases on their expected cost of repair. In addition,

this method determines the expected costs based on system stored averages for

di�erent problem types that are continuously updated as new problems are

solved.

� Length of stored derivation: Scores are assigned by retrieving relevant adap-

tation cases and estimates the cost based on the length of the derivation path

to be reapplied. The length of the derivation path is the number of independent

primitive operations that need to be reapplied.

� Prior cost of case adaptation: Scores are assigned by summing all of the

prior costs of case adaptations as given by the related adaptation cases. This

method assesses the diÆculty of a case adaptation based solely on weak search

methods. The �nal solution path could be short but would score poorly if the

amount of searching that occurred was high.

� Reapplication cost and relevance (RCR): Weights are assigned to each

problem by assessing how closely a selected adaptation case matches the con-

straints of the current problem. Cost is assessed by multiplying the cost of

reapplying the case by a value of how dissimilar the retrieved case is from

the current problem. This method relies on some low-level semantic similar-

ity methods as applied to the adaptation cases, however these methods mostly

score feature values based on their absence or presence.

Hypothesis. The use of adaptive similarity methods (derivation length, prior cost,

and RCR) should be superior to the semantic similarity method. Additionally, the

RCR method should provide the greatest improvements to the cases adaptation pro-

cess as it should select the most applicable adaptation cases for reuse.

Experiment. Previously, Smyth and Keane demonstrated the e�ectiveness of ap-

plying adaptability based similarity techniques to the selection of appropriate system

cases. They argued that applying such techniques is superior to the traditional se-

mantic similarity criteria. However, while this is an improvement on the traditional

model, their technique does not account for the changing abilities of a system that

learns to improve its case adaptation.
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As adaptation cases are capable of storing large amounts of information describing

previous case adaptations, it was unclear what information would prove the best indi-

cator of case adaptability. The RCR method was expected to best assess adaptability

as it scales the reapplication cost based on the relevance of the adaptation case to the

current situation. Thus an adaptation case might be selected with a low reapplication

cost but be scaled to re
ect a higher cost if it is dissimilar and thus likely to be less

useful than other more similar cases. With this method, the potentially expensive

case adaptations would be avoided in favor of several cheaper case adaptations.

This experiment began after the system had been converted to use the Wordnet

knowledge base. Thus the remainder of the results are provided only with Wordnet

versions. Previous results have suggested that the greatest di�erences between the

two knowledge bases were due to the size of the Wordnet knowledge base. Most of

the instances in which di�erent learning methods produced unexpected results were

caused in part by the larger knowledge base. It was these results that were of interest

to the research and thus, after these �rst experiments, we focussed exclusively on

using Wordnet as our knowledge base.

Results. Figure 5.6 shows the results of a set of trials using each of the described

similarity metrics. All trials were performed with both case and case adaptation

learning present, and as such there is some overlap with results described earlier.

These results illustrate that the RCR method does perform better for selecting easily

adapted cases than using either the system average or a raw count of the number of

case adaptation problems that exist in the response plan. However, RCR performed

almost identically to both the prior cost of the case adaptations and the raw length of

the prior derivations. These values are consistent for both the number of operations

performed and the number of nodes visited.

Discussion. The results presented here show that in all situations tested, the

prior problem cost and length of derivation similarity methods perform equally to

the RCR method. An examination of the cases used in the system showed that there

was substantial consistency between these methods in the cases that were created

and subsequently reused. The primary reason for the convergence of these methods

is believed to be the use of the Wordnet knowledge base. In the old hand-coded

knowledge base of 2000 nodes, di�erences between concepts in the knowledge base

were very small and the similarity metric required �ne tuning to select the appropriate

response plan, thus providing for the early successes with RCR. In the Wordnet

knowledge base of close to 100,000 concepts, di�erences in concepts are large and

any additional noise added by the di�erent similarity metrics does not disrupt the

selection of appropriate adaptation cases. Thus the overall performance between the

methods that reuse information stored in adaptation cases remains about the same.
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Figure 5.6: Average case adaptation cost for each similarity metric

This strongly supports the claim that case adaptation based similarity criteria is an

e�ective method for selecting candidate plans from the case base.

In contrast, the methods that didn't use adaptation cases (number of problems,

and average cost) performed poorly. Even more surprising was the approach of using

system average costs for each problem type performed worse than a simple count of

the number of problems present. It was believed that any method accounting for the

case adaptation abilities of the system would perform better than systems that were

blind to case adaptation diÆculty. These results contrast with other work on applying

case adaptation knowledge to similarity criteria (Smyth & Keane, 1994) but can be

explained by the nature of case adaptation in this system. DIAL always attempts

to avoid diÆcult case adaptation problems. However, this avoidance strategy can

be 
awed. If a diÆcult case adaptation problem is encountered, it is not always

e�ective to avoid that problem. While this is a good approach from the response

plan perspective, it is short sighted over the long term for the system. A one time

expenditure of e�ort to solve a diÆcult problem type that is likely to reappear with

some frequency can save processing time over the course of the system's processing

life. Once the diÆcult problem is solved, the related adaptation case for the solution

is stored for future reuse. When the same problem is identi�ed in the future, it is no

longer a diÆcult problem and can be solved by reapplication of the adaptation case.

Thus solving diÆcult problems early can increase the types of problems that can be

solved during later processing episodes.
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Figure 5.7: Average adaptation cost per response plan for each similarity metric

The e�ect of similarity learning at the response plan level

Increased bene�ts to the performance of individual case adaptation are only one

part of the larger picture. Equally important is how the case adaptation costs a�ect

overall performance during the creation of a response plan. The same set of data

was examined for the average cost of case adaptation for each response plan that was

created.

Hypothesis. Similarity methods that reuse knowledge from adaptation cases will

result in reduced total case adaptation processing times when compared to static

methods.

Results. The graph of this result is shown in �gure 5.7 and shows several sur-

prises. The �rst surprise was that the similarity metric using problem cost average

performed worse than expected. Equally surprising, all three methods of similarity

assessment that used knowledge from stored adaptation cases performed almost iden-

tically. This is contrary to our supposition that a more re�ned similarity method

such as RCR would produce additional performance gains. However, all methods

did perform slightly less that 10% better than method not using case adaptation

knowledge.
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Discussion. The use of case adaptation knowledge to support similarity assess-

ment is reaÆrmed by these results and the arguments laid out in the prior section

continue to hold here. The inconsistencies between the results for the number of oper-

ations applied and the number of nodes visited require additional discussion. As the

system acquires both plan cases and adaptation cases, some bene�cial interactions

are formed between pairs of cases. Certain adaptation cases, while widely applicable,

may better address the problems that are likely to arise in speci�c response plan

cases. When a disaster occurs and requires the creation of a response plan, there may

exist multiple candidate cases that could reach the new solution with the use of ap-

propriate adaptation cases. The similarity metrics that reused prior case adaptation

knowledge selected di�erent plan case and adaptation case pairs and therefore found

di�erent paths to the solution while the overall costs remained about the same. Thus

some of the case adaptations among these three similarity metrics visit more nodes

while others perform slightly more case adaptations but overall perform at about the

same level. These di�erences re
ect the types of adaptation cases selected by each

method but overall the case adaptation cost remain approximately the same.

Similarity criteria based on case adaptation knowledge

improves the selection of response plan cases.

The e�ect of similarity learning on unsolvable problems

Next, the number of problems that were unsolvable using system methods was

examined. All similarity methods should prefer candidate plan cases that have the

least expected case adaptation cost. Thus each method should �nd approximately

the same number of unsolvable problems.

Results. The results in �gure 5.8 show that there was only a small di�erence in

the number of manual case adaptations performed. Particularly the method using

system averages encountered two more problems that it could not solve automatically

than any of the other methods. This should not be a surpise, however, as these

averages re
ect the past behavior of the system of certain types of problems and does

not account for the learned adaptation knowledge. It is interesting to note that all the

methods tended to encounter the same exact problems requiring user intervention.
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Figure 5.8: Number of unsolvable problems per similarity metric

5.5 Analysis of learning over time

The prior experiments validated the e�ectiveness of the case adaptation compo-

nent on the examples that were presented to it. However, learning is an ongoing

process in a CBR system and it is valuable to examine how the learning proceeds

over the course of the presented examples. With most learning programs, the ini-

tial phase of examples is considered a training phase. During this phase it is likely

that the system will perform worse than average on some case adaptation examples.

Eventually the system should improve its performance once the requisite case adap-

tation knowledge has be acquired. However, in a dynamic environment, training is

occurring continually and the system is adjusting its knowledge to re
ect the current

trends of its examples. Since the DIAL system begins with only a small amount of

initial knowledge, the behavior of the system as learning progresses from the startup

until some stabilization occurs is worth examination. This analysis breaks down the

case adaptation average after each example over the course of the complete trial.

Results. Figure 5.9 and �gure 5.10 show the progression of case adaptation cost

over the course of the system trials. As expected, during the early portions of the

trials, there is signi�cant noise in the averages as the system attempts to learn and

settle into a more stable state. Later, the averages begin to separate themselves

although all methods seem to follow similar trends.
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Figure 5.9: Average case adaptation cost per example

Discussion. These graphs provide the least amount of additional evidence re-

garding the e�ectiveness of our methods. It is diÆcult to assess what changes may

occur over the course of hundreds of examples, a scope which was beyond the lim-

its of this research. However, we will attempt to extrapolate some general meaning

from this graph and what it suggests for the long term performance of our learning

methods. Our research has been based on three primary ideas.

1. Case adaptation learning methods can improve system performance when case

adaptation problems exist.

2. Similarity learning methods better couple response plan learning with case adap-

tation learning.

3. When case adaptation knowledge is reused successfully substantial performance

gains are attained, and when attempted unsuccessfully there tends to be only

a small additional cost.

Thus these graphs support these foundational claims but do not prove them.

When an adaptation problem is encountered our learning methods will either solve

the problem much faster than our baseline methods or will solve the problem with

a cost similar to the baseline methods. And while this is not a universal rule in our

system, it will trend our learning methods lower than the baseline methods over time.
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Figure 5.10: Change in case adaptation cost per example for each similarity metric

Perspective

One of the advantages of case-based reasoning over other learning algorithms

has been that a case-based reasoning system is capable of solving new problems after

storing only a single problem solution. The line graphs here provide evidence that this

e�ect extends to the case-based case adaptation model. After only a few examples,

the similarity metrics using stored case adaptation knowledge are substantially better

than the static similarity assessment methods.

5.6 Overhead costs for case adaptation learning

Our discussion of case adaptation learning is incomplete without addressing the

issue of added system overhead. With only a single case based reasoning process, the

overhead of the system is dependent on the size of the case base and its organization.

As the case base becomes large, the overhead to �nd and retrieve a similar case

increases. However, our system employs two separate case based processes, and the

possibilities for additional overhead are greatly magni�ed. In our system overhead

can exist in any of the following forms:

� Retrieving plan cases: This is a direct lookup for a set of candidate plan

cases corresponding to the current disaster type.
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Avg Processing Time Avg Retrieval Time

No learning 30.4 .045

Case Learning 13.9 .088

Case adaptation Learning 15.8 .20

AL/CL 11.1 .25

AL/CL/RCR 17.3 .25

Table 5.4: Comparison of system processing times and average retrieval times per

response plan episode.

� Applying the similarity learning method: This involves retrieving adap-

tation cases for each problem identi�ed in the candidate plan cases.

� Reapplying adaptation cases: This is not new overhead but di�ers from

traditional case based planning in that a suite of three di�erent case adaptation

methods are applied sequentially. This overhead is already accounted for in the

presented results and will not be considered further.

� Storing new adaptation cases: This is a small amount of added cost to �nd

the appropriate location in the case base to store all of the generated cases.

While this was a primary concern for the DIAL system, several organizational

procedures were added to limit the amount of overhead in each of these areas. The

added procedures included:

� Limiting the number of cases that can be examined

� Using a hierarchical organization for the case base.

� Forgetting unused or faulty cases

We expected overhead to exist but we did not believe that it would exceed the

gains we have already described.

Results. Table 5.4 compares total retrieval times for the di�erent learning meth-

ods alongside the time spent performing all other computations (including case adap-

tation). From this table is can be seen that retrieval times increase moderately as

additionally learning and reasoning methods are added. However, all of the retrieval

times are signi�cantly smaller than actual system processing times and in this analysis

can be ignored.
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Discussion. These results are suÆcient to suggest that overhead played no sig-

ni�cant role in the experiments that were performed. However, this result does not

suggest that overhead will never be a problem. While most research systems are

small, an industrial case based system could have well over 10,000 cases (Kitano &

Shimazu, 1996). A large system employing case adaptation learning would need to

reexamine the issue of retrieval overhead before successful deployment. An astute ob-

server may notice that the processing times per response plan do not resemble earlier

results, this is one of the issues addressed in the next section.

The overhead of multiple learning methods

and knowledge sources does not reduce the

overall e�ectiveness of the system.

5.7 Problems with case adaptation learning

While most of our results demonstrate the value of the case adaptation learning

method, our approach is not without problems. This section examines some results

that suggest limitations to the application of case adaptation learning.

The skewing e�ect of diÆcult problems

Performance of the system is improved on average when learned case adaptation

knowledge is used to solve future adaptation problems,, however a closer examina-

tion of the examples processed suggests that our approach may not prove superior

over traditional methods in all situations. Table 5.5 shows a breakdown of the di�er-

ent types of adaptations that were performed as a percentage of the whole for each

method. The adaptation learning column numbers are skewed towards easier case

adaptations for reason already discussed as this method performs case adaptation on

almost every possible situation. The other columns are more instructive. The table

is broken into four columns representing four di�erent types of problem diÆculties in

the system. It should be noted that all learning methods saw the same basic problem

set, but the level of diÆcultly of the problems for each learning method could vary.

� Easy Problems: Problems that are easy require fewer than 100 operations to

complete. Normal blind search can �nd these solutions with little diÆculty.
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Easy Medium DiÆcult Very DiÆcult

No learning 41% 27% 11% 21%

Case Learning 32% 35% 16% 16%

Case adaptation Learning 64% 28% 5% 4%

AL/CL 42% 29% 18% 10%

AL/CL/RCR 53% 21% 18% 9%

Table 5.5: Breakdown of problem diÆculty

� Medium Problems: Problems that are medium require fewer than 500 oper-

ations to complete. These are more challenging but can still be completed in

an acceptable amount of time.

� DiÆcult Problems: Problems that are diÆcult required more than 500 oper-

ations but less than 1000.

� Very DiÆcult Problems: Problems requiring more than 1000 operations are

unlikely to be solved without user intervention. In fact, we placed a cuto� value

of 2000 operations on all of our searches. This larger value was chosen so as to

allow any possible solutions that might exist to be examined.

Between case learning, the combined learning and the RCR method, the �rst two

columns re
ect a similar breakdown and account for about the same total cost to the

system. Most of the diÆculty that case learning faces (and accounting for at least

some of the higher numbers it experienced) is due to the large number of very diÆcult

problems that it must address. If these problems were removed from the system, the

performance of case learning would fall much more closely in line with the other

methods. These very diÆcult problems arise as context plays a large role in disaster

response planning and the regularity that case based reasoning relies on is not always

present. In a domain with greater regularity these types of problems would not exist

and our automated case adaptation method might not be needed. However, most

systems exhibit some level of irregularity and no set of rules will enable a case based

system to address these problems without some form of case adaptation learning.

Processing time disparities

Table 5.4 showed that the actual processing time to solve each response plan using

the RCR method was higher than any other method that employed learning. This is
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in opposition to the improvement in both the number of operations and nodes that

were reported earlier. However, this added cost is not unexpected. Some of this time

cost is assumed in the added diÆculty of performing single operations. Operations

are not performed blindly when case adaptation learning is used but require assessing

how the adaptation case states this operation should be applied. More of the cost

is assumed by the evaluation component of the system. While we have not focused

much of our discussion on the evaluation component it plays an important role in

similarity learning. Once adaptation cases are retrieved for each candidate response

plan, a substantial amount of additional processing much be performed to compute

the applicability of the adaptation cases and to assess the future expected cost for

each candidate plan. This processing cost cannot be easily alleviated but may not

be a far reaching problem. The total time spent in all methods on each response

plan is approximately the same, however if over the long term the system increases in

competence and alleviates any need for human guided case adaptation than the lack

of substantial time savings may not be relevant.

5.8 Perspective on the performance of the DIAL

system

Several important questions were answered by the empirical analysis of the DIAL

system. This section will highlight some answers to the questions that were raised by

earlier chapters and provides additional discussion on conclusions that these results as

a whole suggest for case-based reasoning and case adaptation learning. The discussion

will combine all the results to suggest new ways of viewing knowledge acquisition from

di�erent sources and the sharing of knowledge during the CBR process.

Outcomes of learning

The data from our experiments has led to several observations and conclusions.

This section discusses many of of the outcomes of our case adaptation learning process.

The e�ect of case adaptation knowledge on search. The �rst conclusion addressed

is how acquired case adaptation knowledge a�ects the eÆciency of the case adapta-

tion process. The results illustrate that for certain sets of problems the acquisition

and reuse of case adaptation knowledge reduces the overall burden on the system

in terms of the amount of searching necessary. The data examined several learning

interactions that exist in the system. The interaction of most interest at the start
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of these experiments was the relationship between traditional case learning methods

and the new case adaptation learning method. The initial chapter suggested that the

addition of internal CBR processes to the primary CBR planning process can only

improve the overall system. Case learning has already been demonstrated as bene�-

cial in numerous systems (Hammond, 1989; Kolodner, 1993; Leake, 1996b)including

DIAL. If the addition of case adaptation learning improved system performance by

itself then it seemed reasonable that the inclusion of case adaptation and plan case

learning would produce a synergy resulting in superior performance than with either

method alone.

What occurred from even the earliest experiments was that case adaptation learn-

ing supported case learning. Problem solving in DIAL was centered primarily around

the overall case-based planning process. One e�ect of the plan case learning is that

there is a reduction in the overall number of case adaptation problems that need to

be solved. Case adaptation learning working with the larger case learning system is

then used to reduce the system e�ort required to solve any of the remaining problems.

Thus some substantial eÆciency gains were made over case based methods without

automated case adaptation. However, this synergy did not immediately manifest it-

self. In fact, in some examples, the combination performed worse than using case

adaptation learning alone. The discrepancy was attributed to a poor selection of

plan cases from which to begin the case adaptations. These plans did not match the

type of case adaptations that the system knowledge could most easily solve. Thus

the case adaptation component was forced to attempt problems for which it did not

have the most applicable case adaptation knowledge available. When the case adap-

tation based similarity criteria were included to allow the case adaptation component

in
uence on the selection of plan case further improvement were seen.

The e�ect of the growth of multiple case bases. A central question of concern in

the CBR community is the question of the utility of learning. The utility problem

(Minton, 1988) states that as the amount of knowledge that is learned increases, the

amount of time spent searching for the appropriate knowledge begins to outweigh

the advantage of having that knowledge. In the DIAL system, learning occurs on

several di�erent levels and as such the utility question is of fundamental importance

to the system. The problem was addressed by automated system management of the

case base. Between problem solving episodes, the system examined the contents of

all case bases and removed cases that are judged the least useful. This judgment is

based the length of time a case has been present and the number of times it has been

successfully reapplied.

System overhead. The overhead of employing the internal learning processes in

the DIAL system was not greater than the amount of gains that are made by including
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this learning. The key to keeping this overhead at a manageable level is to provide

basic methods of maintaining the case bases. This maintenance is a process of limiting

the number of cases that are stored such that only relevant and useful cases are kept

over the long term. If cases are never used, then there may be little or no reason to

retain this case when it is simply adding to the overhead of retrieval and storage.

E�ect of similarity learning. Similarity learning proved to be an e�ective method

of exploiting the potential synergy between case learning and case adaptation learn-

ing. Without similarity learning, the two learning methods did not have a well de�ned

relationship in which to interact. The retrieval phase of the case based planning pro-

cess worked to select cases that would minimize the di�erence between the problem

description and the selected case. The reduction of di�erences does not relate to the

diÆculty of repairing the di�erences that remain in the selected plan case. The selec-

tion process in this scenario proceeds without ever considering the types of problems

that the case adaptation component would prefer to solve. As the remaining pro-

cessing time for the solution is dependent on the e�ectiveness of the case adaptation

process, the similarity learning approach in e�ect queries the case adaptation compo-

nent as to the solvability of di�erent problems identi�ed in candidate plans. With a

similarity learning method that acts as bridge between the two learning components,

the selection of a �nal plan case to reapply can be based on how e�ectively it can be

solved in the case adaptation component.

E�ect of interacting knowledge sources. When di�erent components are allowed

to independently stored knowledge, one component may lack some required knowl-

edge that is stored by another component. An obvious solution is for the di�erent

components to share this knowledge in appropriate circumstances. It has already

been described how the DIAL system shares case adaptation knowledge to improve

the similarity assessment process. Other possible interactions include, augmenting

the set of rule-based search methods by using store memory search cases that have

been reused e�ectively on several occasions. Consequently problems that may be

diÆcult to solve using a single knowledge source may become easier to solve when

other knowledge sources share information, and the range of solvable problems may

be increased.

Robustness of our method

We have presented evidence that our learning methods can outperform baseline

methods through a range of examples. However, we have not provided evidence that

these results are robust. How would the system perform under a di�erent set of
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examples of even perhaps a di�erent ordering of the current problems? One way to

establish robustness would be through statistical analysis of di�erent problem sets.

However, when experimenting with this approach it was realized that the types of

examples provided to the system and the system's approach to removing unused cases

can play a profound a�ect on the outcome.

Thus in place of statistical methods, we catalog di�erent types of problem sets

and how our methods would perform under these conditions.

� Example problems requiring little or no case adaptation knowledge. Our meth-

ods would produce no improvement over traditional methods. Learning case

adaptation knowledge would not be of bene�t for performance reasons.

� Example problems that provide for the occasional hard case adaptation but pri-

marily populated with straightforward and easy case adaptations. Our methods

could actually perform slightly worse under these conditions. Some adaptation

knowledge would be acquired and the system would attempt to reuse that knowl-

edge on future problems that could be solved easily with the case adaptation

knowledge.

� Example problems requiring a mixture of typical hard problems and other types

of problems. This is the type of domain that we performed our tests on, and is

typical of many domains in case-based reasoning. Our approach would be most

successful with these types of examples. Adaptation cases would be learned and

reused regularly and subsequently could outperform methods that work from

scratch each time.

� Example problems with predominantly hard case adaptations. It is unclear how

our system would do under these circumstances. If only hard case adaptations

arise then it is likely that there is little gained from the response plan learner

and in fact the problems may exhibit some irregularity. Adaptation knowledge

would attempt to tune itself to these problems by storing all solved problems,

but it is unclear how successful reapplications would be.

Interesting future work could examine these types of domains. One diÆculty of

this is that there are few practical domain sets with these characteristics and it is a

very diÆcult task to hand generate these sets without exhibiting creator bias.
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5.9 Conclusions

This chapter focused on empirical data supporting the addition of both case adap-

tation learning and similarity learning in the DIAL system. Case adaptation learning

reduced the total processing costs of the case-based reasoning process. It performed

best when e�ectively used in conjunction with plan case learning, but also was com-

petitive with plan case learning when each was examined individually. The data

presented here provides the best argument for the inclusion of an automated case

adaptation processes under the types of conditions described.

Similarity learning proved to be the key process for coupling case learning and

case adaptation learning. The reuse of case adaptation knowledge to support the re-

trieval process produced the greatest reductions in processing costs. Several di�erent

approaches for reusing the case adaptation knowledge were examined. No substan-

tial di�erence were found between the methods the directly reusing the knowledge in

adaptation cases. This chapter has provided evidence and analysis to support many

of the claims of this research.
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Conclusion

This research has studied an approach to learning case adaptation knowledge as

a supporting subprocess to a case-based planner. Our approach relied on a small

set of prede�ned rules to provide a foundation for an internal case-based reasoning

process. The internal process augmented the system's initial knowledge by acquiring

case adaptation knowledge so as to better handle future case adaptation problems.

Experimental evidence suggests that this learning can improve overall system per-

formance. Further, we have shown that case adaptation knowledge can bene�t more

than the case adaptation process by integrating with other components of the larger

system like the similarity assessment process. This chapter reviews our research re-

sults and returns to the original questions that were posed in order to evaluate the

relevance and importance of this research.

The chapter begins by summarizing the information presented in this document.

We then review prior work that formed the foundation for our research. Next, the

chapter reviews several questions proposed in the early chapters and uses them to

guide our overall evaluation of our method and system. Then, we describe the con-

tribution of this research to the state of the art in case based reasoning and case

adaptation. Following this, the chapter asks several new questions provoked by this

research that open additional avenues for future work. Finally, the chapter concludes

with a re
ection on the contribution of this work and its importance to the �eld of

case-based reasoning.

6.1 Document summary

The discussion of case adaptation began with an examination of case-based rea-

soning. Many CBR systems do not attempt to address the case adaptation question.
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With only a few exceptions ((Cheetham & Graf, 1997), the common approach in

applied CBR is to eliminate all case adaptation and provide expert users to perform

case adaptations when necessary. While this approach is less than optimal, codifying

the specialized case adaptation knowledge and applying the knowledge in an appro-

priate way has been out of reach. In fact, from our work, we conclude that it is

unlikely that a general purpose case adaptation approach will be developed in the

near future. However, we have shown that certain regularities can exist in the types

of problems and solutions encountered in a speci�c domain. It is this regularity that

motivated our approach to learning case adaptation. This idea laid the foundation

for a case-based approach to case adaptation.

With our approach to case adaptation de�ned, the discussion continued in chapter

two which developed the basic architecture supporting the case based case adaptation

idea. The DIAL system was designed as a case-based planner to resolve problems

created by natural disasters such as earthquakes or 
oods. Our design revolved around

two guiding factors: the representation and reapplication of stored knowledge and the

interactions between system components. Motivation for this architecture came from

an extended example weaved into the system description.

Chapter three provided the explanation for our automated case adaptation algo-

rithm. The algorithm begins with only a handful of general case adaptation rules.

These rules are used to guide a slow and ine�ective early case adaptation system. As

problems are solved, the knowledge of how the problem was solved is encapsulated

as adaptation cases resulting in new system case adaptation knowledge. The chapter

described how this new knowledge can be reused by applying it to similar problems.

If no case adaptation knowledge is available, the system can still rely on its slow and

unguided search process or ultimately ask an expert user for assistance. The key to

this algorithm is that, in a given domain, the types of problems encountered may

be unknown during system development but the regularities that exist during actual

processing can be exploited by the internal case based reasoning process. Therefore

the resultant system will develop so as to solve case adaptation problems using a

case base process whenever possible. In situations where current knowledge does not

provide for a solution, the other methods exist to provide backup support.

One added bene�t of acquiring case adaptation knowledge was how it could be

applied by other components of the primary CBR process. This was the subject of

chapter four. The similarity assessment process was improved by using the stored

adaptation knowledge to rank candidate response plan cases. Previously this process

relied on similarity rules that suggested plan features that should be examined. This

is a reasonable approach when little advanced knowledge is known about the domain,

however it is generally ine�ective at selecting the best possible case for the system

to process. Our key insight was that the best stored plan may not be the one that
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on the surface appears most similar to the current situation. A better approach is to

determine how easily the system can apply the stored case to the current situation.

Case adaptation knowledge can give an estimate of the amount of added e�ort that

must be applied to make the candidate plan case acceptable in the new situation.

However, since a score is created from the case adaptation knowledge, several methods

were proposed on how this score should be computed. These methods ranged from

simply counting the number of problems that exist in each candidate plan to summing

the past costs of each of the problems. By using the case adaptation knowledge to

improve the similarity assessment process the relationship between the di�erent CBR

systems can be strengthened.

Chapter �ve presented the experimental results to support the basic claims of this

research. The results showed that case adaptation learning reduced the overall case

adaptation costs in the system. Our approach was e�ective while limiting overhead.

Likewise, the addition of knowledge based methods for similarity learning improved

case selection to the point that system costs decreased further. Our conclusions from

these results was that case adaptation learning is a viable approach to take towards

automated case adaptation. However, the results also suggested that this approach

can only be e�ective under certain system conditions.

The discussion in this dissertation has attempted to present the bene�ts and

disadvantages of our approach to case adaptation and adaptation learning. To assess

this, our discussion turns to focus on how our work compares to the prior work on

which it was built.

6.2 Comparisons to other research

There have been many sources of guidance and inspiration that helped form the

foundation of this research. Much of this work has been cited throughout this docu-

ment. However, explicit comparisons and di�erences have not always been presented.

This section examines several prior e�orts that provided the base for the work done

with DIAL and how DIAL has expanded on the original idea.

Memory search:

The memory search process formed the basis for the entire case adaptation learn-

ing process. As such, the search process had to be accessible to explicit reasoning

and learning. Thus our approach followed closely the models of the memory search

process used by (Kolodner, 1984; Rissland, Skalak, & Friedman, 1994) in order to
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increase the 
exibility and e�ectiveness of memory search. Several researchers have

designed models of memory search that were accessible to learning such as (Cox,

1994; Kennedy, 1995; Leake, 1995a). Our research followed closely along these prior

models. The foundation provided by prior researchers on memory search allowed this

work to directly move to examine the questions behind storing the results of memory

search.

Case adaptation:

Our case adaptation process reapplies adaptation cases on new case adaptation

problems. However, several di�erent approaches to case adaptation have been pre-

viously implemented. For example, although CHEF (Hammond, 1989) had a static

library of domain-independent plan repair strategies, it augmented that library with

learned ingredient critics that suggested adaptations appropriate to particular ingre-

dients. The PERSUADER system (Sycara, 1988) used a combination of heuristics

and case-based reasoning to guide adaptation, searching memory for similar prior

adaptations to apply. PERSUADER's approach handles case adaptation in a similar

was to DIAL, however DIAL tries to infer the reasoning process previously used by

focusing on derivational replay of cases. In both CHEF and PERSUADER, the adap-

tation information learned was domain and task speci�c. By using memory search

cases as the basis for case adaptation in DIAL, more 
exibility is achieved.

The use of CBR for case adaptation has also been advocated by Berger (1995),

in the context of storing and re-using an expert's adaptations. One limitation of

Berger's system was that the cases that were created were highly domain speci�c and

not easily applied to new situations. An alternative approach to the case adaptation

problem is to use derivational analogy, deriving a new solution by re-applying a prior

solution process to new circumstances, rather than directly adapting the old solution

itself (Veloso, 1994).

A number of methods have been proposed for facilitating the adaptation task.

The diÆculty of adaptations may be decreased by representing cases hierarchically

(Aha & Branting, 1995; Goel, Ali, Donnellan, de Silva Garza, & Callantine, 1994;

Marir, 1995; Redmond, 1992; Smyth & Keane, 1996), allowing cases to be reused at

the most speci�c level of abstraction that can be easily applied to the new situation,

or by combining relevant parts of multiple solutions, rather than by retrieving a single

solution that must be adapted to �t (Ram & Francis, 1996; Redmond, 1992).

Support for interactive user adaptations has also been proposed (Bell, Kedar, &

Bareiss, 1994; Smith, Lottaz, & Faltings, 1995; Sinha, 1994), but these methods make

no attempt to store and reuse adaptation information. (Goel, Garza, Grue, Murdock,
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Recker, & Govindaraj, 1996) presents the user with derivational traces of previous

interactions to support interactive adaptation, although it does not store the new

adaptations.

The INCA system (Gervasio, Iba, Langley, & Sage, 1998) relies on user interaction

to correct problems in plans left after a rule based adaptation is performed. This is

similar to the manual adaptation process in DIAL except DIAL stores a reasoning

trace independent of the speci�c context.

One approach that closely matches our approach uses description logics as its

underlying knowledge representation (Gomez-Albarran & et al., 1999). While our

method makes no assumptions about the underlying representation, their speci�ca-

tion in this area while, using a case adaptation method closely paralleling our own,

demonstrates further possibilities for our approach.

Other adaptation learning methods have also been proposed. Bhatta and Goel

((1996)) present an approach to learning generic teleological mechanisms for use in

model-based adaptation (Goel & Chandrasekaran, 1989). Some researchers have pro-

posed inductive learning of adaptation rules (Hanney & Keane, 1997; Wilke, Vollrath,

Altho�, & Bergmann, 1997). McSherry (1998) used a set of past cases to re�ne es-

timates of the value of new cases. Others have employed machine learning methods

like decision trees (Shiu et al., 2000). Closest to our approach is Oehlmann's ((1995))

metacognitive adaptation, in which a planful approach is taken to generating and

answering questions during adaptation and the process is reused.

6.3 Evaluation of case adaptation learning

Several questions guided this dissertation research. This section restates the cen-

tral questions posed on case adaptation learning and summarizes how these questions

were answered.

The �rst question asked by this research was if an automated case adaptation

process driven by an internal case-based reasoning system can improve the overall

performance of a planning system. The experiments showed a net decrease in pro-

cessing time when case adaptation is performed with our method. However, the

addition of case adaptation learning alone was not suÆcient to substantially improve

system performance. A modi�ed similarity assessment method was required to sub-

stantially improve the interaction between the internal case adaptation process and

the primary planning process.

Another question asked was how is the automated case adaptation process a�ected

by the additional overhead required to perform the process. The addition of our
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internal CBR process requires several potentially time consuming operations. The

system must identify all potential problems in a suite of candidate plan cases and

then retrieve adaptation cases corresponding to these identi�ed problems. Next, the

reapplication of adaptation cases on the selected plan must occur. In the event all

of the identi�ed problems are not solved the system is reduced to memory search to

solve the problems. So while overhead was expected, out �nal results showed that

this overhead was reasonable given the overall savings in processing time that was

observed.

Finally, one important question that we examined was what the e�ect of having

multiple case-based reasoning processes was. Would each process create a synergistic

e�ect with the other or would the two processes ignore the bene�ts of the other?

Based on our experimental evidence, it was clear that the two processes did not

naturally combine with one another. In fact, the addition of new learning processes to

a system is not necessarily suÆcient to improve system performance. It was necessary

to rede�ne the similarity criteria used to select candidate plans so as to account for

the adaptation knowledge developed by the internal case adaptation component.

Our case adaptation learning method illustrates some of the potential bene�ts

to a system where case adaptation knowledge exists in a changing environment. It

also required us to de�ne some criteria to evaluate multiple learning processes in a

single system. We identi�ed three issues that must be addressed to insure successful

learning interactions.

� The overhead of the new process must be less than the improvements and

savings to the actual reasoning process. DIAL managed its overhead e�ectively.

� When several intelligent components interact under a single reasoning process,

the control of the di�erent processes must be managed to achieve the maximal

bene�t from each subprocess. Control can exist at di�erent levels as the pri-

mary process may pass control to the case adaptation component to manage its

di�erent subprocesses. In DIAL, the case-based planning process managed its

various subcomponents, although di�erent subcomponents such as the similar-

ity assessment process and the case adaptation process were allowed to interact

directly.

� When di�erent learning processes each attempt to solve problems limits must

be placed on them. Some problems are ill-suited for certain learning methods

and the limits prevent them from wasting substantial system resources so that

other methods may better address these problems. Each reasoning process in

DIAL had a set limit of the number of steps that can be taken to solve a
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problem. Without this limit, a reasoning process may follow an insuÆcient

knowledge goal far away from any applicable solution.

6.4 Evaluation of similarity learning

Our work of the similarity learning process initially began as a way to repair a

problem that arose between the interaction of two case based reasoning processes.

Each process had a selection method that was e�ective for its own subsequent pro-

cessing. However, the planning process never took into account the knowledge made

available by the case adaptation process. This led to the creation of similarity learning

method and has become one of the interesting results of this research.

It is clear from the results in chapter 5 that a similarity method based on the case

adaptation capabilities of a system is a requirement. However similarity learning adds

further overhead than that already imposed by the case adaptation process. To assess

similarity based on predicted adaptation cost, each plan case that is to be considered

must be evaluated for potential problems and then, for each of these problems, the

appropriate adaptation case must be retrieved. Once the case bases become large,

this similarity method would become unwieldy. However, by limiting this similarity

method to only a small set of reasonable candidate plans (chosen by the original

similarity method) this overhead was manageable. As such a tradeo� exists between

selecting the best possible plan from the entire set and eliminating the overhead, our

compromise produced useful results. Similarity learning acts as a bridge between the

two case based reasoning processes and improves the interaction between the two.

6.5 Evaluation of DIAL

The section evaluates the di�erent components of the DIAL system and identi-

�es their contribution to the success of our method. The evaluation focuses on the

contribution of di�erent aspects of the research to the �eld of case-based reasoning.

Each of the four components of the primary CBR process are integral to the success

of our internal case-based case adaptation learner.

� Contribution of the retrieval component: The retrieval component pro-

vides the initial problem situation for the case adaptation component. It was

shown that improper selection of retrieval cases can adversely a�ect the reuse of

adaptation cases. It is necessary for the retrieval component to select response

plan cases that will best make use of the stored case adaptation knowledge.
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� Contribution of the evaluation component: Adaptation cases are indexed

by the types of problems they solve, therefore the evaluation component is a

primary determiner of the sets of adaptation cases that will be considered for

reuse. The retrieval component could select the most applicable response plan

from the case base, but if the evaluator incorrectly identi�es the problems, then

the case adaptation is likely to never be satisfactorily completed. The evaluator

is a central part of the case adaptation process, and as such requires careful

consideration before the total deployment of an automated case adaptation

system. This research for reasons of scope has chosen not to explore the are of

evaluation as related to the selection of adaptation cases, however this area is

open for future exploration.

� Contribution of the adaptation component: For case adaptation learning

to succeed, the adaptation component must be capable of solving case adapta-

tion problems. When a problem is presented to this component in the context

of a candidate plan, a solution to the case adaptation problem is found or

the candidate plan will be rejected. In the DIAL system, the case adapta-

tion component is composed of three di�erent methods to solve these problems:

case based reasoning, rule based reasoning using local search, and user guided

adaptation. On successful completion of a case adaptation, this component fa-

cilitates the acquisition of the new case adaptation knowledge in the form of an

adaptation case.

6.6 The success of the internal case-based approach

This work has successfully demonstrated the bene�ts of using an internal case-

based process. When a primary system su�ers from knowledge limitations or an

ill-de�ned domain theory, case-based reasoning can be e�ective in overcoming some

of the problems the system may face. Our approach is unique in that it uses case-

based reasoning to cope with the limitations of a case-based reasoning system. We

have already addresses how e�ective the internal case based reasoning process can be

on the case adaptation task. However, three primary points emphasize the advantage

of taking a case based approach.

1. Cased based case adaptation can be e�ective with only a few prior examples.

Other learning methods such as inductive learners rely on large sets of examples

to induce a general rule set.

2. While many other learning methods attempt to generalize from presented ex-

amples, case based reasoning simply stores each speci�c case. In the disaster
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domain, di�erent disaster locations each may have slightly di�erent require-

ments so the possibility of generalizing across some of these features may be

diÆcult. If each solution is stored as a case it can be directly reapplied.

3. While there is overhead in the application of the learned adaptation knowledge,

the acquisition of the knowledge using case-based reasoning comes at little ad-

ditional cost. Other learning methods may require substantial processing to

identify the generalizations that need to be made.

6.7 Internal CBR as a general strategy

The use of case-based components that capture and reuse derivations of a system's

own reasoning is a promising approach that can be applied within a broad range of

systems to learn useful reasoning paths and operationalize general knowledge. The

basic strategy is to augment AI systems by embedding within them case-based \in-

telligent components" (Riesbeck, 1996) that learn during normal processing. When

similar problems arise in the future, the intelligent component furnishes a solution

based on the stored case, to replace the initial reasoning process with CBR. Thus the

intelligent component is seamlessly integrated with the initial system to improve its

performance by building a case library covering actual problems the system encoun-

ters. DIAL's contributions to this area are both to investigate this general approach

and to apply case-based components to capturing and reusing the rationale underlying

the system's own reasoning processes.

Issues in applying case-based components included how the components' knowl-

edge must be represented and organized, how much specialized knowledge must be

provided to support component CBR processes (and how this e�ort compares to hand

coding rules for these processes, given that the motivation for the component is to

increase system performance while alleviating the knowledge acquisition burden), and

the e�ects on overall performance.

It should be noted, however, that some of the speci�c methods depend on particu-

lar properties of the underlying system. For example, DIAL used derivational analogy

for its case adaptation process. In order to use this type of CBR, it is necessary to

have access to a derivational trace of the underlying process that can be captured

and reused. Because DIAL uses a \planful" memory search process (Leake, 1995b),

it is practical to capture a trace of that process for reuse. This would not be possible

in systems with a more opaque reasoning process.

The internal CBR process for case adaptation also bene�ts from knowledge al-

ready used for the top-level CBR process as the basis of its indexing. Standard CBR
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systems, such as DIAL's baseline CBR system with rule-based adaptation, must in-

clude some sort of indexing scheme to associate problems requiring adaptation to

adaptation rules. The indexing scheme used for this purpose in DIAL's top-level

CBR process is also used by its internal case-based adaptation component to index

stored adaptation cases, decreasing the knowledge acquisition burden for this process.

If case-based adaptation were added to a retrieval-only CBR system, for example, this

information would not be available. Thus this strategy is appropriate for improving

the performance of an existing adaptation component, but would be more diÆcult

to use to provide an adaptation component starting from scratch. The aim of case-

based intelligent components is to improve the performance of existing processes,

rather than to provide entirely new capabilities.

6.8 Contribution of the research

This research has made signi�cant contributions to the case based reasoning pro-

cess. We summarize these contributions with the following �ve points.

1. An automated case adaptation component can be successfully implemented us-

ing an internal case based reasoning process.

2. Learned case adaptation knowledge can be used to re�ne similarity assessment

criteria.

3. Combining rule based and case based knowledge can e�ectively overcome many

of the limitations of each.

4. Case adaptation learning, while e�ective, is not a general purpose solution to

the case adaptation problem.

6.9 Future Work

Several interesting questions arose during the course of this research that could

be the subject of future work.

� We have argued that our approach to case adaptation learning improves the case

based planning process and does so without signi�cant overhead. However, these

ideas have only been tested in the context of this research and not in a large

scale application. Such large systems have di�erent types of issues that must
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be addressed including the possible size of the system case base and approaches

to integrating new knowledge. It may also be diÆcult on such systems to �nd

individuals with the appropriate expert knowledge to guide the system during

its early learning phase. We believe that our method should scale into such a

large application but its possible e�ectiveness is untested.

� The use of prede�ned rules and learned memory search cases creates an inter-

esting relationship that was left unexplored. Although memory search cases are

used to support the systems adaptation cases by storing the traces of successful

memory traversals, this knowledge also identi�es new relationships in the sys-

tem's knowledge. For example, a memory search case storing a �ve step trace

could be described as a new connection between concepts in memory that were

previously �ve steps apart. The memory search cases that prove most e�ective

could subsequently become new primitive rules in the system. So just as the

prede�ned rules were used to develop the memory search cases, the memory

search cases could be used to augment the prede�ned rule base.

� In our research, case adaptation learning only stored traces of successful searches.

However, failed searches often contain useful knowledge. One failed search may

teach the system to avoid certain areas of memory when encountering some

types of problems. However, it is unclear how to assess a failed search or what

portions of the search are relevant. Further, in the DIAL system unguided

search of memory was a purely blind search that meanders in potentially sev-

eral unrelated areas before �nding a solution. How this information could be

stored is unclear. A re�nement of this idea may be to record application fail-

ures of adaptation cases. Thus an adaptation cases would not rely solely on the

speci�ed problem type for its selection but could assess its relevancy from its

application history.

6.10 Final thoughts

This research has provided one method of learning to improve the case adaptation

process of a case based reasoning system. In this venture, the research has been a

success. However, the demonstration of the e�ectiveness of the internal CBR process

only suggests that it could be equally e�ective in other systems. One open question

remains as to how this method would handle the utility problems that might arise

in a very large scale deployed reasoning system. Of the few large systems that exist,

automated case adaptation might be a welcome addition.

Several other avenues of interest emerged directly from the initial question. The
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integration of intelligent subcomponents proved a valuable tool to handle de�ciencies

in the system knowledge. By e�ectively using di�erent forms of reasoning, an overall

reasoning process emerged that was superior to all of its subparts.

Some major challenges remain in the �eld of case adaptation for CBR. One in-

teresting area for future work would be to examine other methods of acquiring the

initial case adaptation knowledge. One area touched on by the DIAL system by need-

ing extensive additional work is acquiring this knowledge from observation of human

operators. Human expert users sometimes do not understand their own reasoning

process when making adaptations to problems they solve. Creating an interface to

capture a trace of the actions expert user's perform while solving problems and de-

termining a vocabulary that enables reapplication of these traces could provide the

knowledge necessary to substitute automated adaptation systems in to large scale

systems.

Our research has presented a case adaptation method that uses case based rea-

soning to learn the needed knowledge to perform automated case adaptation. Case

adaptation is an important problem to study, but has received comparatively little

attention in most research. This research has attempted to address this problem

through CBR. Other approaches continue to be examined elsewhere. While no one

method is likely to serve as a universal case adaptation procedure, each method adds

to the understanding and importance of case adaptation knowledge. The case adap-

tation learning approach and its similarity learning counterpart are a step towards a

better case based reasoning process.
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Disaster Input to DIAL

The DIAL system processes disaster examples taken from news reports. DIAL is

presented with a brief description of the disaster type, its location and the severity

of the disaster. This appendix lists some samples of the input stories DIAL was

able to process. For a complete listing of the processed stories, please contact the

author. The examples include two containing the original news story and the system

representations.

Flood disaster in Allakaket, Alaska

Original disaster newswire.

ANCHORAGE, Alaska (AP) -- Army helicopters were sent Sunday to

evacuate residents of the village of Allakaket after the Koyukuk River

surged to its highest level in 40 years.

``We're completely surrounded by water,'' Allakaket Mayor Agnes

Bergman said.

No injuries were reported and nobody was in immediate danger, National

Guard Capt. Mike Haller said from Anchorage. One house in Allakaket

was uprooted and a neighbor said only the electric wires were keeping

it from being swept downstream. The community of about 175 people is

180 miles northwest of Fairbanks.

The river has been rising because of heavy rains last week in Interior

Alaska. It was not expected to crest until Monday at Allakaket. Most

of the village's 35 to 40 homes were flooded with about 4 or 5 feet of

water, Haller said.

124
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Input representation of disaster given to DIAL.

(dial (flood (location

((city "allakaket")

(state ("alaska" noun 1 ()))

(country ("united_states" noun 1()))

(continent ("north_america" noun 1()))))

(condition (``catastrophic''))))

Response plan created by DIAL.
#6(rp

allakaket-flood-response-plan

(flood-response-plan)

"flood in allakaket"

((location ((city "allakaket")

(state ("alaska" noun 1 ()))

(country ("united_states" noun 1 ()))

(continent ("north_america" noun 1 ()))))

(relief-agency ("red_cross" noun 1 (("organization" 1))))

(beneficiary ("resident" noun 1 ()))

(volunteers ("prisoner" noun 1 (("unfortunate" 1))))

(transport ("helicopter" noun 1 (("aircraft" 1))))

(shelter ("school" noun 2 (("building" 1))))

(build-object ("sandbag" noun 1 ()))

(police-force ("police" noun 1 (("personnel" 1)))))

((build-shelters (("construct" verb 1 ())

(actor relief-agency)

(object shelter)))

(build-levees (("construct" verb 1 ())

(actor volunteers)

(object build-object)))

(evacuate-residents (("evacuate" verb 1 ())

(actor police-force)

(object beneficiary)

(vehicle transport)))

(police-patrol

(("patrol" verb 1 ()) (actor police-force))))))
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Flood disaster in Kabul, Afghanistan

Original disaster newswire.

KABUL (Reuter) - Heavy flooding has killed more than 100 people across

Afghanistan, relief workers said Monday as a Red Cross official warned

of an ecological disaster in the war-devastated country.

At least seven provinces, covering more than a quarter of Afghanistan,

have been affected by floods brought on by melting snow and heavy

rains, aid workers said.

They said they had received reports of some 100 deaths but the toll

was likely to be much higher. About 3,000 homes were destroyed or

badly damaged and thousands of cattle and other livestock killed.

``This is just the first symptom of a major ecological disaster

affecting the whole of the Hindu-Kush (mountain range),'' said Bob

McKerrow, delegation head in Kabul of the International Federation of

Red Cross and Red Crescent Societies.

At least 15 people are known to have died and 25 are missing. Hundreds

of homes have been destroyed and hundreds of cattle killed, he said.

Aid groups are trying to assess the damage and provide relief but are

being hampered by poor communications.

Input representation of disaster to DIAL.

(dial (flood (location ((city ("kabul" noun 1 ()))

(country ("afghanistan" noun 1 ())))

(condition (``serious''))))

Response plan created by DIAL.
#6(rp

kabul-flood-response-plan

(flood-response-plan)

"flood in kabul"

((location ((city ("kabul" noun 1 ()))
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(country ("afghanistan" noun 1 ()))

(continent ("asia" noun 1 ()))))

(relief-agency ("red_cross" noun 1 (("organization" 1))))

(beneficiary ("resident" noun 1 ()))

(volunteers ("military_personnel" noun 1 (("force" 4))))

(transport ("helicopter" noun 1 (("aircraft" 1))))

(shelter ("tent" noun 1 (("shelter" 1))))

(build-object ("sandbag" noun 1 ()))

(police-force

("military_personnel" noun 1 (("personnel" 1)))))

((build-shelters (("construct" verb 1 ())

(actor relief-agency)

(object shelter)))

(build-levees (("construct" verb 1 ())

(actor volunteers)

(object build-object)))

(evacuate-residents (("evacuate" verb 1 ())

(actor police-force)

(object beneficiary)

(vehicle transport)))

(police-patrol

(("patrol" verb 1 ()) (actor police-force))))))

Flood disaster in Johannesburg, South Africa

Original disaster newswire.

JOHANNESBURG, Feb 15 (Reuter) - South Africa's heaviest rains for

years have claimed at least seven more victims, most of them children,

police said on Thursday.

The number of people believed to have died in a week of floods rose to

42, but weather forecasters said the worst of the downpours should

have passed by late in the day.

Air force helicopters lifted stranded people to safety and rescuers

set up tent cities for those whose homes had been washed away in the

northeastern province of Mpumalanga, where a boy was reported drowned.

Tourism at the Kruger National Park wildlife reserve was washed out,
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officials said.

Input representation of disaster to DIAL.

(dial (flood (location

((city ("johannesburg" noun 1 ()))

(country ("south_africa" noun 1 ()))

(continent ("africa" noun 1 ()))))

(condition (``serious''))))

Response plan created by DIAL.

#2(index

((city ("johannesburg" noun 1 ()))

(country ("south_africa" noun 1 ()))

(continent ("africa" noun 1 ()))))

#6(rp

johannesburg-flood-response-plan

(flood-response-plan)

"flood in johannesburg"

((location

((city ("johannesburg" noun 1 ()))

(country ("south_africa" noun 1 ()))

(continent ("africa" noun 1 ()))))

(relief-agency

("air_force" noun 1 (("military_service" 1))))

(beneficiary ("resident" noun 1 ()))

(volunteers ("air_force" noun 1 (("military_service" 1))))

(transport ("helicopter" noun 1 (("aircraft" 1))))

(shelter ("tent" noun 1 (("shelter" 1))))

(build-object ("sandbag" noun 1 ()))

(police-force

("military_personnel" noun 1 (("personnel" 1)))))

((build-shelters

(("construct" verb 1 ())

(actor relief-agency)

(object shelter)))

(build-levees

(("construct" verb 1 ())
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(actor volunteers)

(object build-object)))

(evacuate-residents

(("evacuate" verb 1 ())

(actor police-force)

(object beneficiary)

(vehicle transport)))

(police-patrol

(("patrol" verb 1 ()) (actor police-force))))))
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Sample Transcript of DIAL

The following is short transcript of the DIAL system presented with some disaster

examples. At the start of this transcript, DIAL's case base stores a single response

plan case for each disaster type, and no adaptation cases currently exist. The entire

example encompassed seven disasters presented in sequence to the system. All learn-

ing methods are turned on in this example. I annotate the interesting portions of the

transcript.

Chez Scheme Version 5.0

Copyright (c) 1994 Cadence Research Systems

> (load "loader.ss")

> (start)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

We input an initial description of the disaster for DIAL to

generate a response plna for.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Current disaster is

(flood ((state ("oregon" noun 1 ()))

(country ("united_states" noun 1 ()))

(continent ("north_america" noun 1 ()))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Retriever Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This is the start of the system and only one response plan for

flood disaster exists. So this plan is retrieved.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

130
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Selected 1 cases for similarity assessment

The following cases have been ranked:

Case: bainbridge-flood-response-plan (1)

Using adaptative similarity techniques (if available)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The selected plan is evaluated for problems. In this example,

only two fillers are determined to have problems. We will follow

the relief-agency example.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Evaluating the bainbridge-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost

--------------------------------------------------------------

location "oregon" no n/a 0

relief-agency "salvation_army" yes filler-dne ?

beneficiary "resident" no n/a 0

volunteers "volunteer" no n/a 0

transport "motorboat" no n/a 0

shelter "school" no n/a 0

build-object "sandbag" no n/a 0

police-force "police" yes phys-unav ?

The problem based costs are:

Case: bainbridge-flood-response-plan - (2)

The Selected RP is:

bainbridge-flood-response-plan

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Adapter Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**Problem: filler-does-not-exist

**Old-Value: (relief-agency, "salvation_army")
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Created knowledge goal: "KG-1"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

We first attempt to find an adaptation case that can solve this

problem. Currently no adaptation cases exist.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

No similar adaptation case available

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

We fall back on memory search to find a substitution for the

problem filler.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Trying RBR Adaptation

Solution Found: "red_cross"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This was a simple adaptation to solve (since both terms are close

to one another in memory). The solution to the problem along with

the reasoning trace are stored as an adaptation case.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Storing AC:

Adaptation Case:

Name: adaptation-case-1,

Ops: 58 Nodes: 33 CPUTime: 850 RealTime: 880

((has-abstraction? ("organization" noun 1 ())))

**Problem: physically-unavailable

**Old-Value: (police-force, "police")

Created knowledge goal: "KG-2"

No similar adaptation case available

Trying RBR Adaptation

Solution Found: "military_personnel"

Storing AC:
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Adaptation Case:

Name: adaptation-case-2,

Ops: 66 Nodes: 34 CPUTime: 1020 RealTime: 1080

((has-abstraction? ("group" noun 1 ())))

Adaptation summary

Type: flood Location: ("oregon" noun 1 ())

--------------------------------------------------------------

slot problem solvedby solution ops nodes time

--------------------------------------------------------------

police-for phys-unav "military_pe" rbr 66 34 1020

relief-age filler-dne "red_cross" rbr 58 33 850

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Once all problems are solved. The response plan is returned to

the user and stored for future use.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

################################################################

Storing oregon-flood-response-plan

################################################################

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

A second flood disaster is entered into the system

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Current disaster is

(flood ((city ("wheeling" noun 1 ()))

(state ("west_virginia" noun 1 ()))

(country ("united_states" noun 1 ()))

(continent ("north_america" noun 1 ()))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Retriever Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This time there are two response plan cases to be considered for

reuse.x

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Selected 2 cases for similarity assessment

The following cases have been ranked:

Case: oregon-flood-response-plan (3)

Case: bainbridge-flood-response-plan (3)

Using adaptative similarity techniques (if available)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Each plan is evaluated for problem fillers

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Evaluating the bainbridge-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost

--------------- -----------------------------------------------

location "wheeling" no n/a 0

relief-agency "salvation_army" yes context-mism ?

beneficiary "resident" no n/a 0

volunteers "volunteer" yes context-mism ?

transport "motorboat" no n/a 0

shelter "school" no n/a 0

build-object "sandbag" no n/a 0

police-force "police" yes lack-of-ac ?

Evaluating the oregon-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost

--------------------------------------------------------------

location "wheeling" no n/a 0

relief-agency "red_cross" yes physically-u ?

beneficiary "resident" no n/a 0

volunteers "volunteer" yes context-mism ?

transport "motorboat" no n/a 0

shelter "school" no n/a 0

build-object "sandbag" no n/a 0

police-force "military_personn" no n/a 0
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Best Adaptation Case:

Name: adaptation-case-2,

Ops: 66 Nodes: 34 CPUTime: 1020 RealTime: 1080

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Each plan is scored based on the current similarity criteria. The

plan with the lowest score (and thus the most similar) is

selected for reuse

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The problem based costs are:

Case: oregon-flood-response-plan - (2)

Case: bainbridge-flood-response-plan - (3)

The Selected RP is:

oregon-flood-response-plan

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Adapter Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**Problem: physically-unavailable

**Old-Value: (relief-agency, "red_cross")

Created knowledge goal: "KG-3"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

For the first problem, it is a relief-agency

physically-unavailable problem again and we have an adaptation

case designed for this specific instance which was retrieved. The

case is reused and solves the problem. The new problema and

solution are also stored as an adaptation case.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Trying CBR Adaptation

Using Adaptation Case:

Name: adaptation-case-2,

Ops: 66 Nodes: 34 CPUTime: 1020 RealTime: 1080
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Storing AC:

Adaptation Case:

Name: adaptation-case-3,

Ops: 62 Nodes: 97 CPUTime: 730 RealTime: 880

**Problem: context-mismatch

**Old-Value: (volunteers, "volunteer")

Created knowledge goal: "KG-4"

No similar adaptation case available

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Sometimes neither case based adaptation nor rule based adaptation

is successful at finding a solution. In these cases the system

resorts to a manual adaptation, where the user suggests different

constraints or approaches to searching for a solution

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Trying RBR Adaptation

No solutions found.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Manual Adapter Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The user goes through a menu driven list of choices to adapt the

filler.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Knowledge Goal:

Name: "KG-4"

Slot: volunteers,

CurrentNode: ("volunteer" noun 2 ())

Limit: 2000, Transformation: substitution

Problem: context-mismatch,

Disaster: (flood ((city ("wheeling" noun 1 ()))))

Constraints:

((has-abstraction? ("person" noun 1 ())))
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Select a modification to perform

1) Add a constraint

2) Delete a constraint

3) Replace a constraint

4) Continue as is

5) Manual Modification

Your Choice ==> 1

What type of constraint to add?

1) has-abstraction?

2) has-part

3) is-member

4) has-specification

Your Choice --> 1

Enter the known abstraction: "force"

Senses of "force" are:

Sense 1: force,

Sense 2: force,

Sense 3: force, forcefulness, strength,

Sense 4: force, personnel,

Sense 5: military_unit, military_force, force,

Sense 6: violence, force,

Sense 7: power, force,

Sense 8: force,

Sense 9: effect, force,

Which sense of the concept: 4

Any more modifications? y

Knowledge Goal:

Name: "KG-4"

Slot: volunteers,

CurrentNode: ("volunteer" noun 2 ())

Limit: 2000, Transformation: substitution

Problem: context-mismatch,

Disaster: (flood ((city ("wheeling" noun 1 ())))

Constraints:

((has-abstraction? ("force" noun 4 ()))

(has-abstraction? ("person" noun 1 ())))
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Select a modification to perform

1) Add a constraint

2) Delete a constraint

3) Replace a constraint

4) Continue as is

5) Manual Modification

Your Choice ==> 2

Select a constraint to delete

1) (has-abstraction? ("force" noun 4 ()))

2) (has-abstraction? ("person" noun 1 ()))

Your Choice --> 2

Any more modifications? n

Storing AC:

Adaptation Case:

Name: adaptation-case-4,

Ops: 4006 Nodes: 2008 CPUTime: 61860 RealTime: 62430

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Adaptation summary

Type: flood Location: ("wheeling" noun 1 ())

--------------------------------------------------------------

slot problem solvedby solution ops nodes time

--------------------------------------------------------------

volunteers context-mis "military_pe" manual 4006 2008 61860

relief-ag physically- "military_pe" cbr 62 97 730

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Once the problems are solved the new case is stored.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

################################################################

Storing wheeling-flood-response-plan

################################################################

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Another problem is entered into the system. It is also a flood

example.



B. Sample Transcript of DIAL 139

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Current disaster is

(flood ((city "izmir")

(country ("turkey" noun 2 ()))

(continent ("europe" noun 1 ()))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Retriever Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

There are no 3 response plan cases that can be retrieved. We need

to select the most similar one.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Selected 3 cases for similarity assessment

The following cases have been ranked:

Case: wheeling-flood-response-plan (5)

Case: oregon-flood-response-plan (5)

Case: bainbridge-flood-response-plan (5)

Using adaptative similarity techniques (if available)

Evaluating the oregon-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost

--------------------------------------------------------------

location "izmir" no n/a 0

relief-agency "red_cross" no n/a 0

beneficiary "resident" no n/a 0

volunteers "volunteer" no n/a 0

transport "motorboat" yes means-of-lack- ?

shelter "school" yes innapropriate- ?

build-object "sandbag" no n/a 0

police-force "military_personn" yes innapropriate- ?

Evaluating the bainbridge-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost
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--------------------------------------------------------------

location "izmir" no n/a 0

relief-agency "salvation_army" yes filler-does-no ?

beneficiary "resident" no n/a 0

volunteers "volunteer" no n/a 0

transport "motorboat" yes means-of-lack- ?

shelter "school" yes innapropriate- ?

build-object "sandbag" no n/a 0

police-force "police" no n/a 0

Best Adaptation Case:

Name: adaptation-case-1,

Ops: 58 Nodes: 33 CPUTime: 850 RealTime: 880

Evaluating the wheeling-flood-response-plan

--------------------------------------------------------------

slot filler problem type cost

--------------------------------------------------------------

location "izmir" no n/a 0

relief-agency "military_personn" yes innapropriate ?

beneficiary "resident" no n/a 0

volunteers "military_personn" yes situation-mis ?

transport "motorboat" yes means-of-lack ?

shelter "school" yes innapropriat ?

build-object "sandbag" no n/a 0

police-force "military_personn" yes innapropriate ?

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

In this example, similarity costs are based exclusively on the

number problems identified in the plan. Thus in this situation,

two plans tie with 3 problems each, and a random one of the two

is selected.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The problem based costs are:

Case: wheeling-flood-response-plan - (5)

Case: bainbridge-flood-response-plan - (3)

Case: oregon-flood-response-plan - (3)
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The Selected RP is:

oregon-flood-response-plan

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Adapter Module:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

As before we attempt to adapt each problem filler to an

acceptable filler using case based, rule based and finally manual

methods as needed.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

**Problem: means-of-lack-of-access

**Old-Value: (transport, "motorboat")

Created knowledge goal: "KG-5"

No similar adaptation case available

Trying RBR Adaptation

Solution Found: "truck"

Storing AC:

Adaptation Case:

Name: adaptation-case-5,

Ops: 150 Nodes: 78 CPUTime: 2350 RealTime: 2450

((has-abstraction? ("vehicle" noun 1 ())))

**Problem: innapropriate-context

**Old-Value: (shelter, "school")

Created knowledge goal: "KG-6"

No similar adaptation case available

Trying RBR Adaptation

Solution Found: "tent"

Storing AC:
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Adaptation Case:

Name: adaptation-case-6,

Ops: 288 Nodes: 151 CPUTime: 4650 RealTime: 4720

((has-abstraction? ("structure" noun 1 ())))

**Problem: innapropriate-context

**Old-Value: (police-force, "military_personnel")

Created knowledge goal: "KG-7"

No similar adaptation case available

Trying RBR Adaptation

Solution Found: "police"

Storing AC:

Adaptation Case:

Name: adaptation-case-7,

Ops: 64 Nodes: 33 CPUTime: 1010 RealTime: 1060

((has-abstraction? ("group" noun 1 ())))

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Adaptation summary

Type: flood Location: "izmir"

--------------------------------------------------------------

slot problem solvedby solution ops nodes time

--------------------------------------------------------------

police-for innapropria "police" rbr 64 33 1010

shelter innapropria "tent" rbr 288 151 4650

transport means-of-la "truck" rbr 150 78 2350

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

################################################################

Storing izmir-flood-response-plan

################################################################
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