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Abstract. Case provenance concerns how cases came into being in a
case-based reasoning system. Case provenance information has been pro-
posed as a resource to exploit for tasks such as guiding case-based main-
tenance and estimating case confidence [1]. The paper presents a new
bidirectional provenance-based method for propagating case confidence,
examines when provenance-based maintenance is likely to be useful, and
expands the application of provenance-based methods to a new task:
assessing the quality of adaptation rules. The paper demonstrates the
application of the resulting quality estimates to rule maintenance and
prediction of solution quality.

1 Introduction

Case provenance concerns tracking how the cases in a case-based reasoning sys-
tem came into being, whether from external sources or from internal reasoning
processes [1]. Just as humans consider a case’s sources when determining its
trustworthiness [2], it may benefit a case-based reasoning system to consider
the origins of externally-provided cases to estimate cases’ applicability or re-
liability, and some systems have considered case sources in their reasoning [3,
4]. More generally, internal provenance information provides a basis for CBR
systems to refine their own processing through introspective reasoning (for an
overview of introspective reasoning, see [5]). Leake and Whitehead [1] hypoth-
esized that information about internal case provenance—how a CBR system
derived a new case from other cases—can be exploited for many purposes in
CBR system maintenance such as assessing case confidence, explaining system
conclusions, and improving the ability of case-base maintenance to respond to
delayed feedback (as might arise CBR tasks such as design or loan decisions) or
case obsolescence (as might arise when predicting prices for a real estate domain).
In principle, provenance-based methods could also help focus maintenance effort
on knowledge containers beyond the case base, such as similarity information or
adaptation knowledge.

⋆ This material is based on work supported in part by the National Science Foundation
under Grant No. OCI-0721674.



Leake and Whitehead provided empirical illustrations of the value of prove-
nance information to guide maintenance in the case of delayed feedback, and
demonstrated that provenance information about adaptation history could help
to estimate case quality. The focus of these approaches is to use provenance to
identify low-confidence cases and how those potentially problematic cases arose,
in order to anticipate possible problems before the case is applied and, after feed-
back is available, to focus maintenance activities on cases or adaptation rules
which may have contributed to the problems.

This paper builds on that work, focusing on how provenance considerations
can enable more effective use of feedback at any time. It advances provenance-
based maintenance in three ways. First, it proposes and tests a new bidirectional
strategy for propagating case confidence, and provides a finer-grained examina-
tion of the use of provenance information to estimate case quality. Second, it
examines how initial case-base quality affects the benefit of provenance-based
feedback propagation. Third, it presents and evaluates a first study of the use of
provenance information to guide maintenance of case adaptation rules, a novel
area for CBR system maintenance. Experimental studies support the promise of
these new directions for exploiting case provenance information.

2 Bidirectional Feedback Propagation

When a CBR system derives new cases from the cases in its case library, their
provenance trace includes the cases from which they were derived and the adap-
tations used to derive them. Leake and Whitehead’s work suggested that propa-
gating feedback to related cases (as determined by adaptation history) provides
a computationally practical and effective way of exploiting feedback concerning
flawed conclusions. Their studies considered the effects of propagating feedback
either to parents of a case—the cases from which the case was derived—or to the
case’s children—cases which had been derived from it prior to the feedback be-
ing received. Both methods were shown to improve performance, but downward
propagation (to descendants) performed better in their tests [1].

To determine whether a bidirectional method could improve on both, we
developed the algorithm shown in Figure 2. When the system receives feedback
on a case, it propagates the feedback to the case’s ancestors and repeats any
adaptations to descendants (we will refer to this as repairing the case base).
An example of a case base with adaptation provenance is shown in Fig. 1(a);
Fig. 1(b) then gives an example of the propagation of feedback if the feedback
was given for “Case 4.” We note that adapting children to find solutions for the
problems of their parent cases is not always possible. However, in practice the
ability to adapt cases is often symmetric, and the algorithm assumes the ability
to perform such adaptation.

Two factors complicate the propagation process:

1. Repeated ancestors: A single case may appear more than once in the ancestry
trace.
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Fig. 1. Sample provenance and feedback propagation paths, beginning with “Case 4.”

2. Repeated descendants: A single case may appear underneath more than one
parent (e.g., for k-NN with k > 1).

Consequently, bidirectional propagation must address the risk of cycles and mul-
tiple paths.

To address the problem of repeated ancestors, the algorithm only traverses
the graph upwards to parents which have not yet been visited. Because the
search is breadth-first, this ensures that the parent receives feedback along the
shortest possible chain. By the heuristic of using chain length as a proxy for
amount of knowledge degradation during propagation (which has been shown to
give reasonable performance in some tests [1]), in the absence of finer-grained
information we expect this to be the most reliable feedback.

To address the problem of repeated descendants, the algorithm simply re-
calculates the effect of each adaptation path in the provenance trace. When
the same adaptation that was previously used still applies (e.g., for numerical
averaging methods such as used by k-NN), this correctly reflects the change
in each case’s contribution to the solution. In general, if changes to the cases
are small, we might assume that the same adaptations would apply, by the
basic CBR assumption that similar problems (in this case, adaptation problems)
should have similar solutions (in this case, adaptations). In domains for which
updates to a case may invalidate the adaptation previously applied to it, how to
handle propagation is an open question.

3 Estimating Confidence in Adaptation Rules

Because adaptation rules may be expected to provide somewhat approximate
results, some loss of solution quality might be expected over long adaptation
chains. Leake and Whitehead explored a very simple method for estimating case
confidence based on the provenance trace: to predict a degradation of case quality
proportional to the number of adaptations applied. Their experiments showed
that in the absence of other feedback on case quality, this criterion can be a
useful heuristic for choosing cases to maintain.



0: GiveBidirectedFeedback(Cf, Ct)
1: /* Let Cf be the feedback case and Ct be the target of feedback. */
2:
3: Replace(Ct, Cf )
4:
5: work← ∅ /* A queue of {target, source, direction} tuples */
6: parents← ∅ /* The set of parent cases that have been seen */
7:
8: /* Propagate feedback to the parents and children of Ct. */
9: for all p ∈ Parents(Ct) do

10: work.push({Ct, p, UP})
11: end for
12: for all c ∈ Children(Ct) do
13: work.push({Ct, c, DOWN})
14: end for
15:
16: while work 6= ∅ do
17: {f, t, d} ← work.pop()
18:
19: if d = UP ∧ t /∈ parents ∧ ¬IsReferenceCase(t) then
20: Replace(t,Adapt(f,Problem(t)))
21: parents← parents∪ {t}
22:
23: /* Propagate feedback to the parents and children of t. */
24: for all p ∈ Parents(Ct) do
25: work.push({Ct, p, UP})
26: end for
27: for all c ∈ Children(Ct) do
28: work.push({Ct, c, DOWN})
29: end for
30: else if d = DOWN then
31: Replace(t,Adapt(Parents(t),P roblem(t)))
32:
33: /* Propagate feedback to the children of t. */
34: for all c ∈ Children(Ct) do
35: work.push({Ct, c, DOWN})
36: end for
37: end if
38: end while

Fig. 2. Algorithm for bidirectional feedback propagation in a case-base, guided by
provenance information.



However, provenance information about adaptations may be used in another
way, to guide maintenance of the adaptation rules themselves. If a solution is
flawed, the flaw may result from flaws in the retrieval process (selecting the
wrong case(s) as starting point), flaws in the case(s) from which the solution
was derived (e.g., due to obsolescence), flaws in the rules used to adapt those
cases to the solution, or from a combination. If we assume that cases in the
case base are approximately correct and retrieval is generally reliable, erroneous
solutions can be attributed to problems in adaptation rules.

To explore the use of provenance to guide rule maintenance, we have devel-
oped a method to rank the performance of a system’s adaptation rules, assuming
that the cases to which they are applied are correct. Problem rules may then be
flagged for expert assessment and maintenance if necessary. In what follows, we
assume that a numerical error value can be assigned to any suboptimal solution.

Propagation approach: The rule ranking algorithm exploits a provenance trace,
which for each case records all of the rules invoked for a given adaptation. When
the system receives feedback about the performance of a solution in the case
base, it recursively assigns blame to rules. The propagation process follows the
same upward path as shown in Figure 1. However, feedback is not propagated
downwards to children; feedback only has bearing on the adaptations that di-
rectly led to the creation of the case through the case’s parents.

Blame assignment: The blame assignment process is inspired by back-prop-
agation in neural networks [6]. The feedback on an erroneous case is treated as
a training sample for a network, and each rule used in adaptation is treated as a
weighted edge. The weight is modified in response to the error determined from
feedback. The algorithm divides the local error evenly among all of the rules
(a possible future refinement would be to estimate the relative influence of each
rule). The algorithm then proceeds recursively through the ancestry (backwards)
as in backpropagation.

Despite the natural relationship to backpropagation, the differing tasks result
in a few differences:

1. Because the weights have no direct effect on the error of the system, local
errors do not converge towards zero as propagation proceeds. Consequently,
error weights tend to accumulate.

2. Unlike backpropagation, the algorithm does not visit all edges (rules) an
equal number of times.

3. Because a new case may arise from adaptation rules in complicated ways,
rather than from simple application of, e.g., backpropagation’s sigmoid func-
tion, blame assignment could require sophisticated reasoning.

For our purposes, difference (1) is unimportant: We are concerned only in ranking
rules by error levels, rather than in any specific error values. Difference (2) can be
addressed by normalizing the weights by the number of times that they have been
updated. The accumulation of error by a rule decreases confidence in that rule.
The lower the confidence, the worse the average performance of the rule. This



confidence information enables modifying or removing rules that are adversely
affecting the performance of the system.

Difference (3), concerning the transfer of error, is more difficult to address.
Because their is no canonical way to project backwards through the adaptation
to assign blame to the inputs, we have chosen the simple approach of assigning
a fixed proportion of the output’s error to each rule. The fractional coefficient,
or decay rate, reduces change to adaptation rule weights more distant from the
feedback case. The decay reflects the assumption that less is known about sources
of the error after it is passed backwards through an adaptation, and that it
consequently should have less effect on more distant weights. The full algorithm
is presented in Fig. 3.

0: GiveRuleFeedback(C, E)
1: /* Let case C be the target of feedback, E be the relative error of this case’s
2: solution, and let η be the decay rate. */
3:
4: work← ∅ /* A queue of {target, error} pairs */
5: work.push({C, E})
6: while work 6= ∅ do
7: {c, e} ← work.pop()
8:
9: /* Adjust the weights of all of the rules invoked. */

10: for all r ∈ Rules(c) do

11: rweight ←
“

1− η·e
|Rules(c)|

”

· rweight

12: rvisited ← rvisited + η

|Rules(c)|

13: end for
14:
15: /* Add the parents to the work queue. */
16: for all p ∈ Parents(c) do
17: work.push(p, η · e)
18: end for
19: end while

Fig. 3. Algorithm for learning adaptation rule quality from feedback and provenance
information. The result is a weighting reflecting each rule’s contribution to system
error.

4 Experimental Evaluation of Bidirectional Repair

To study the bidirectional feedback method, we performed experiments to ad-
dress two questions:

1. How does the benefit of bidirectional repair compare to that of repair directed
only to either ancestors or descendants?

2. When is provenance-based maintenance most useful?



For the second question, we focused on the effects of initial case-base quality
(measured by solution accuracy) on the incremental benefit of provenance-guided
feedback.

4.1 Experimental Design

Our system was developed using the Indiana University Case-Based Reasoning
Framework (IUCBRF) [7]. We extended IUCBRF to automate the tracking of
case provenance by maintaining a directed graph recording adaptation history
for cases in the case base and to perform the record-keeping needed for the
algorithms presented in this paper.

The first set of experiments tested the system using the Boston Housing
dataset and the Abalone dataset from the UCI Machine Learning Repository
[8]. The Boston Housing dataset contains 506 cases with attributes capturing
the quality of housing in the Boston area. This dataset includes an attribute
denoting the median value of owner-occupied homes, and the system’s task is to
determine home values. The Abalone dataset contains 4177 cases with physical
attributes for the Abalone, which are used to predict age.

For both datasets, the system used 3-NN retrieval with the similarity de-
termined by weighted Euclidean distance, for which feature weights were deter-
mined by a multiple linear regression on the given cases. The three retrieved
cases are adapted to the target problem by the scaling of a distance-weighted
mean. The adapted solutions are retained as new cases in the case base. Feedback
is given as the relative error of the solution.

In our trials, case bases were randomly populated with 100 cases, and the
system then tested on 200 problems randomly selected from the remaining set.
Each new solution was placed in the case base, with a case randomly selected and
removed from the case base after each iteration to keep case base size constant.
To evaluate the average accuracy during a trial, the system was tested by leave-
one-out testing with all problems from the original dataset. The absolute error
was measured, and the mean of these errors recorded as the mean absolute error
(MAE) of the case base.

4.2 Comparing Bidirectional Feedback to Prior Methods

In order to be able to compare results from [1], we recreated the experiment
from that paper. In this version of the system, we randomly choose a case to
give feedback after each problem is posed. We repeated this experiment for 1000
trials to produce the average performance shown in Fig. 4 and Fig. 5.

The results show that in all cases, the bidirectional propagation has the
lowest error compared to the previous best methods. With respect to the Boston
Housing dataset, the improvement is not as great as that with the Abalone
dataset. However, this is not entirely surprising because Leake and Whitehead
noted that propagation to descendants proved more useful than the ancestors
for that dataset, suggesting that the addition of propagation to ancestors might
have less benefit.
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Fig. 4. Mean absolute error of the Boston Housing system for bidirectional propaga-
tion, propagation to ancestors, and propagation to descendants.
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Fig. 5. Mean absolute error of the Boston Housing system for bidirectional propaga-
tion, propagation to ancestors, and propagation to descendants.



4.3 How Case Base Quality Affects Benefits of Provenance-Based

Propagation

An interesting question for any maintenance strategy is when it is likely to
be most useful. This experiment assessed how the benefit of the bidirectional
strategy depended on the original quality of the case base.

In this experiment, after selection of the original 100 cases and solution of 250
problems, the case bases were evaluated for quality of coverage. Twenty-five cases
were then randomly selected from the case base to have their solutions replaced
by correct feedback, simulating expert maintenance, with the case-base repaired
by bidirectional propagation. The quality of coverage was then recalculated to
determine to what degree the system was improved.

Figure 6 shows the results of this experiment as a histogram broken down
by the initial error in the system. This shows a clear trend towards increased
percent benefit with higher-error case bases.
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Fig. 6. Performance of the feedback propagation system for various ranges of initial
MAE values.

5 Experimental Evaluation of Adaptation Rule

Maintenance

In a second set of experiments, we investigated the ability of the provenance-
based algorithm of Figure 3 to identify low-quality rules, in order to guide main-
tenance. We explored the question “Can the rule ranking algorithm identify rules
whose removal will improve system accuracy?”

5.1 Experimental Design

Because this experiment required a domain for which a rich set of adaptation
rules was available, for it we selected a domain conducive to the generation of
adaptation rules. We extracted cases from the Homefinder.org website [9], which



contains real estate listings for Bloomington, Indiana, U.S.A.. The extracted
data contain a number of features useful for predicting the value of a home, as
well as the listing price for each home, which was the target value for the system
to predict. The collected data was filtered for erroneous values, and those cases
were removed. The final dataset—a snapshot of listings on February 22, 2008—
contains 333 cases.

To generate a large set of rules, we applied an algorithm based on the au-
tomatic adaptation rule acquisition work of Hanney [10], which also used a real
estate domain. Our algorithm produced rules that consider only a single feature
at a time, to simplify the implementation; more complex adaptations can be
achieved by successively applying multiple rules. We generated 272 rules of this
form.

As with our first experiment, for each run we populated the case base with 100
random cases with known solutions and tested the system with 200 problems.
Finally, 25 cases in the case base were randomly selected for feedback in the
form of the known solution. As feedback was applied, rule quality estimates
were updated according to the rule confidence algorithm.

We then considered two questions:

1. Does the algorithm properly identify problematic rules?
2. Are the rule confidence values useful for predicting case confidence of adapted

cases?

5.2 Identifying Problematic Rules

After each run, the lowest-ranked rules are removed from the system and the
trial is repeated with the same initial conditions. If the rule ranking identifies
bad rules, we expect that the removal of those rules will improve the system’s
performance. As a baseline, the same tests were performed removing random
rules.

The results of this experiment are shown in Fig. 7. Removing low-ranked
rules yields a significant performance improvement for the system. Given the
simple approach taken to generate rules, it is reasonable to expect a number of
low-quality rules. We observe that benefits are achieved for removal of even large
numbers of rules, though with diminishing returns as larger numbers of rules are
removed. The fact that random removals often provide benefit is initially surpris-
ing. Given that our rule generation procedure produces rules with a wide range
of quality, we hypothesize that this may result from occasional serendipitous
removal of very low-quality rules, but this and the discrepancy between benefit
of initial and later random deletions are subjects for further investigation.

Figure 8 shows the average marginal benefit of removing each rule. We hy-
pothesize that two factors affect the diminishing returns shown by the graph.
First, if the algorithm is performing as desired, the worst rules should tend to
be removed first; additional removed rules tend to be of higher quality. Second,
available feedback is limited, limiting the system’s ability to assess rule quality
for rules used infrequently. The improvement gained from removing rules based
on insufficient feedback is similar to the effect of removing random rules.
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Fig. 7. Percent improvement in relative error after removing rules considered worst
according to the rule confidence algorithm, compared to random rule deletion, based
on the mean of 1000 runs. The error bars represent 95% confidence intervals.
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Fig. 8. A plot showing the amount of improvement per rule by removing a given number
of worst rules. The plot shows 1000 trials of N rules being removed, where N extends
from 5 to 80 rules.



5.3 Using Rule Confidence to Predict Case Confidence

Leake and Whitehead’s [1] experimental test of provenance-based confidence
prediction treated all adaptations identically. Here we exploit the availability
of rule confidence information to explore a finer-grained approach, estimating
solution confidence based on the system-generated adaptation rule confidence
for the rules used to generate the solutions. After an adaptation, confidence in
a solution is adjusted by the mean weight of the rules used to adapt it. We use
the following confidence rule, where the parameter α controls how large of an
effect the adaptation confidence has on the solution:

SConfidence(c) = SConfidence(Parent(c)) ·





∑

r∈Rules(c)

RConfidence(r)

|Rules(c)|





α

SConfidence(c) denotes the confidence in a case c, RConfidence(r) denotes the
confidence in a rule r, and Rules(c) denotes the set of rules invoked to adapt a
case c.

In this test, to increase the quality of the rule weights, feedback is provided
to the system after every solution. For the experiment, we also modified the
system to retrieve five of the nearest neighbors of a case and adapt each one
to the target problem separately, returning the solution that has the greatest
confidence. We empirically determined an appropriate α – approximately 0.1.

We have recorded the mean absolute error of the solutions over the 100 test
cases, for 1000 random trials of the system. We observed an average of a 4%±1%
(95% confidence interval) reduction in the error of the system. We believe this
improvement, observed even with very simple methods, suggests the promise of
considering adaptation rule confidence when predicting case confidence. Future
work will refine the rule confidence estimation procedure.

6 Related Work

The notion of provenance tracking is receiving considerable attention in the e-
Science community, for tracking the derivation of scientific data [11]—and even
for case mining [12]—as well as in the semantic Web community (e.g., [13]).
Tracing the derivation of beliefs has a long history in AI as well, extending to
early work on truth maintenance systems [14].

Within CBR research, storage of meta-cases was proposed by Goel and Mur-
dock [15] to capture a CBR system’s reasoning for explanation, and reasoning
traces are used for introspective failure repair in Fox’s ROBBIE system [16].

Case-base maintenance has long been an active CBR area (see [17] for a
sampling of some of this work), but there has been little attention to the main-
tenance of existing case adaptation knowledge. Often, the adaptation component
of a CBR system consists of static expert-specified rules that do not change over
the course of a CBR system’s lifetime. Existing work has focused on augmenting



adaptation knowledge, rather than on identifying problems in adaptation knowl-
edge, as done in this paper. For example, work has explored mining adaptation
knowledge from pre-existing cases, as by Hanney and Keane [18], Craw, Jarmu-
lak and Rowe [19], and Patterson, Rooney, and Galushka [20]; other work has
focused on capturing increasing adaptation knowledge by acquiring adaptation
cases [21, 22]. Wilke et al. [23] propose knowledge-light approaches for refining
adaptation knowledge using knowledge already contained in the CBR system,
and Patterson and Annad [24] propose methods for mining adaptation rules;
McSherry’s on-demand adaptation using adaptation triples [25] is in a similar
spirit. This work also relates to Aquin et. al’s CABAMAKA system, which
combines case base mining with expert guidance [26]. Rial et al. [27] introduced
a method for revising adaptation rules using belief revision [28].

7 Conclusion

Case provenance provides a promising source for reasoning to guide CBR sys-
tem maintenance. This paper investigates the use of provenance to guide the
propagation of feedback, describing a bidirectional propagation method. It also
provides a first assessment of the case base characteristics for which such propa-
gation is likely to be useful, providing support for the hypothesis that the highest
percentage improvements arise for lower-quality case bases.

The paper also describes, to our knowledge, the first use of provenance in-
formation to guide maintenance of another knowledge container, the system’s
adaptation knowledge. It introduces an algorithm inspired by backpropagation
to assign blame to adaptation rules, identifying low-quality rules for revision
or removal. Evaluations suggest the promise of this approach and its potential
application to assessing case confidence. In future research we expect to de-
velop more refined methods for the evaluation of case and rule confidence and
provenance-based identification of problematic rules.
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