
Manual for BEAR

Big Data Ensemble

of Adaptations for Regression

Version 1.0

Vahid Jalali

David Leake

October 5, 2015

Abstract

BEAR is a case-based regression learner tailored for big data pro-

cessing. It works by applying an ensemble of adaptations for adjusting

instance-based estimations, where adaptations are generated automati-

cally by comparing pairs of cases in the local neighborhood of the input

query. BEAR builds on previous work on EAR, which has been shown

to improve regression accuracy but increase computational cost. BEAR

speeds up source case retrieval and adaptation generation by using local-

ity sensitive hashing for case retrieval, making the EAR approach feasible

for case bases with several millions of cases on a relatively small cluster.

This document reviews BEAR’s foundation and algorithm and provides

step by step instructions for building and using BEAR in practice.

1

Copyright c©2015 by Vahid Jalali and David Leake.
This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/). Distribution of
the work or derivative of the work in any standard (paper) book form is prohib-
ited unless prior permission is obtained from the copyright holder. Distribution
of substantively modified versions of this document is prohibited without the
explicit permission of the copyright holder.

1 Introduction

This document provides a brief overview of BEAR (Big data Ensembles of Adap-
tations for Regression) [1], a method that applies big data techniques to scale
up automatic adaptation knowledge generation and application with EAR4 [2],
a lazy learning method that works by applying an ensemble of adaptations for
regression, and provides step by step instructions for building and using the
source code of the BEAR method.

BEAR builds on two methods, EAR4 and locality sensitive hashing (LSH)
[3]. BEAR uses LSH for finding nearest neighbors of a case. Compared to
standard kNN, LSH has the advantage that it does not require examining the
distance of all cases to a case in order to find its nearest neighbors, in contrast,
it only requires applying a hashing method (or a family of hashing methods) to
each case. LSH sacrifices accuracy (to a limited extent) for speed and can be
useful in two scenarios. First, even on standard computational resources, LSH
enables finding nearest neighbors with less computation. Second, when cluster
resources and parallel computing (e.g. the MapReduce model) are available, the
computational gain will become even more significant compared to standard
kNN because cases can be distributed among different nodes based on their
hash keys, and cases in each node can be processed independent of cases in
other nodes.

BEAR’s source code uses the implementation of EAR4’s Weka plugin [4]
and Apache DataFu [5], to support case-based regression and locality sensitive
hashing respectively. The corresponding class from Apache DataFu used in
BEAR’s implementation is L2PStableHash, with a 2-stable distribution and
default parameter settings.

2 Background

2.1 EAR4

EAR4 is a case-based regression method that works by applying ensemble of
adaptions for adjusting the instance-based predictions. The generic process of
case-based regression is illustrated in Fig. 1. Given a new problem, case-based
regression generates a solution by retrieving a set of cases for similar problems,
adjusting the solution values of the retrieved cases (which we will call source
cases), and then combining the adjusted values to generate the final predicted
value. A brief synopsis of case-based regression and EAR4 is available in EAR4’s
manual [4], and additional material is available in research publications on EAR4
[2].

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a hashing method for decreasing the re-
trieval time of similar cases in d-dimensional Euclidean space. LSH achieves
this goal by applying a set of hashing functions for which the probability of
collision for similar cases is higher. Therefore, in contrast to nearest neighbor
search, LSH does not require comparing a case with other cases to find its near-
est neighbors, which results in lower time complexity of the retrieval process.

1

= case i

= problem description of

= solution of

Q = query

A adapts the pair (case, query) to

adjust the case�s solution to the query

= Combination of adapted values,

function({A(,Q), A(,Q), A(,Q)})

A

A

A

Q

CombineVals

Figure 1: Illustration of the generic case-based regression process [6]

BEAR applies an implementation of LSH for the MapReduce framework,
which enables parallel execution of tasks by distributing them among different
nodes in a cluster. Its LSH method uses Apache hadoop, a popular open source
implementation of MapReduce among both industrial and academic communi-
ties.

3 A Quick Sketch of BEAR’s Approach

BEAR is an implementation of case-based regression for big data. It uses LSH
to retrieve nearest neighbors of the input query and adjusts the values of the
nearest neighbors by applying an adaptation of ensemble rules. Ensemble rules
and nearest neighbors are both extracted from the local neighborhood of the
input query (determined by LSH). Adaptation rules are generated by applying
the Case Difference Heuristic [7] to generate rules based on comparing pairs of
cases.

The overall process flow of BEAR is depicted in Fig. 2. The query is
represented by a square and cases in the case base are represented by circles.
As illustrated, the query and cases are distributed among different reducers by
applying LSH. Next, based on the rules from the local neighborhood of the
query, a set of adaptation is generated which can be used to build the final
estimation.

For a research paper with details about BEAR’s underlying process, a dis-
cussion of related work, and comparative evaluations of BEAR’s performance,
we refer the reader to Jalali and Leake [1].

2

!"#$%"&'(' !"#$%"&')' !"#$%"&'*'

+,-"'.,-"'

)' !"#$%"&'*(' !"#$%"&')!"#$%"&'! # $%"&! #

012'

3#,45,678'9"8"&,678'

+,-"'!"5&:";,/'

!"#$%"&')'

!$/"'1"5'

<,/$"'=-6>,678'

?:8,/'17/$678'

Figure 2: BEAR’s process flow

4 How to Build and Use BEAR

4.1 Downloading Resources and Building EAR4 UDF

BEAR can be downloaded from BEAR package.1 The current version of BEAR
applies to domains with numeric input features and target values.

After uncompressing the folder you should be able to see the file structure
shown in Fig. 3.

1. The data folder contains sample training data (the initial case base)
(mpg1.data) and test data (mpg2.data) for the MPG domain from the
UCI machine learning repository [8].

2. The pigs folder contains the kNN and BEAR implementations in the
PigLatin language for Apache Pig.

3. The file shell contains the commands for compiling the Java UDF and
running the pig scripts.

4. The src folder contains the implementation of EAR4’s Weka plugin as a
Pig UDF in Java.

5. The jars folder contains the required jars for running the pig
script and compiling EAR4’s source code. I have also put

1http://sourceforge.net/projects/bear4/files/bear.zip/download

3

http://sourceforge.net/projects/bear4/files/bear.zip/download

Figure 3: BEAR’s package file structure

weka.jar, datafu-pig-1.3.0-SNAPSHOT.jar, pig-0.15.0-SNAPSHOT-
core-h1.jar for your convenience. However, you can download
these jar files from https://github.com/apache/incubator-datafu and
https://pig.apache.org/releases.html#Download respectively.

If you wish to modify the implementation of EAR4 in your application, you can
follow the steps below. Otherwise, you can use the existing myudf.jar in the
package and skip the remainder of this subsection.

To build myudf.jar, after modifying EAR4.java in the src folder, compile the
source by running the command shown in Listing 1. Next, build the jar file by
running the command shown in Listing 2.

Listing 1: Compiling EAR4

#!/ bin /bash
javac −cp /path/ to /weka . j a r :

/path/ to /pig −0.15.0−SNAPSHOT−core−h1 . j a r :
/path/ to /hadoop −2.6 .0/ share /hadoop/common/∗
/path/ to /myudfs/EAR4. java

Listing 2: Building myudfs Jar

#!/ bin /bash
j a r −c f myudfs . j a r /path/ to /myudfs

4.2 Running BEAR

BEAR’s implementation is adapted from the DataFu kNN implementation. The
pig script for BEAR uses EAR4 as a UDF to apply ensemble of adaptations for
adjusting nearest neighbors’ values.

4

https://github.com/apache/incubator-datafu
https://pig.apache.org/releases.html#Download

If you only wish to apply LSH to kNN, without applying BEAR,
that can be done by applying the “L2PStableHash” class source code at
L2PStableHash.java. For your convenience BEAR’s package includes a ver-
sion of kNN based on “L2PStableHash”’s source code. The basic functionality
of this version is identical to that of the original version from datafu, but it has
been modified as follows:

1. Train and test data are passed as input parameters to the code.

2. The number of input features is changed to the number of dimensions in
MPG domain.

3. The absolute differences between actual and predicted values by k-NN and
the final Mean Absolute Error of k-NN are printed out.

changed the code to print out the absolute difference between the actual values
and k-NN predictions and the final Mean Absolute Error of k-NN.

In order to run BEAR in local mode, follow the steps in Listing 3.

Listing 3: Running BEAR in local mode

#!/ bin /bash

export PIG CLASSPATH=\$PIG CLASSPATH:/ path/ to /weka . j a r

p ig −x local −f /path/ to /bear . p ig
−param t r a i n=/path/ to /mpg1 . data
−param test=/path/ to /mpg2 . data

To run the script in a cluster, remove “-x local” and use the hdfs path for
train and test data.

4.3 Tuning BEAR’s Predictions

BEAR’s script takes two input parameters (i.e. paths to train and test data)
as explained in the previous subsection. In addition to those input parameters,
BEAR uses three constants to tune the prediction process:

• k: determines the number of nearest neighbors to use for building the final
solution

• attrNo: the number of input features for the underlying domain. For
example, for MPG domain the value of attrNo is seven.

• m R: the number of rules to be applied per source case to adjust its value.

These constants are basically EAR4’s parameters and their values can be
set by the user. One way of tuning the values of these parameters is using hill
climbing. More details about these values can be found at [2].

5

https://github.com/apache/incubator-datafu/blob/master/datafu-pig/src/main/java/datafu/pig/hash/lsh/L2PStableHash.java

4.4 Tuning LSH

In addition to tuning BEAR by setting BEAR-specific parameters, users may
set parameters for the underlying LSH. The LSH used in BEAR has five pa-
rameters that are set in knn.pig and bear.pig, where “LSH” is defined. The first
parameter represents the number of input features of the test domain, which
obviously does not need to be tuned. The second parameter is a double value
representing the quantization parameter (also known as the projection width).
This is set to 100 as its default value, but it could be tuned for different do-
mains. The third parameter is “sRepeat”, the number of internal repetitions.
The fourth parameter, “sNumHashes”, is the size of the hash family (for k-NN,
this corresponds to the value of k). This parameter could also be tuned, but
because it is shared between BEAR (as k) and LSH, it need only be tuned once
(e.g as BEAR’s input parameter). Finally, the last parameter is “sSeed”, the
seed to use when constructing LSH family. Comments in the LSH code provide
some additional information on these parameters.

4.5 BEAR’s Output

BEAR’s script outputs the data in standard output by using the PigLatin dump
command. To instead store the results in HDFS, simply replace “dump” with
the “store” command. If you run bear.pig as explained above, it will dump
two sets of numbers; first, individual actual values of cases in the test set with
their predicted values by BEAR (these values have been used for calculating the
statistical significance of BEAR’s results compared to kNN), second, the Mean
Absolute Error of BEAR for the provided test and train sets. You can modify
BEAR’s script to output other statistics of interest.

References

[1] Jalali, V., Leake, D.: CBR meets big data: A case study of large-scale
adaptation rule generation. In: Case-Based Reasoning Research and Devel-
opment, ICCBR 2015, Berlin, Springer (2015) In press.

[2] Jalali, V., Leake, D.: Extending case adaptation with automatically-
generated ensembles of adaptation rules. In: Case-Based Reasoning Research
and Development, ICCBR 2013, Berlin, Springer (2013) 188–202

[3] Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing
the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing. STOC ’98, New York, NY, USA, ACM
(1998) 604–613

[4] Jalali, V., Leake, D.: Manual for EAR4 and CAAR weka plugins, case-
based regression and ensembles of adaptations, version 1. Technical Report
TR 717, Computer Science Department, Indiana University, Bloomington,
IN (2015)

[5] Hayes, M., Shah, S.: Hourglass: A library for incremental processing on
hadoop. In: Big Data, 2013 IEEE International Conference on. (Oct 2013)
742–752

6

[6] Jalali, V., Leake, D.: Enhancing case-based regression with automatically-
generated ensembles of adaptations. Journal of Intelligent Information Sys-
tems (2015) In press.

[7] Hanney, K., Keane, M.: Learning adaptation rules from a case-base. In:
Proceedings of the Third European Workshop on Case-Based Reasoning,
Berlin, Springer Verlag (1996) 179–192

[8] Blake, C., Merz, C.: UCI repository of machine learning databases (2000)
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

7

	Introduction
	Background
	EAR4
	Locality Sensitive Hashing

	A Quick Sketch of BEAR's Approach
	How to Build and Use BEAR
	Downloading Resources and Building EAR4 UDF
	Running BEAR
	Tuning BEAR's Predictions
	Tuning LSH
	BEAR's Output

