
Facilitating CBR for Incompletely-Described Cases:
Distance Metrics for Partial Problem Descriptions?

Steven Bogaerts and David Leake

Computer Science Department, Indiana University, Lindley Hall 215
150 S. Woodlawn Avenue, Bloomington, IN 47405, U.S.A.

{sbogaert, leake}@cs.indiana.edu

Abstract. A fundamental problem for case-based reasoning systems is how to
select relevant prior cases. Numerous strategies have been developed for deter-
mining the similarity of prior cases, given full descriptions of the problem at
hand, and situation assessment methods have been developed for formulating ap-
propriate initial case descriptions. However, in real-world applications, attempt-
ing to determine all relevant features of a new problem before retrieval may be
impractical or impossible. Consequently, how to guide retrieval based on partial
problem descriptions is an important question for CBR. This paper examines the
problem of assessing similarity in partially-described cases. It proposes a set of
similarity assessment strategies for handling missing information, evaluates their
performance and efficiency on sample data sets, and discusses their tradeoffs.

1 Introduction

Case-based reasoning (CBR) systems solve new problems by retrieving cases capturing
the solutions of similar prior problems, and adapting their solutions to fit new needs.
Determining the most relevant prior cases is a fundamental issue for CBR systems,
and may require special methods when a full case description is not immediately avail-
able. For example, in a common applied CBR approach, conversational CBR (CCBR)
(Aha & Breslow 1997), users build up a problem description by successively answering
questions, as the system incrementally ranks candidate cases and questions based on the
partial information available. The more accurate the distance measure used in this pro-
cess, the more quickly the system will be able to point the user to the most applicable
cases. Likewise, the ability to rank cases based on partial information may be essential
when feature values are costly to determine or simply unavailable. Thus an important
issue for CBR is how to assess the similarity of partial problem descriptions—problems
with incomplete feature descriptions.

Considerable attention has been devoted to the process of refining initial problem
descriptions through situation assessment (Kolodner 1993), and handling incomplete
problem descriptions is a fundamental problem for CCBR. In diagnostic tasks, for
example, only a partial set of features may initially be available. Consequently, ev-
ery CCBR system includes methods for handling incrementally-built case descriptions,
? This material is based upon work supported by NASA under award No NCC 2-1216 and by

the U.S. Department of the Navy, NSWC Crane Division, under contracts N00164-04-C-6514
and N00164-04-C-6515. Copyright c©Springer Verlag 2004.

and research has addressed the problem of deciding which features to request when
elaborating a partially-described case during CCBR (e.g., (Carrick et al. 1999)). How-
ever, comparatively little attention has been given to examining alternative similarity
assessment methods for cases with missing features. A better understanding of the per-
formance of alternative strategies, their tradeoffs, and their applicability, could enable
more effective retrieval of partially-described cases and could also provide useful infor-
mation for guiding the CCBR process. Because cases in the case base may themselves
have partial descriptions, understanding how to handle partial descriptions could also
be valuable for case base maintenance (Leake et al. 2001), to determine when and how
to augment partial descriptions of stored cases.

This paper first discusses general issues affecting similarity judgments for partially-
described cases. It then examines a set of similarity assessment strategies, including
two simple baseline strategies and two more complex strategies designed to take ad-
vantage of information offered by the case base to predict feature values. The strategies
apply to feature-vector representations for any ordinal features, i.e., features whose val-
ues belong to an ordered set; these may be numeric, or may belong to other categories
provided that notions of distance and average can be defined (e.g., for a finite set, the
“average” might be determined by a vote). The first method, Default Difference, is a
baseline method which simply assigns a fixed default distance whenever the values of
one or both features are missing (e.g., if this distance is 0, missing features are assumed
to match perfectly). The remaining methods use additional information extracted from
the case base as a whole: Full Mean, another baseline, treats each missing value as if
it were the mean feature value. NN Mean takes a similar approach, but relies on lo-
cal information, using the mean values of “near-by” cases. A drawback of NN Mean
is its increased expense to compute the predicted feature value, which can be extreme
when many cases must be compared to the current situation. Region Mean addresses
this problem by generating a case base of prototypical cases, providing a local approx-
imation to use to predict missing features without additional computation. Finally, we
consider the use of composite methods involving combinations of these strategies. An
experimental evaluation compares (1) the ability of each method to select the most
similar cases, for differing levels of partial information—which reflects the number of
questions that must be answered for a CCBR system to achieve a desired level of ac-
curacy, (2) their efficiency at providing their information, and (3) the potential benefit
of combined strategies. After comparing these performance issues, we develop general
hypotheses for the applicability of the methods and their tradeoffs.

1.1 Handling Unknown Features

A simple example illustrates the subtlety of handling unknown features. Consider a
domain in which cases are described by a feature vector of four features, [f1, f2, f3, f4],
and for which the system must solve a problem p, for which only the values of the first
three are known: [5.0, 6.0, 7.0,−]. Let distance(p1, p2) denote the distance between
two problems p1 and p2. Suppose that the case base contains two cases, c1, described
by [5.1, 6.0,−,−] and c2, described by [5.0,−,−,−]. Note that in the following, we
will use the name of the case as a shorthand for referring to the problem it solves.

In order to select the right case, the system must predict whether distance(p, c1)
or distance(p, c2) is smaller. More features of c1 are known than c2; this guarantees
that c1[1] has no difference from p[1], and c1[0] has an apparently small difference from
p[0]. However, c2 might be more promising. Because c2[0] has no difference from p[0],
the potential minimum difference between c2 and p is smaller, even though selecting
c2 entails more risk, due to possible differences in the unknown features. Likewise,
a difference of 0.1 between p[0] and c1[0] could be important, and perhaps even so
significant that the exact match on feature 1 is inconsequential. Thus determining how
to treat missing features depends on both (1) the importance of known differences and
(2) the potential importance of unknown features, given their likely values and the user’s
tolerance for the level of uncertainty that they entail for the quality of results.

Even the selection of quality measure may involve subtle considerations. For exam-
ple, possible quality measures could include rank quality, which measures how close
the top-ranked cases are to the actual best match, or—if the specific values of the pre-
dicted distances are important—the error in the distance prediction. For example, error
might be important in medical domains, if a differential diagnosis accepts a diagnosis
when it appears sufficiently superior to its competitors. Error may also be important
when the system provides the user with distance estimates to help guide the choice of
cases to examine.

2 Strategies for Handling Unspecified Features

For any particular domain, domain knowledge may suggest specific assumptions or
strategies for handling partially-described problems. Here we examine simple domain-
independent strategies for assigning distances between pairs of corresponding features,
within the framework of the standard distance function:

distance(r1, r2) =

√

∑

i

wi[d(r1[i], r2[i])]2

If Fi represents the set of possible feature values for the ith feature, including a value
used to designate unknown features, these are functions di : Fi × Fi → [0,∞).

2.1 Default Difference(x)

A simple baseline strategy is to treat the distances between unknown features as zero.
This corresponds to a typical strategy of considering only differences in known features.
This approach can be generalized to assign a fixed default difference, x, whenever ei-
ther feature is unknown. Default Difference(x), the corresponding similarity assessment
strategy, is defined as:

di(r1[i], r2[i]) =

{

x r1[i] and/or r2[i] unknown
|r1[i] − r2[i]| otherwise

Default Difference with x equal to 0 can be seen as an “optimistic” measure. When
x equals 0, a completely unknown problem has distance 0 from all cases; this might be

considered appropriate because every case is potentially a perfect match. Alternatively,
if the maximum possible feature distances are bounded and equal across all features,
setting x to the maximal possible difference corresponds to a “pessimistic” measure.

This simple metric illustrates an interesting asymmetry between handling partially-
specified input problems and handling stored cases whose problem descriptions are
partially-specified. When stored cases include complete problem descriptions, different
values of x may change the magnitude of computed difference values and the spacing
between cases ranked by similarity, but will not affect the cases’ ranking by difference
values. However, if features may be missing from problem descriptions in stored cases
as well as input cases, increases in x may change the ranking, causing the metric to
favor stored cases for which more features are known.

Default Difference assumes a fixed difference for a pair of features whenever they
are missing from either the input case or a stored case. A problem with this simple ap-
proach is that it may neglect useful information: if a problem feature in either the input
or stored case has an atypical value, it is reasonable to consider the missing feature’s
value less likely to be similar. This should affect the prediction of a good match between
the cases, but Default Difference does not take this into account. The next method, Full
Mean, addresses this deficiency.

2.2 Full Mean

Full Mean exploits global feature information to estimate missing values, by replacing
missing feature values with the mean values for those features when calculating similar-
ity. If the feature is not known in any of the stored cases, it assigns a default difference
value x. More formally, let

CasesKnowingFeature(i, CB) = {c ∈ CB|fi known in c}

and let µ(i, CB, x), the average of known value of feature i in the case base, with
default x for completely unknown features, be defined by:

µ(i, CB, x) =

{

P

CasesKnowingF eature(i,CB) c[i]

|CasesKnowingFeature(i,CB)| CasesKnowingFeature(i, CB) 6= φ

x otherwise

Then with Full Mean,

d(r1[i], r2[i]) = |EstimatedV alue(r1, i, x) − EstimatedV alue(r2, i, x)|

where

EstimatedV alue(r, i, x) =

{

r[i] r[i] is known
µ(i, CB, x) otherwise

Because the means for each feature in the case base can be precomputed offline and
updated cheaply online as cases are added or removed, this is a low-cost strategy.

Although Full Mean makes better use of global feature information than Default
Difference, it has potential drawbacks. First, like all average-based approaches in this

paper, it considers only the average feature value, independent of the feature’s distri-
bution (which might be better captured, e.g., by the mean or mode). Second, it ignores
possible dependencies between features, although the expected value of a feature may
change dramatically based on the value of other features. For example, even if the av-
erage age of passenger cars is 8 years, predicting 8 years of age for a car would be
misleading if it were also known that the car had only been driven 100 kilometers. The
next strategy, NN Mean, attempts to better reflect local dependencies by taking a more
case-based approach, using similar cases to predict feature values.

2.3 NN Mean

Nearest Neighbor Mean, or NN Mean, responds to Full Mean’s problems with a more
case-based approach, predicting feature values based on the values of similar cases. Its
premise is that nearby cases will be good predictors of feature values. Intuitively, if r[i]
is unknown and Nearr,i is the set of all cases near r that know feature i, then a good
predictor is the average feature value over Nearr,i. Unfortunately, there is one catch to
this approach: Defining “nearby” cases requires predicting inter-case distances, which
is the very problem that NN Mean is intended to address.

In NN Mean, we address this problem by recursively drawing on the distance met-
rics from this paper for the “internal” similarity computation. For example, Default Dif-
ference(x) can be used as an internal strategy to estimate distances for finding nearby
cases, and then the k closest cases, or all cases within a distance threshold, can be used
to obtain a mean according to NN Mean. We will denote the “internal” strategy as an
argument to NN Mean, as in NN Mean(Default Difference(x)). If feature dependence
information is available (though this often is not the case), an additional variant on the
NN Mean strategy is to use only the dependent features in the search for nearby cases.
We call this approach NN Mean Dep.

NN Mean is an expensive strategy. Unlike Full Mean, the average values for a fea-
ture cannot be precomputed, because they depend on r. No matter what internal strategy
is used, at a minimum a new retrieval is required for each unknown feature.

2.4 Region Mean

Region Mean attempts to avoid the expense of NN Mean yet maintain its advantages
over Full Mean by precomputing near means at various points in the case space, and
predicting means based on the nearest precomputed cases to the input problem. In the
offline process, the precomputation algorithm is:

– Cluster the case base and find a prototype for each class. We apply k-medoid clus-
tering.1

– For each prototype pj

• For each feature i

1 k-medoid clustering is robust to outliers and independent of the order in which objects are
considered. For a comparison with other clustering methods, see (Kaufman & Rousseeuw
1990).

∗ Let Classpj ,i be the set of cases in the equivalence class with prototype
pj that know feature i. Determine µ(i, Classpj ,i, x), the mean value of
feature i over Classpj ,i, as follows:

µ(i, Classpj ,i, x) =

P

c∈Classpj ,i
c[i]

|Classpj ,i|
Classpj ,i 6= φ

x otherwise

The online computation for Region Mean is analogous to Full Mean. The key differ-
ence is that EstimatedV alue(r, i, x) retrieves the pj closest to r, and uses µ(i, Classpj ,i, x),
instead of Full Mean’s µ(i, CB, x).

As for NN Mean, an internal difference metric is required, this time to determine
the nearest prototype pj to r, as well as to measure the difference between problems in
clustering. Again this can be found by recursively using any method described in this
paper, provided the final method is defined. For example, Default Difference(x) could be
used for finding the nearest prototype and for clustering. We would denote this strategy
as Region Mean(Default Difference(x)).

2.5 Composite Strategies Exploiting Dependency Information

If information can be obtained about feature dependencies—which may itself be a sig-
nificant challenge—it may be beneficial to apply a composite strategy, using one strat-
egy for independent features and another for dependent features.

If a feature is independent, then, by definition, the values of other features are not
helpful in predicting its value. Thus the best that can be hoped for is to simply use
global information such as the average value across the entire case base; that is, to
use Full Mean. Because Full Mean is inexpensive to compute, it is an obvious choice
given a priori knowledge that a feature is independent. Only when handling dependent
features are other strategies much more likely to be successful.

Because composite strategies use one strategy for independent features and another
for dependent features, we write them in the form independent-strategy/dependent-
strategy. For example, a composite strategy using Full Mean for independent features
and Region Mean(Default Difference(0)) for dependent features is written Full Mean/-
Region Mean(Default Difference(0)).

3 Experiments

The previous discussion raises a number of general questions for comparing similarity
assessment strategies for partial problem descriptions:

1. Their efficiency
2. Their accuracy for ranking candidate cases
3. Their accuracy for estimating difference levels between candidate cases
4. Their accuracy when different levels of information are available

It also raises some strategy-specific questions, on how performance is affected by:

1. Choice of internal strategy for NN Mean
2. Cluster count during initial clustering for Region Mean
3. Internal strategy for Region Mean
4. Composite strategies with different methods for independent/dependent features

To answer these questions, we tested the previous strategies for a number of domains.
Our experiments focused on the ability of the methods to identify similar cases when
some input features were missing, primarily for case bases in which all cases had com-
plete problem descriptions.

3.1 Performance Measures

Three performance measures were used in the experiments:

– Time: The efficiency of the approaches is compared by measuring the CPU time
required for the strategies to calculate distance values between the target and all the
cases in the case base.

– Normalized Absolute Error: Given a strategy s, a partially-described target prob-
lem t̂ generated by removing feature values from a completely-described problem
t, and a case c in the case base, we define the absolute error as the difference be-
tween the actual distances between t and c, and the distance predicted when only t̂

is known: errors(t̂, p) = |distance(t, c) − distances(t̂, c)|.
This metric is useful within a domain, to indicate of how misleading a predicted
distance value may be. However, it may be less useful for comparing performance
across domains, because it is sensitive to factors such as scaling of distance values.
In order to facilitate comparison of errors across domains, we normalize absolute
errors onto [0, 1], by dividing the absolute distance by the maximum observed
distance in that case base (the distance between the two maximally distant cases
in the case base). Our results report the percent of maximum observed distance
between cases.

– Rank Quality: The rank quality measure reflects the ability of a distance metric
to generate a ranking in which the quality of the top suggested cases is similar to
the quality of the top cases which would be suggested if all features were known.
Given a strategy s and a partial problem t̂, rqs measures the percent increase in
distance between the input problem and the top suggested cases, compared to the
true top cases. Thus it measures how much worse the top suggested cases are when
only t̂, rather than t, is known. To reflect that users in a CCBR system may be most
likely to focus on the top-ranked cases, our metric weights suggestions by their
order in the ranking: having a top-ranked case closest to the real top-ranked case
is considered most important, with lower-ranked suggestions less important. More
precisely, let ClosestProb be the problem of the case that is nearest to t (when all
features are known). The rank quality ratio is defined as:

rqs =
P

p
w(p)∗ratio(p)
P

p
w(p) , where ratio(p) = distance(t,p)

distance(t,ClosestProb)

and w(p) is a function that assigns a weight to ratio(p) that favors higher-ranked
cases. Let ranks(p) be the 0-based rank of problem p according to strategy s. In

our experiments, we set w(p) = max(5− ranks(p), 0). Thus, only the top 5 cases
had a non-zero weight.

Note that normalized absolute error and rank quality both measure the ability of the
strategies to predict real inter-case distances, according to a given distance measure.
They do not directly compare solution accuracies, which would depend on the quality
of the given distance measure.

3.2 Experimental Domains

The experiments were conducted in four domains, three from the University of Cali-
fornia, Irvine, Machine Learning Repository (Blake & Merz 1998), and one artificial
domain to observe performance for strongly-correlated problem description features:

1. Ecoli: 336 cases, 7 numerical features, predicting one of 8 protein localization sites.
2. Pima: 768 cases, 8 numerical features, predicting positive or negative diabetes test

results in members of the Pima Native American population.
3. Liver: 345 cases, 6 numerical features, predicting the presence or absence of a liver

disorder.
4. Dep7: Artificial domain, 300 cases, 7 numerical features, predicting a single nu-

merical value. There are strong dependencies between the features: f0 ∼ N(0, 10),
f1 ∼ N(f0, 2), f2 ∼ N(f2

1 − f0, 10), f3 ∼ N(0, π), f4 ∼ N(sin(f3), 10),
f5 ∼ N(10, 20), f6 ∼ N(−20, 10).

For all experiments, the underlying similarity metric was the Euclidean distance func-
tion of section 2, with all features given a weight of 1.

3.3 General Procedure

All implementations and experiments were done using the Indiana University Case-
Based Reasoning Framework (IUCBRF) (Bogaerts & Leake 2004). IUCBRF is a Java
framework, freely-available for research, designed to facilitate rapid and modular CBR
system development. The general experimental procedure was as follows. Let t be the
fully known target problem, t̂ a partial target problem generated by removing features
of t, p a problem (fully known) from a case in the case base, and s a similarity assess-
ment strategy. All experiments were done for each feature prediction strategy, and were
repeated 300 times per strategy (except as stated otherwise), with results averaged. For
each feature prediction strategy s, steps were:

– Perform any required initialization (e.g., any strategy involving Region Mean builds
a partition of the case base)
• Perform leave-one-out testing. For each case c in the case base,

∗ Hide c, and use c as the basis for generating a partial target t̂. Initially, no
features of t̂ are revealed.

∗ For each case c in CB - {t}, measure distances(c, t̂) according to strategy
s, and sort the case base by these distances.

∗ Obtain performance measurements as described above

• If t̂ = t, exit loop.
• Else randomly choose a feature to “reveal” in t̂ (obtained from t), and loop.

The random choice simulates a user presenting a feature to the system, outside
the system’s control.

Thus for each t, data is collected for each strategy’s calculated distances between the
target problem and the remainder of the case base, from 0 features of the target problem
revealed, through all its features revealed.

3.4 Classes of Tests

There were three classes of experiments, with different independent variables:

1. Cross-Domain Comparison: We compared performance for 12 strategies and vari-
ants, for four case bases of 300 cases, with Region Mean based on partitions created
from 20 clusters.

2. Cluster Count Comparison: Performance of the 12 strategies was compared to three
versions of Region Mean, respectively using 50, 20, and 6 clusters, each for the full
ecoli case base of 336 cases.

3. Comparison for Unknown Features in the Case Base: Instead of using a fully-
known case base, as is done in the other experiment classes, this experiment as-
sessed performance with partially-described cases in the case base, for 100%, 75%,
50%, and 25% chance that a feature in the case base is known. This used the Pima
case base of 768 cases, with Region Mean using 10 clusters.

4 Results

The comparative results in each of the UCI domains were remarkably similar. Figure 1
illustrates them with examples from the Pima domain. Figure 1 (a) lists the range of
strategies considered in the experiments. However, because some strategies had almost
identical performance, only a subset of lines is included in each figure, with similarities
described in the text.

4.1 Cross-Domain Comparison

Figure 1 (b) shows the normalized absolute error as a function of the number of features
known, for selected strategies in the pima domain. Note that Default Difference(0) is the
worst strategy, with Full Mean in next to last place when 4 or more features are known.
Full Mean/Region Mean(Default Difference(0)) initially performs worse, but becomes
comparable to NN Mean(Default Difference(0)) when 4 or more features are known.
The competetive performance of Full Mean is interesting in light of its much lower cost
than NN Mean(Default Difference(0)), as shown in Figure 1 (c).

Figure 1 (c) compares the strategies’ efficiency. NN Mean(Full Mean) is slowest,
followed by NN Mean(Default Difference(0)), NN Mean(Default Difference(0)) Dep,
and Full Mean/NN Mean(Default Difference(0)). The remaining strategies, essentially

(a) Legend.

2 3 4 5 6 7 8
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Features Known

M
ea

n
E

rr
or

(b) Mean Errors for Pima.

2 3 4 5 6 7 8

0
50

00
10

00
0

15
00

0

Features Known

R
et

rie
va

l T
im

e

(c) Retrieval Times for Pima (ms).

2 3 4 5 6 7 8

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Features Known

R
an

k
Q

ua
lit

y

(d) Rank Quality for Pima.

Fig. 1. a. Legend for (b), (c), and (d). b. Error versus number of features known, for selected strategies.
c. Time in ms to select top-ranked case versus number of features known, for selected strategies. d.
Rank quality ratios versus number of features known, for selected strategies.

Strategy Error, Error, Time, Time,
4 Known 6 Known 4 Known 6 Known

Default Difference(0) 0.0710 0.0363 5.70 6.03
Full Mean 0.0451 0.0265 8.77 8.10
NN Mean(Default Difference(0)) 0.0379 0.0209 6671.06 3332.70
NN Mean(Full Mean) 0.0447 0.0260 10583.25 4663.49
Region Mean(Default Difference(0)) 0.0392 0.0226 9.88 8.75
Region Mean(Full Mean) 0.0433 0.0247 10.23 8.96
Region Mean(NN Mean(Default Difference(0))) 0.0373 0.0209 476.92 243.49
Full Mean/NN Mean(Default Difference(0)) 0.0380 0.0209 4776.45 2566.61
Full Mean/NN Mean(Default Difference(0)) Dep 0.0374 0.0209 4648.30 2552.25
NN Mean(Default Difference(0)) Dep 0.0374 0.0209 6175.21 3305.66
Full Mean/Region Mean(Default Difference(0)) 0.0389 0.0225 10.48 9.07
Full Mean/Region Mean(NN Mean(Default Difference(0))) 0.0373 0.0209 10.51 9.07

Table 1. Mean Errors for Pima

all those not involving NN Mean except as a prototype finder of Region Mean, were fast,
requiring 5-12 ms on a Sun Blade 1000 (750Mz) to rank all cases in the pima domain.

Figure 1 (d) shows the rank quality for selected strategies in the pima domain.
Note that this graph can also be used to determine the number of questions, on av-
erage, that a CCBR system would require to achieve a particular rank quality. Here Full
Mean generally has the worst performance, followed by Default Difference(0). Region
Mean(Default Difference(0)) and Full Mean/Region Mean(Default Difference(0)) start
comparatively poorly, but catch up quickly to NN Mean(Default Difference(0)) and Full
Mean(NN Mean(Default Difference(0))) Dep. Table 1 summarizes performance for all
the strategies tested, for 4 and 6 features known.

4.2 Cluster Count Comparison

In this experimental setup, the Region Mean strategies were run for 6, 20, and 50 clus-
ters, in the ecoli domain with a case base of 336 cases. Note that these cluster counts
correspond to approximately 2%, 6%, and 15% of the number of cases.

Figure 2 (a) shows a sample of results, for Region Mean(NN Mean(Default Differ-
ence(0))). In the lines in this figure, points marked with � correspond to performance
for 50 clusters, × to 20 clusters, and 4 to 6 clusters. The results show small improve-
ments when more clusters are used, but also show that the behavior is generally robust
to the cluster count. These results were typical for each of the Region Mean strategies,
and also for the rank quality measure. This suggests that low cluster counts may be
sufficient. Because speed increases with lower cluster counts, this result is encouraging
for the efficiency of Region Mean.

The relative processing times versus cluster counts were also consistent across each
of the Region Mean strategies. Experiments showed that strategies with 6 clusters were
fastest, followed by 20, with 50 the slowest, although for each cluster count the differ-
ence in computation time was fairly small. This is as expected: Fewer clusters decreases
time to find the applicable cluster, but even for a large number of clusters, there are at
most a few dozen more prototypes that must be examined to find the nearest cluster, and

2 3 4 5 6 7

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Features Known

M
ea

n
E

rr
or

(a) Effect of Cluster Count on Errors for
Region Mean Strategies.

2 3 4 5 6 7 8
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Features Known

M
ea

n
E

rr
or

(b) Effect of Chance Known on Errors
for Composite Strategy.

Fig. 2. (a). The error for Region Mean(NN Mean(Default Difference(0))) for 50, 20, and 6 clusters.
� is for 50 clusters, × is for 20, and 4 is for 6. (b) Error in Full Mean / Region Mean(Default
Difference(0)) for a chance known of 100% (+), 75% (4), 50% (©), and 25% (�).

the difference has limited effect on execution time due to the relatively larger constant
overhead cost of the strategy.

4.3 Chance Known Comparison

In this experimental setup, each strategy’s performance was examined for varying lev-
els of missing information in the case base, in the pima domain, with 768 cases. As
discussed above, previous experiments used a fully-known case base (a 100% chance
that a case in the case base knows any given feature). This setup, however, examines
not only a 100% chance known, but also 75%, 50%, and 25%. Runs were repeated a
minimum of 186–270 times, with results averaged.

Figure 2 (b) shows the error using Full Mean / Region Mean(Default Difference(0))
for a chance known of 100% (+), 75% (4), 50% (©), and 25% (�). Note that, as ex-
pected, error increases as the chance that a feature in the case base is unknown increases.
Results were very similar for the other strategies.

5 Discussion

The experiments illustrate a number of interesting properties. First, we note that the
commonly-used trivial strategies, Default Difference(0) and Full Mean, consistently
produce comparatively poor results, as shown in the error and rank quality measures.
Thus we would expect a considerable boost to the prediction accuracy of a CBR system
faced with partial problems (or a conversational CBR system in which not all questions
have been answered for a given session) when any of the more advanced strategies are
used.

The results also provide information to help in selecting a more advanced strat-
egy. As hypothesized and experimentally verified, strategies involving NN Mean are
prohibitively slow, requiring on the order of several seconds to sort a fully-known case
base of a few hundred cases against a single partial problem. However, the Region Mean
strategies were developed to address this are fairly fast and provide comparable accurate
to NN Mean strategies.

It is interesting to note that in limited circumstances, NN Mean may still be ap-
propriate. Specifically, experiments show that Region Mean(NN Mean(Default Differ-
ence(0))) (and the related composite method) is not slowed down dramatically by the
use of a NN Mean strategy as its prototype finder. This can be explained because, when
the case base is fully-known, there is only one partial problem, the target, for which the
nearest cluster must be found. Thus, NN Mean must be used only once to determine the
nearest cluster. Once the nearest cluster is determined, the mean values associated with
that cluster can be used for the partial problem in comparing it with the entire case base.
In fact, for a partial case base, once the partition is created off-line, the nearest cluster
of any case is already known and need not be recomputed. So even for a partial case
base, NN Mean must only be computed once for a target partial problem.

If information regarding the dependence between features is available (either as
domain knowledge, or calculated via statistical analysis) then a composite method can
be used. As argued above, Full Mean is the suitable when a feature is independent, and
strategy for dependent features should use Region Mean. Assuming that the dependence
information is accurate, a composite method should be just as accurate, or even more
accurate, than the dependent part alone applied to all features. In addition, because Full
Mean is fast, a composite method of the form Full Mean/Region Mean would be faster
than Region Mean alone, applied to all features.

We note that none of the approaches exploit statistical information about feature
distributions. When that information is available, it may provide even more useful in-
formation. An area for future study is the application of the representativeness assump-
tion (Smyth & McKenna 1999) to use existing cases in the case base to estimate feature
value distributions.

6 Related Work

Distance metrics have been the subject of extensive study in CBR (e.g., (Wettschereck,
Aha, & Mohri 1997; Bergmann 2002)). CCBR systems must always include methods
for handling partially described problems, and a number of methods have been applied.

One common approach in CBR and instance-based learning is to assume a maximal
difference between missing features (Witten & Frank 2000, p. 115), which is similar to
Default Difference(x) for a large value of x.

To our knowledge, how to handle missing features in distance metrics and the trade-
offs between alternative strategies have received only limited study in the CBR commu-
nity. However, missing features have been considered in a number of studies in machine
learning. For example, in decision tree induction, Mingers (1989) uses a strategy similar
to Full Mean as well as a strategy that assigns the most common feature value among
training instances with the same classification, and Quinlan (1993) uses probability in-
formation on feature values while descending multiple paths of the tree. Other work
has examined the theoretical learnability of a target function when features are missing
(Decatur & Gennaro 1995; Goldman, Kwek, & Scott 1997).

CBR research has examined how to select the next question to ask in a dialogue
(Aha, Breslow, & Munoz-Avila 2001; Kohlmaier, Schmitt, & Bergmann 2001), and
how to select useful sets of cases to present in light of similarity and diversity concerns
(Smyth & McGinty 2003). McSherry (2003) studies a related problem, the determi-
nation of when recommendation dialogues can be terminated without loss of solution
quality, and compares the efficiency of alternative attribution-selection strategies, given
a similarity metric in the spirit of Default Difference(0). However, these approaches as-
sume a pre-existing method for assessing similarity based on partial descriptions; they
do not examine which similarity metrics to use. Increased understanding of how to as-
sess similarity for partial descriptions could have substantial benefits both for CCBR
and for case-based recommender systems.

7 Conclusion

Being able to retrieve appropriate cases, based on partial information, is a fundamental
problem for CCBR systems. This paper examines alternative strategies for addressing
this problem. It compares a set of difference measures, evaluates their performance
and efficiency on sample data sets, and discusses their tradeoffs as suggested by the
experiments. It identifies difficulties in handling partial problem descriptions that may
not be initially apparent, illustrates high-cost, high-accuracy strategies based on CBR,
and shows that they may be effectively approximated by more efficient methods. This
work provides a set of tools for building distance metrics for incompletely-described
cases, and provides an initial foundation for further study of this area.

References

Aha, D., and Breslow, L. 1997. Refining conversational case libraries. In Proceedings
of the Second International Conference on Case-Based Reasoning, 267–278. Berlin:
Springer Verlag.
Aha, D.; Breslow, L.; and Munoz-Avila, H. 2001. Conversational case-based reason-
ing. Applied Intelligence 14:9–32.
Bergmann, R. 2002. Experience Management: Foundations, Development Methodol-
ogy, and Internet-Based Applications. Berlin: Springer.

Blake, C., and Merz, C. 1998. UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Bogaerts, S., and Leake, D. 2004. IUCBRF: A framework for rapid and modular CBR
system development. In preparation.
Carrick, C.; Yang, Q.; Abi-Zeid, I.; and Lamontagne, L. 1999. Activating CBR sys-
tems through autonomous information gathering. In Proceedings of the Third Interna-
tional Conference on Case-Based Reasoning, 74–88. Berlin: Springer Verlag.
Decatur, S., and Gennaro, R. 1995. On learning from noisy and incomplete examples.
In Proceedings of the Eighth Annual ACM Conference On Computational Learning
Theory. ACM Press.
Goldman, S.; Kwek, S.; and Scott, S. 1997. Learning from examples with unspecified
attribute values. In Computational Learing Theory, 231–242.
Kaufman, L., and Rousseeuw, P. 1990. Finding Groups in Data: an Introduction to
Cluster Analysis. Wiley.
Kohlmaier, A.; Schmitt, S.; and Bergmann, R. 2001. A similarity-based approach to at-
tribute selection in user-adaptive sales dialogues. In Case-Based Reasoning Research
and Development: Proceedings of the Fourth International Conference on Case-Based
Reasoning, 306–320. Berlin: Springer Verlag.
Kolodner, J. 1993. Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann.
Leake, D.; Smyth, B.; Wilson, D.; and Yang, Q., eds. 2001. Maintaining Case-Based
Reasoning Systems. Blackwell. Special issue of Computational Intelligence, 17(2),
2001.
McSherry, D. 2003. Increasing dialogue efficiency in case-based reasoning without
loss of solution quality. In Proceedings of the eighteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), 121–126. San Mateo: Morgan Kaufmann.
Mingers, J. 1989. An empirical comparison of selection measures for decision-tree
induction. Machine Learning 3(4):319–342.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.
Smyth, B., and McGinty, L. 2003. The power of suggestion. In Proceedings of the
eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), 127–
132. San Mateo: Morgan Kaufmann.
Smyth, B., and McKenna, E. 1999. Building compact competent case-bases. In
Proceedings of the Third International Conference on Case-Based Reasoning, 329–
342. Berlin: Springer Verlag.
Wettschereck, D.; Aha, D.; and Mohri, T. 1997. A review and empirical evaluation
of feature-weighting methods for a class of lazy learning algorithms. Artificial Intelli-
gence Review 11(1-5):273–314.
Witten, I., and Frank, E. 2000. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. San Francisco: Morgan Kaufmann.

