
When Experience is Wrong:

Examining CBR for Changing Tasks and

Environments?

David B. Leake and David C. Wilson

Computer Science Department
Indiana University, Lindley Hall

150 S. Woodlawn Ave
Bloomington, IN 47405, U.S.A.

fleake,davwilsg@cs.indiana.edu

Abstract. Case-based problem-solving systems reason and learn from
experiences, building up case libraries of problems and solutions to guide
future reasoning. The expected bene�ts of this learning process depend
on two types of regularity: (1) problem-solution regularity, the relation-
ship between problem-to-problem and solution-to-solution similarity mea-
sures that assures that solutions to similar prior problems are a useful
starting point for solving similar current problems, and (2) problem-

distribution regularity, the relationship between old and new problems
that assures that the case library will contain cases similar to the new
problems it encounters. Unfortunately, these types of regularity are not
assured. Even in contexts for which initial regularity is su�cient, prob-
lems may arise if a system's users, tasks, or external environment change
over time. This paper de�nes criteria for assessing the two types of reg-
ularity, discusses how the de�nitions may be used to assess the need
for case-base maintenance, and suggests maintenance approaches for re-
sponding to those needs. In particular, it discusses the role of analysis of
performance over time in responding to environmental changes.

1 Introduction

Case-based reasoning (CBR) solves new problems by retrieving stored cases en-
capsulating records of similar problems, and adapting their lessons to �t the
new circumstances. Case-based problem-solving is based on two central premises
about the regularity of the problem-solver's world (e.g., Kolodner, p. 8). The

? The authors' research is supported in part by NASA under award No NCC 2-1035.
The authors are currently on leave at the Computer Science Department of North-
western University and gratefully acknowledge its support. The authors also thank
the anonymous reviewers for their helpful comments. Copyright c1999 Springer{
Verlag. This paper appears in the Proceedings of ICCBR-99 but is not camera-
identical to the proceedings version. This paper is available from the archive at
http://www.cs.indiana.edu/~leake/INDEX.html.



�rst, which we call problem-solution regularity, describes the relationship be-
tween problem descriptions and solutions that assures that similar problems
have similar solutions. This regularity is needed to guarantee that cases for
similar prior problems are likely to be useful starting points for new reasoning.
The second, which we call problem-distribution regularity, describes the relation-
ship between new problems and those previously encountered. This regularity is
needed to assure that the system will have the cases it needs for the problems
it is called upon to solve.

The successes of numerous CBR systems bear out that for many tasks and
domains, appropriate similarity metrics can be devised to provide su�cient
problem-solution regularity, and that problem-distribution regularity is often
su�cient to enable e�ective CBR. Unfortunately, no matter how good initial
similarity metrics might be for a given task and domain, and no matter how
complete a case library a system may build up, changes in task and domain
characteristics may render obsolete prior similarity criteria or cases. Developers
have cited the problem of dealing with changing task characteristics as the reason
for rejecting CBR for some tasks (Talebzadeh et al., 1995), and the long-term
use of CBR systems makes such changes increasingly likely during a system's
lifetime. In order to perform as well as possible despite changing circumstances,
a CBR system must be able to evaluate how well the regularity assumptions
apply and to signal the need for maintenance or to invoke its own maintenance
strategies as needed.

This paper presents initial steps towards understanding and responding to
deviations from desired regularities. First, it de�nes measures that can be used
to calculate the amount of problem-solution regularity and problem-distribution
regularity that exist for the problem sequences that a system encounters. Second,
the paper discusses methods that may be used to respond to, and (ideally) to
exploit changing characteristics of the problems the CBR system solves and of
the environment in which its solutions must be applied.

In particular, the paper describes opportunities for maintenance strategies
that perform their changes based on analysis of problem-solving and case-base
characteristics over time|diachronic case-base maintenance strategies as de-
scribed in (Leake and Wilson, 1998). In general, determining the right response
to shifting context requires knowledge that is unlikely to be available from a
single snapshot of the CBR system's state. However, by examining trends in re-
trieval performance, system errors, and presented problems, the system may be
able to respond more e�ectively.

2 De�ning Regularities for Case-Based Reasoning

It is well-known in the CBR community that case-based reasoning depends on
two relationships: the relationship between similarity of problems and similarity

of solutions, and the relationship between prior problems (solved by the system
or provided as seed cases) and new problems. However, to our knowledge, there
are not yet precise de�nitions of what these relationships mean. Such de�nitions



would be useful to quantify and compare the relationships in order to understand
the e�ects of di�erent similarity metrics, case bases, and problem sequences on
the performance of di�erent CBR systems. Equally important, such de�nitions
give criteria for monitoring the appropriateness of a system's similarity criteria
and case library for dealing with current problems, in order to identify the need
for system maintenance. This section proposes working de�nitions as a basis for
future discussion and study.

2.1 Basic assumptions and de�nitions

Throughout our de�nitions, we will make some standard assumptions. First, we
assume that there is a �xed CBR system that processes problems in a problem
space P and that the solutions for these problems are elements of a solution
space S. Cases are pairs (p; s) 2 C = P � S, the set of all possible cases. The
system begins with a �nite \seed" case base B1 � C. As the system is used, it
processes a sequence of problems Q = pi, pi+1, ... , pj , where each pk 2 P for
k = i; :::; j. We de�ne the sequence to start with an arbitrary index because, as
we discuss in section 8.2, it is sometimes useful to consider the subsequence that
starts after some initial set of problems has been processed.

Adding to the case base: We assume that after each problem is processed and
the resulting solution has been evaluated, a new case with the problem and its
correct solution are added to the case base. This means that each problem pk is
processed using an updated case base Bk that includes the results of previous
processing. Note that this does not imply that the system can solve all problems
presented to it: The correct stored solution may be based on external feedback
if the system generates an incorrect solution or fails to generate a solution.

How problem distance guides retrieval: The CBR system uses a \problem dis-
tance" function PDist : P � C ! [0;1) to measure the distance between a
new problem and the problem description of a stored case. PDist(p; c) is zero
if p is the same problem solved by c. Given a new problem, the CBR system
retrieves the case closest to that problem according to PDist. However, there
is no guarantee that the case considered closest by this function will actually
be \close" to the problem in any useful way. This function simply reects the
similarity metric built into the system, whether or not it is useful.

How usefulness of retrievals is judged: The evaluator of the system uses a \real
distance" function RDist : P � C ! [0;1) to measure how far the solution in
a case is from the solution for a given problem. This function measures the use-
fulness of retrieved solutions according to the evaluator's goals for the retrieval
process, which may not be classic \similarity." For example, if the evaluator's
primary goal is to minimize the adaptation time required to generate a new so-
lution, \real distance" could be measured in adaptation time: RDist(p; c) could
be the time to adapt the solution from case c to solve problem p, with some up-
per limit on the amount of time allowed. RDist could also be de�ned to reect



other retrieval goals. For example, if reliability of adaptation is an issue, it could
consider cases \closer" to a problem if they can be adapted to solve the problem
using more reliable adaptations (regardless of adaptation time).

We stress that RDist does not necessarily correspond to any function within
the CBR system; it is an external criterion. For example, RDist might be cal-
culated o�-line to determine the retrievals the CBR system should have made.
Thus e�ciency of calculating the RDist function is comparatively unimportant.
It might be possible, for example, to calculate RDist for adaptability by simply
adapting all stored cases to the new problem and seeing which adaptation was
fastest.

In an ideal CBR system, the cases with the closest problems (according to
PDist) would also have the closest solutions (according to RDist). In prac-
tice, of course, the actual similarity metric is likely to di�er from the ideal (see
Smyth and Keane, 1996, for an empirical demonstration). In some situations the
deviations may be substantial enough to impair system performance.

2.2 De�ning problem-solution regularity

The goal of our de�nition of problem-solution regularity is to capture how well
PDist approximates RDist in practice. Because this depends on the speci�c
context in which the CBR system is solving problems, our de�nition explicitly
depends on:

{ the goals for retrieval (as captured by RDist),

{ the set of seed cases available to the system, and

{ the problem sequence that the system is called upon to solve.

As background for our de�nition, for any input problem, we can calculate two
sets of cases according to the formulas below. The �rst set of cases, which we
designate by CCP for Closest Cases to Problem, contains all the cases within a
case base B whose problem descriptions are closest to the input problem. The
second, which we designate by RCC for Real Closest Cases, contains the cases
whose solutions are within a user-speci�ed neighborhood of the optimal solution.
The size of the neighborhood is determined by a user-speci�ed non-negative pa-
rameter �.

CCP (PDist; p; B) = fc 2 BjPDist(p; c) = minc02BPDist(p; c0)g (1)

RCC(RDist; p; B; �) = fc 2 BjRDist(p; c) � minc02BRDist(p; c0) + �g (2)

If � = 0, RCC returns the optimal cases for solving the problem according to
the \real" distance metric.

We let Bk designate the case library used when processing problem pk. This
case library contains the initial seed cases and all the new cases added to the
case base processing problems before pk. Following the notion of precision in
information retrieval, we then de�ne:



SimPrecision(PDist; RDist; pk; Bk; �) = (3)

CCP (PDist; pk; Bk) \ RCC(RDist; pk; Bk; �)

CCP (PDist; pk; Bk)

This function measures the probability that a case returned as optimal by the
similarity function will actually be within � of an optimal case.1

Given these de�nitions, we de�ne the problem-solution regularity as the av-
erage SimPrecision over the problem sequence Q, starting with case base Bi,
as follows:

ProbSolnReg(PDist; RDist;Q;Bi; �) = (4)

�k=i;:::;jSimPrecision(PDist; RDist; pk; Bk; �)

j � i+ 1

When � is set to 0, this function calculates the average probability that a case
for a maximally-similar problem will actually be optimal. With non-zero values
for �, this function provides information about the average probability that a
maximally-similar problem (according to the system's similarity metric) will be
acceptably close to a maximally useful case, which determines the quality of the
similarity metric.

We note that when ProbSolnReg is used to compare the problem-solution
regularity of di�erent systems, RDist must be same for both systems. If di�erent
systems have di�erent \real" costs (e.g., because of di�erences in adaptation
capabilities), di�erences in the values of ProbSolnReg for the two systems may
not predict their relative performances.

2.3 De�ning problem-distribution regularity

The second regularity assumption of CBR is that new problems will tend to
resemble the problems addressed in previous cases (either in the seed case base,
or in cases learned during prior processing). We call this problem-distribution

regularity. It determines the likelihood that, as new problems are processed (and
new cases with their solutions are added to the seed case base), the case base
will contain cases for similar problems. When the case base does contain similar
problems, and when (in addition) there is su�cient problem-solution regular-
ity, this will result in retrieval of cases whose solutions are close to the actual
solutions according to RDist.

ProbDistReg calculates the percentage of cases in a problem sequence Q =
pi; :::; pj for which there are su�ciently close cases in the current case bases Bk

1 Because we assume that the system will reason from a single most similar case,
the IR notion of recall is not relevant here. It would be relevant if, e.g., the system
attempted to increase reliability by generating and comparing solutions starting from
multiple cases.



built up from the seed case base Bi, according to a user-speci�ed distance limit
� � 0.

ProbDistReg(Q;Bi; �) = (5)

1

j � i+ 1
��k=i;:::;j

�
1; If minc2Bk

PDist(pk; c) < �

0; Otherwise

Together, ProbSolnReg and ProbDistReg provide measures that describe
the performance of a CBR system. Individually, each one identi�es problems that
can be addressed by either re�ning the similarity metric or the solutions stored
in cases (for ProbSolnReg) or by adding to the case library (for ProbDistReg).

3 Perspective on Regularity-Related Research

In this section we consider the importance of the regularities and compare our
perspective to related research; in the following sections we look at its practical
application.

Work on Problem-Solution Regularity: The importance of problem-solution
regularity underlies the considerable attention to similarity criteria in CBR re-
search. Faltings (1997) uses probability theory to prove that for prediction tasks,
the assumption that a problem with similar features to an earlier one is likely
to have a similar solution is guaranteed to be true on average. The issue of how
to de�ne practical similarity metrics for particular tasks remains a central re-
search focus of the �eld, making it useful to have criteria for comparing di�erent
similarity metrics.

Recent CBR work has developed methods for making retrieval criteria explic-
itly reect the underlying \true" retrieval criterion that we have called RDist. A
primary example is adaptation-guided retrieval (Smyth and Keane, 1996), which
replaces the traditional similarity criterion with estimated cost of adaptation, in
order to retrieve cases that satisfy the goal of easy adaptation.

Work on Problem-Distribution Regularity: The key question of problem-
distribution regularity is whether the case library will contain the cases a sys-
tem needs to solve the problems it encounters. The importance of problem-
distribution regularity is recognized by developers of CBR applications, who
attempt to gather representative and well-distributed sets of cases for their sys-
tems (e.g., (Kriegsman and Barletta, 1993; Watson, 1997)).

Recent work on case-base competence (Smyth and McKenna, 1998; Zhu and
Yang, 1998) has developed methods for estimating the range of problems that
can be solved by a system with a given case-base. The purpose of this work is to
assure that problem-solution regularity is su�cient, to give an indication of the
likely system success rate, and to help identify regions of the case base in which
additional cases may be needed.



Problem-distribution regularity is closely related to case-base competence,
but our work di�ers from that work in two ways. The �rst di�erence concerns
the role of problem distribution. Analysis of case-base competence assumes a
uniform distribution of problems in order to make analysis more tractable.
Likewise, it is customary for empirical evaluations of CBR systems to use a
randomly-generated set of problems uniformly distributed in the problem space
(e.g., (Veloso, 1994)). However, our de�nition explicitly references the particular
problem sequence on which the behavior is measured. While we agree with Smyth
and McKenna (1998) that assuming a uniform distribution can provide a very
useful overall view, considering speci�c details of problem presentation order and
distribution can be useful as well. For example, the quality of a CBR system's
performance can depend strongly on the order of case presentation (Fox, 1995;
Redmond, 1992), making it desirable for the formulas to be usable for exploring
the e�ects of di�erent orderings. Likewise, as we discuss later in this paper, if
the system can identify \hot spots" in case-base accesses, examining problem
distribution regularity may make it possible to reorganize the case base to speed
likely retrievals, or to delete (or deactivate, e.g., by placing in secondary storage)
cases that are not being used.

Second, our de�nition of problem-distribution regularity depends on a user-
de�ned threshold for what constitute su�ciently similar stored cases, rather
than considering only whether the problem can or cannot be solved. Using a
user-de�ned criterion for whether a stored case is \close enough," rather than
simply whether some solution can be generated, is important when the quality
of solutions depends on the amount of adaptation performed, or when there are
changeable limits on the amount of e�ort that can be expended on adaptations.
For example, in some domains, available domain theories are strong enough for
local adaptations but are not su�ciently reliable for more substantial changes
(e.g., Cheetham and Graf, 1997).

Work on Case-Base Maintenance: Many researchers are examining issues
in case-base maintenance (CBM) for improving the performance of CBR systems
(for an overview, see Leake and Wilson, 1998). CBM research addresses issues
such as assuring that the cases in the case base cover the space of possible prob-
lems (Smyth and McKenna, 1998; Zhu and Yang, 1998) and deleting superuous
cases to improve space e�ciency or utility of retrieval (Smyth and Keane, 1995).
These do not address, however, how to maintain the case-base in response to
speci�c task needs|for example, to build coverage in precisely those areas that
tend to arise in current problems|or how to predict the need for future mainte-
nance from current problems, in order to proactively revise the case base before
problems occur. Salganico� (1997) has studied the problem of learning time-
varying functions in instance-based learning, and proposes a method based on
de-activating old instances when similar new ones are available, and selectively
re-activating those that are consistent with new data. Ideally, augmenting CBR
systems with the ability to detect regularity problems and respond to problem



trends will improve their ability to avoid future failures and organize their case
bases for e�cient access.

4 Calculating the Regularity Values

In order to apply the formulas to trigger maintenance, practical means are needed
to calculate their values. Because ProbDistReg depends only on the levels of sim-
ilarity between new problems and the cases retrieved to deal with them (which
are available as a byproduct of normal processing), ProbDistReg can be calcu-
lated easily.

On the other hand, calculating ProbSolnReg is problematic, because cal-
culating RDist requires complete information about the \right" retrievals. (If
this information could be calculated inexpensively at retrieval time, the system
could always make perfect retrievals.) Nevertheless, it is sometimes possible to
take advantage of information available after a problem is solved to estimate
whether the right case was retrieved. The ROBBIE system (Fox and Leake,
1995), for example, detects problems in its similarity criteria by �rst solving the
current problem, and then using the solution as the index for another retrieval,
to determine if the solution from another case is more similar to the �nal result.
If so, perfect similarity criteria would have favored that case, so the failure to
retrieve it shows a aw in problem-solution regularity.2

Alternatively, ProbSolnReg calculations could be done o�-line at times when
high processing cost is acceptable, to trigger o�-line maintenance to improve
future on-line performance.

5 Using the Formulas as Maintenance Triggers

The previous de�nitions provide a basis for judging the levels of regularity for
particular systems, case bases, and problem sequences. By monitoring the levels
of regularity and their changes, it is possible to identify needs for maintenance.
For example,

{ When problem-solution similarity falls below acceptable levels, it may signal:

� Failure of the similarity metric to capture features that have become im-
portant in predicting RDist for current problems (e.g, if a route planner
does not consider the direction of old paths when doing retrieval, and is
called upon to plan paths in a new area with many one-way streets).

2 This approach does not apply to all domains, however. For example, if solutions are
a single numeric value, the fact that a case in memory happens to have the correct
value may be coincidental. If a CBR system estimates the price of a bunch of carrots
based on the price of a bunch bought the week before, even if its estimate is wrong
it is probably not appropriate to adjust its similarity to consider the carrots more
similar to a light bulb that happens to cost precisely the correct amount.



� Changes in the problem-solving environment that require adjusting the
solutions that would have applied to the same problems in the past,
so that RDist itself has changed and PDist must be adjusted to be
consistent (e.g, if roads have been closed, blocking paths that would
previously have been successful).

{ When problem-distribution regularity falls below acceptable levels, it may
signal:
� Insu�cient case coverage of the current problems (additional cases would
increase the chance of having one available within the acceptable neigh-
borhood).

� Flawed or insu�cient adaptation knowledge (improving adaptation knowl-
edge would increase the size of the neighborhood of cases that is usable).

{ When problem-distribution regularity is high for a subset of the case base,
it may signal:
� A \hot spot" in the case base (which enables reorganizing the case base
to facilitate access to active regions, or deactivating cases from less fre-
quently used regions.)

6 Determining How to Respond: The Role of Diachronic

Analysis

Once a regularity problem has been found, it is necessary to select strategies
for responding. Normally, CBR systems consider only the current problem and
state of the case base when responding to processing failures (e.g., by revising
the indices for a case or storing a new case with the correct solution). However,
considering trends in problems may enable better response strategies. For ex-
ample, knowing that problem-solution regularity has dropped from acceptable
levels to a current unacceptable level is more informative than simply knowing
that the level is unacceptable, because a change in performance must be caused
by changes in either the problem distribution or the environment. For example,
if a system for estimating building costs consistently generates estimates that
are too low, that trend suggests that a general change is needed to prevent that
class of failures in the future.

One response strategy is to simply update the cases in the case base (e.g.,
increasing the recorded prices), but this may lose useful historical information.
It may also require monitoring the update history and ages of cases, in order to
make sure that all cases are updated properly. Another alternative is to keep the
values of cases unchanged, but to add a \lazy" maintenance rule to adjust case
solutions after they have been retrieved (Leake and Wilson, 1998)).

Leake and Wilson (1998) describe a class of maintenance strategies that col-
lect data over time, over a sequence of snapshots of system processing, in order
to identify trends in how case-base contents and usage are changing. They call
policies based on analyzing the performance of the case-base over time diachronic
maintenance policies. Diachronic analysis is useful, for example, for determin-
ing whether coverage problems|shown by low problem-distribution regularity|
should prompt the search for additional cases. If problem-distribution regularity



shows an increasing trend, showing that the cases being processed are �lling the
important regions of the case base, it may su�ce to simply let the normal case
learning process �ll the case base. However, if the level of problem-distribution
regularity is low and stable, or even decreasing, steps must be taken to increase
the coverage of the case library.

Diachronic analysis is also useful to �nd and exploit trends in problems pre-
sented to the case base. If the problems that the system must solve consistently
fall within a small neighborhood, it may suggest that the system should exploit
the locality of the \hot spot" by reorganizing the case base to make cases in that
region easier to access. In a distributed case base, cases in the hot spot are can-
didates for pre-fetching. If space limitations require that some cases be deleted,
for e�ciency reasons the system should also focus competence-preserving dele-
tion (Smyth and Keane, 1995) on regions other than the hot spot, in order to
minimize adaptation cost on likely problems by keeping the active regions more
densely populated with nearby cases.

Finally, diachronic analysis is useful for monitoring and guiding the mainte-
nance process itself: The history of maintenance operations applied will a�ect
choices of which operations should be applied. For example, if maintenance has
just added a large set of cases to the case base to improve problem-distribution
regularity, the choice of whether to search for still more cases should be deter-
mined by observing the e�ects of the new cases over some period of time, rather
than simply based on the value of ProbDistReg as soon as the next input prob-
lem is processed.

7 Tools for Trend Detection

Performing diachronic maintenance requires methods for detecting underlying
trends in sequences of values over time. Trend detection for numeric values can be
done by a number of statistical techniques. These include simple methods such as
linear regressionmodels that attempt to �nd the equation of the line that best �ts
the data as well as time series analysis techniques such as autoregressive moving
averages (ARMA) and autoregressive integrated moving averages (ARIMA). Re-
search in machine learning has studied \concept drift," in which hidden changes
in context over time cause learned experiences to become inaccurate (e.g., Sal-
ganico�, 1997). A number of techniques have been applied to concept drift prob-
lems in time ordered domains for learning hidden context (Harries et al., 1998;
Lane and Brodley, 1998), and could be applied to adjusting similarity criteria
when problem-solution regularity becomes insu�cient due to concept drift.

8 Two Examples: Error Trends and Hot Spots

In this section we illustrate the usefulness of trend-based reasoning for respond-
ing to drops in problem-solution regularity and to patterns in problem distribu-
tion.



8.1 Addressing Solution Error Trends:

As a simple example of the use of trend detection, we show how regression tech-
niques can augment a case-based price estimating system, in order to make its
predictions more robust despite ination. Trend-based corrections are triggered
by drops in problem-solution regularity: When the solutions predicted based on
similar prior problems are no longer close to the real solutions determined by
feedback to the program, maintenance is performed. The method we describe is
still primarily case-based, rather than regression-based: Detected trends inu-
ence case adaptation, but the primary information source is still cases.

As our case data changing over time, we selected a college summary from the
magazine U.S. News and World Report.3 The data we used included information
on 1302 colleges, with 28 features for each one (e.g., enrollment, student test
scores, etc.). The task was to predict tuition costs. Because multi-year data was
not available, we simulated the increase as a normal distribution of increases
around an annual ination rate.

We used the following simple strategy for detecting and responding to error
trends. The system records and monitors the percent errors between retrieved
cases and evaluations. A cumulative error level is maintained by summing suc-
cessive error percentages, with the expectation that accumulated percent errors
due to random uctuations (both positive and negative) will remain below a rea-
sonable threshold magnitude. If the activation level persists above the threshold
value for a speci�ed amount of time, the system triggers a statistical analysis
for possible underlying error trends. In the current system, the percentage error
trend is approximated by performing a simple linear regression analysis on the
sequence of error data. A maintenance rule is then installed that uses the com-
puted regression line to forecast the percentage error for the current year and
modi�es cases according to the predicted error value as they are retrieved.

Experiments used query samples of 5 to 20 probes from the case set for
each year over a 10 to 20 year span, selecting queries by two methods. The �rst
method constructed a random problem distribution by selecting query cases at
random. The second method constructed a highly regular problem distribution
by restricting the query population to a set of similar instances, according to
the system's similarity metric. The samples were used as probes in their respec-
tive years, over the varying year spans. The underlying annual ination rate was
varied in separate experiments between 2 and 5 percent for each year, which uc-
tuated according to a random normal distribution to represent yearly variations.
Average error rates were measured for the baseline (no learning), case learning
alone, maintenance alone, and combined case learning/maintenance. Each exper-
iment was repeated 10 times, each time re-selecting the query sample, to obtain
results on average.

While the results did not give a clear picture of how adjustments in individual
parameters a�ected the outcomes, a general picture did emerge. With a random
problem distribution, case learning performed better than the baseline, trend-
based maintenance performed better than case learning, and the combination

3 Available from http://lib.stat.cmu.edu/datasets/.



gave equivalent or better results. With the regularized problem distribution, the
combination performed best, followed by case learning, then maintenance, and
�nally the baseline. A representative trial with an ination rate of 2 percent
over 15 years and sample size of 5 queries/year gave the following results. The
randomized distribution showed average errors of 18 percent in the baseline,
17 percent in case learning, and 14 percent in both maintenance and combined
trials. The regularized distribution showed average errors of 18 percent in the
baseline, 14 percent with maintenance, 13 percent with case learning, and 12
percent in the combined trials.

The experiments point to some interesting observations. First, they suggest
that maintaining existing cases can be as e�ective as learning new cases, and that
augmenting case learning with diachronic maintenance can be bene�cial. Second,
it is worth noting that the individual trials of maintenance alone produced highly
consistent results, while the individual trials involving case learning uctuated
a great deal in producing the average. This may indicate that detecting general
trends is a more stable method of dealing with change over time than case learn-
ing. Third, we note that typical problem distributions will likely fall somewhere
between the extremes of uniform sampling (where maintenance strategies alone
were better than case learning) and highly focused sampling (where case learning
worked better). Consequently, more experiments will be required to determine
the interplay of the two along varying levels of problem-distribution regularity.

8.2 Addressing Hot Spots

A second potential use of trend detection is to respond to \hot spots" in the case
base. In practice, case accesses are often non-uniform. For example, a primary
motivation for the development of the GizmoTapper CBR support system for
Broderbund computer games was to aid the Broderbund help desk in handling
the increased queries it received soon after Christmas (?). The problem patterns
for any domain are likely to be strongly domain-speci�c, but if those patterns
can be detected automatically the system may be able to optimize access to
information that is likely to be in demand.

To observe query distribution patterns in a real-world information source,
we gathered data on accesses to Indiana University web pages for various on-
line information repositories. These pages provide academic information (e.g.,
requirements for the BA degree) as well as homework assignments, etc. A sam-
pling of access results for a year of logs are shown in Figure 1, with each band
reecting the total accesses to �les within the directory. (Numbers of accesses are
normalized to show the percent of maximum accesses per month from January
1998 to February, 1999. Patterns that might not have been expected (but that
are easily explainable) emerge. For example, department academics pages are
heavily accessed in the Fall (presumably by new students), but less frequently
accessed in the Spring, as students become familiar with policies, and seldom
in the summer. Pages for classes o�ered in Spring and Fall reect that in their
accesses. Temporal patterns are not always present|no pattern is apparent in



the \Types Forum" accesses at the front of the graph|but there appears to be
considerable regularity.

Fig. 1. Web page accesses by month.

Various methods could be used to detect or predict hot spots, such as clus-
tering on the problems processed, predicting problem distributions from a model
of the task the CBR system serves (if available), or collecting user pro�les that
associate users with particular access patterns. Once a hot spot has been hypoth-
esized, the problem-distribution regularity formula can be applied to measure the
adequacy of its coverage. Insu�cient coverage is a sign to examine the current
problem sequence for new hot spots. We are preparing an experiment to compare
di�erent hot spot detection strategies for di�erent input problem sequences.

9 Considerations for costs and bene�ts

The processes described here depend on processing steps that increase the over-
head of the CBR system, such as processes for trend detection and for reorganiz-
ing the case base in response to hot spots. More study must be done on the costs
involved, but there may be important mitigating factors. First, trend analysis
can be done o�-line, when the system is otherwise idle. Second, in interactive
CBR systems, cost and bene�t analysis must weigh not only the costs incurred
by the system, but also those avoided by the user. If trend analysis can, for ex-
ample, warn the user of environmental changes that render prior cases obsolete,
the real-world bene�ts may be substantial (e.g., for a realtor setting the price of
a house). This may counterbalance increased computation costs.



10 Conclusions

The de�nitions presented here are useful for three reasons. First, they delineate
the factors that a�ect regularity assumptions for CBR and their relationships|
that regularity is not a property of the system or world individually but of
the relationship between task, system, and the external world. Second, they
provide a quantitative criterion for comparing the performance of particular CBR
systems. Third, and most important for this paper, is that by giving standards
for measuring regularity, they also give standards for detecting changes that
require maintenance.

As CBR systems are more widely �elded for long-term use, it will become
necessary to monitor both problem-solution regularity and problem-distribution
regularity assumptions and to respond intelligently when they fail. This paper
provides a practical starting point for how to detect and respond to situations
in which the reuse of experiences goes wrong.

References

[Cheetham and Graf, 1997] W. Cheetham and J. Graf. Case-based reasoning in color
matching. In Proceedings of the Second International Conference on Case-Based

Reasoning, pages 1{12, Berlin, 1997. Springer Verlag.
[Faltings, 1997] Boi Faltings. Probabilistic indexing for case-based prediction. In Pro-

ceedings of the Second International Conference on Case-Based Reasoning, pages
611{622, Berlin, 1997. Springer Verlag.

[Fox and Leake, 1995] S. Fox and D. Leake. Using introspective reasoning to re�ne in-
dexing. In Proceedings of the Thirteenth International Joint Conference on Arti�cial

Intelligence, pages 391{397, San Francisco, CA, August 1995. Morgan Kaufmann.
[Fox, 1995] S. Fox. Introspective Reasoning for Case-based Planning. PhD thesis,
Indiana University, 1995. Computer Science Department.

[Harries et al., 1998] M. Harries, K. Horn, and C. Sammut. Learning in time ordered
domains with hidden changes in context. In Papers from the AAAI 1998 Workshop on

Predicting the Future: AI Approaches to Time-Series Problems, pages 29{33. AAAI,
1998.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo,
CA, 1993.

[Kriegsman and Barletta, 1993] M. Kriegsman and R. Barletta. Building a case-based
help desk application. IEEE Expert, 8(6):18{26, December 1993.

[Lane and Brodley, 1998] T. Lane and C. Brodley. Approaches to online learning and
concept drift for user identi�cation in computer security. In Papers from the AAAI

1998 Workshop on Predicting the Future: AI Approaches to Time-Series Problems,
pages 64{70. AAAI, 1998.

[Leake and Wilson, 1998] D. Leake and D. Wilson. Case-base maintenance: Dimen-
sions and directions. In P. Cunningham, B. Smyth, and M. Keane, editors, Proceed-
ings of the Fourth European Workshop on Case-Based Reasoning, pages 196{207,
Berlin, 1998. Springer Verlag.

[Redmond, 1992] M. Redmond. Learning by Observing and Understanding Expert

Problem Solving. PhD thesis, College of Computing, Georgia Institute of Technology,
1992. Technical report GIT-CC-92/43.



[Salganico�, 1997] M. Salganico�. Tolerating concept and sampling shift in lazy learn-
ing using prediction error context switching. Arti�cial Intelligence Review, 11(1-
5):133{155, 1997.

[Smyth and Keane, 1995] B. Smyth and M. Keane. Remembering to forget: A
competence-preserving case deletion policy for case-based reasoning systems. In Pro-

ceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,
pages 377{382, Montreal, August 1995. IJCAI.

[Smyth and Keane, 1996] B. Smyth and M. Keane. Design �a la D�ej�a Vu: Reducing
the adaptation overhead. In D. Leake, editor, Case-Based Reasoning: Experiences,

Lessons, and Future Directions. AAAI Press, Menlo Park, CA, 1996.
[Smyth and McKenna, 1998] B. Smyth and E. McKenna. Modelling the competence
of case-bases. In P. Cunningham, B. Smyth, and M. Keane, editors, Proceedings
of the Fourth European Workshop on Case-Based Reasoning, pages 208{220, Berlin,
1998. Springer Verlag.

[Talebzadeh et al., 1995] Houman Talebzadeh, Sanda Mandutianu, and Christian
Winner. Countrywide loan-underwriting expert system. AI Magazine, 16(1):51{64,
1995.

[Veloso, 1994] M. Veloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, Berlin, 1994.

[Watson, 1997] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise

Systems. Morgan Kaufmann, San Mateo, CA, 1997.
[Zhu and Yang, 1998] J. Zhu and Q. Yang. Remembering to add: Competence-
preserving case-addition policies for case based reasoning. 1998.


