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Abstract

Sequential control operators like J and call/cc are often found in implementations of the
A-calculus as a programming language. Their semantics is always defined by the evalu-
ation function of an abstract machine. We show that, given such a machine semantics,
one can derive an algebraic extension of the A,-calculus. The extended calculus satisfies
the diamond property and contains a Church-Rosser subcalculus. This underscores that
the interpretation of control operators is to a certain degree independent of a specific eval-
uation strategy. We also prove a standardization theorem and use it to investigate the
correspondence between the machine and the calculus. Together, the calculus and the
rewriting machine form a syntactic theory of control, which provides a natural basis for
reasoning about programs with non-functional control operators.

1. Deficiencies of the A-calculus as a programming language

“The lambda calculus is a type-free theory about functions as rules, rather than
graphs. ‘Functions as rules’ ... refers to the process of going from argument to
value, ....”[1, p.3] No other words can better express why computer scientists have
been intrigued with the A-calculus. The rule character of function evaluation comes
close to a programmer’s operational understanding of computer programs and, at
the same time, the calculus provides an algebraic framework for reasoning about
functions. Yet, this concurrence is also a major obstacle in the further development
of the calculus as a programming language since it is based on simplicity rather
than convenience.

The one and only means of computation in the calculus is the S-reduction rule
which directly models function application. Although this suffices from a purist’s
point of view, it is in many cases insufficient with respect to expressiveness and
inefficient with respect to the evaluation process. For example, when a recursive
program discovers the final result in the middle of the computation process, it
should be allowed to immediately escape and report its value. Similarly, in an
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erroneous situation a program must be able to terminate or to call an exception
handler without delay. We could easily lengthen this list of examples, but the thrust
is clear: functions-as-programs need more control over their evaluation.

The most general solution to the control problem within the functional realm
originated in denotational semantics® [4, 11, 19]. A program is evaluated by comput-
ing the value of its pieces and combining the results. When a particular component
is being evaluated, one can think of the remaining sub-evaluations and the com-
bination step as the rest of the computation or as the continuation of the current
sub-evaluation. The crucial idea is to write programs in a style where functions
can be used to simulate continuations. These programs always pass around and ex-
plicitly invoke (a functional representation of) the current continuation. They are
thus able to direct the evaluation process: they may decide not to use the current
continuation, to save it for later use, or to resume a continuation from some other
point in time. However, such programs look clumsy and are hard to design. It is
better to introduce linguistic facilities which give programs access to the current
continuation when needed. Programs using these facilities are “much simpler, easier
to understand (given a little practice) and easier to write. They are also more reli-
able since the machine carrying out the computations constructs the continuations
mechanically ...”2 Typical examples of such facilities in A-calculus based languages
are the J-operator [8, 9], label values [17], escape functions [16], call-with-current-
continuation (abbreviated as call/cc) [15], and catch and throw [20].

Non-functional control operators “provide a way of pruning unnecessary com-
putation and allow certain computations to be expressed by more compact and
conceptually manageable programs.” 2 If these operations make continuations

1 Indeed, the origin of the concept of a continuation can be traced back to A. van Wijngaarten who explained
in a discussion at the I[FIP Working Conference on Formal Language Description Languages, 1964 [18, p.24]
that “this implementation [of procedures] is only so difficult because you have to take care of the goto statement.
However, if you do this trick I devised, then you will find that the actual execution of the program is equivalent
to a set of statements; no procedure ever returns because it always calls for another one before it ends, and
all of the ends of all the procedures will be at the end of the program: one million or two million ends. If
one procedure gets to the end, that is the end of all; therefore, you can stop. That means you can make
the procedure implementation so that it does not bother to enable the procedure return. That is the whole
difficulty with procedure implementation. That’s why this is so simple; it’s exactly the same as a goto, only

called in other words.”
2 (. Talcott about the introduction of note into Rum, a lexically-scoped dialect of Lisp [21, p.68].
3 C. Talcott wrote this remark in the context of escape mechanisms, but the spirit of her dissertation makes
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available as first-class objects, as in Scheme or ISWIM, it is easy to imitate any
desired sequential control construct, e.g. escapes, error stops, search strategies as
applied in logic programming [7, 12], intelligent backtracking [5], and coroutining
[21]. Even though this is widely recognized, control operators are still regarded
with skepticism. Their addition seems rather ad hoc, because it only advances the
calculus as a programming language. On the algebraic side there are no rules re-
flecting the new operations; proofs of program properties can no longer be carried
out in the syntactic domain. They must be based upon a semantic interpretation
in terms of abstract machines or denotational definitions [11, 21].

In this paper, an expanded revision of two preliminary reports [2, 3], we show
that the A-calculus as an equational system can incorporate control operators and
that non-functional control may be characterized in a purely syntactic manner.
Starting from an idealized Scheme with an operational semantics, we design an
extended calculus-like system that captures the behavior of the additional control
operators. The theory is consistent in the sense that two different derivations start-
ing with the same term are confluent. Hence, it permits algebraic calculations in
the familiar style. A standardization theorem shows that the calculus defines a
programming language in its own right. Comparing the calculus and the program-
ming language semantics, we find that the two truly correspond to each other. The
standard computation function agrees with the evaluation function except for some
negligible differences and equality in the calculus implies indistinguishability on the
machine. Together with the machine semantics, the calculus provides a powerful
framework for reasoning about programs with non-functional control operators. We
exemplify and discuss this in more depth in the last section.

Since our base language has an applicative-order semantics, the resulting cal-
culus is an extension of Plotkin’s A-value-calculus. Although assuming familiarity
with the conventional A-calculus [1], we do not require understanding of Plotkin’s
variant [14]. Furthermore, we follow Plotkin’s plan [14] for the comparison of calculi
and programming languages, but, to keep the paper self-contained, we include some
appropriate explanations at key places.

2. Ac

The programming language Scheme [15] is the starting point of our language de-
sign. Of all the A-calculus-based languages, its continuation accessing operation,
call/cc, is independent of the rest of the primitive language concepts. For example,

clear that it is also applicable to jump operations in general [21, p.16].
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the J-operator [8] interferes with functional abstraction; the escape-construct [16]
introduces a second binding facility. Thus, call/cc, which simply takes an argument
and applies it to the current continuation, appears to be the ideal candidate. How-
ever, it too complicates the development of a calculus. When call/cc is used, it not
only transfers control over the current continuation to the program, it also installs
this continuation. This implies that a program has only partial control over the
continuation.

To avoid these problems, we introduce a variant of call/cc into the A-calcu-
lus term language. The next two subsections contain the extended syntax and its
semantics. In the third one, we illustrate how to program with this new facility. We
compare our example to a functional solution and briefly discuss the continuation-
passing programming style as a generalization of the latter.

2.1. Syntaz

The core of our programming language is the A-calculus term set A. For the sake
of simplicity, we concentrate on constant-free expressions. The extended language
A. includes two new types of applications: C- and A-applications. The formal
definition of A, is displayed in Definition 2.1. We adopt the notational conventions
of the classical A-calculus and write Azy.M for Az.\y.M, LMN for ((LM)N), and
also CM for (CM), etc. where this is unambiguous.

The notion of free and bound variables in a term M carries over directly from
the A-calculus. Terms with no free variables are called closed terms or programs.
We adopt Barendregt’s convention of identifying terms (=) that are equal except
for some renaming of bound variables and his hygiene condition which says that in
a discussion, free and bound variables are assumed to be distinct. Furthermore we
extend Barendregt’s definition of the substitution function, M|z := NJ, to A, in the

natural way:
zlz:=N|=N, ylz:=N]=y (z#y),
(Ay.M)[z := N] = (\y.M[z := NJ]),
(LM)[z := N] = (L[z := N]M[z := N])
and

(CM)[z := N] = (CM[z := N]), (AM)[z := N] = (AM[z := N]).

2.2. Operational semantics

The intention behind the two operations € and 4 can be explained informally. An
A-application represents an abort or stop operation, which terminates the program



A Syntactic Theory of Sequential Control

Definition 2.1: The term sets A, and A

The improper symbols are A, (, ), ., C, and 4. Var is a countable set of variables;
the symbols z, k, f,v, etc. range over Var as meta-variables but are also used as
if they were elements of Var. L, M, N,... are meta-variables for A,. The term set
A, contains

— variables: zif z €V

— abstractions: (Az.M)if M€ A, and z€ V;

— applications: (MN) if M,N € A., M is called the function, N is called the
argument;

— C-applications: (CM) if M € A,, and M is called the C-argument;

— A-applications: (AM) if M € A,, and M is called the #-argument.

The union of variables and abstractions is referred to as the set of values; U,V ...
are meta-variables for values.

A, the term set of the traditional A-calculus, stands for A, restricted to variables,
applications, and abstractions.

and returns the value of its argument. Whereas such an operation is commonly
found in traditional languages, C and its relatives are only available in A-calcu-
lus-based languages. The operation gives its argument complete control over the
current continuation, that is, C applies its argument to an abstraction of what must
be done in order to complete the program after evaluating the C-application. This
step is also called labeling—or capturing—of continuations with reference to label
values in more traditional languages. A continuation is tnvoked—or thrown to—by
applying it to a value, just like a function. The C-operation and call/cc only differ
in one point: call/cc implicitly invokes the current continuation on the value of its
argument; C leaves this to its argument. C is equivalent to call/cc and 4 and vice
versa:

(CM) = (call/cc(Ak.A(MFK))) and (call/ccM) = (CAk.k(ME)).

The formal semantics of A, is defined via an abstract machine. We started from
an operational interpretation of a denotational semantics in the style of Reynolds’s
continuations-as-data structures interpreter [16]. Such a machine has three state
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components: terms as control strings, environments for the evaluation of free vari-
ables, and continuation structures to remember the rest of a computation. The
elimination of environments by quasi-substitution and the replacement of continu-
ation codes by a special kind of context leads to an equivalent quasi-term rewriting
system [2]. Since this rewriting system is more appropriate for the derivation of a
calculus, we take it as the basis of our development.

The underlying term language A,—see Definition 2.2—of the C-rewriting ma-
chine is an extension of A, with a new set of values: continuation points. A con-
tinuation point is a p-tagged applicative context. An applicative context is a term
with a hole in it such that the path from the root of the term to the hole leads
through applications only, and every subterm to the immediate left of the path is a
value. We use C[ |,... to range over applicative contexts, C[M] to denote a term
which is like the context C[ | but with M put into the hole. Because the hole of
an applicative context is never within an abstraction, the filling-in of a hole cannot
capture free variables.

Definition 2.2: The C-rewriting system

The term language A,:

M:=z|(p,C[ ])| dzM| MN|CM | AM
Cll==[1]1vel ]Il M.

The C-transition function:

Cl(z.M)V] S CiM[z := V]| (C1)
CleM] +% M{p,C] ) (C2)

Cl(p, Gol WV]+% Go[V] (C3)
C[AM] - M. (C4)

The transition function of the C-rewriting system is displayed in Definition 2.2.
It performs a single evaluation step on an entire program. The unique partitioning of
a program into an applicative context and a C-redex determines the next rewriting
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step. This completely orders evaluations on the C-rewriting machine; it implies
that the evaluation of an application proceeds from left to right. The applicative
context of a C-rewriting step also represents the current continuation. For the
evaluation of a C-application the context is packaged into a continuation point, for
an A-application it is thrown away. The invocation of a continuation point installs
the associated control context, forgetting the current one. The evaluation function
for programs is the transitive closure of the transition function:

evalc(M) =N iff M +2," N such that NV is a value.

From the transition rules we can deduce that evalc is a partial function on programs:
it either yields a value or it diverges. If evale yields a value for a program, we say
that M has a value; we also generalize this to open expressions. The result is not
necessarily in A, since continuation points are a new kind of value; if it is in A, we
call it continuation-free.

The C-rewriting system defines an equivalence relation over A.. Intuitively two
terms are operationally equivalent if one can replace the other in any program
and the two resulting programs are indistinguishable with respect to evals. The
notion is due to J.H. Morris [13]; Plotkin [14] introduces the name “operational
equivalence.” Its formalization depends on two concepts: program contexts and
basic constants.

A program contezt is an arbitrary term with one hole. Unlike applicative con-
texts, it may capture free variables when filled with an open term. A set of values is
referred to as a set of basic constants if it has a decidable equality predicate. Since
A. does not contain constant names, we arbitrarily pick the set of normal-form
number representations in A, e.g., the Church- or Turing-numerals [1]. With this
in place, we can formulate

Definition 2.3. M,N € A. are operationally equivalent, M ~¢c N, iff for any
program context C[ | such that C[MN] is closed, evalc is undefined for both
C[M)] and C[N], or it is defined for both and if one of the programs yields a basic
constant, then the value of the other is the same constant.

With an operational semantics & la SECD-machine [9] operational equivalence
is rather opaque. Verifying the equivalence of two useful program pieces is almost
impossible. With the C-rewriting system this becomes simpler. The transition
function only uses one extraneous concept, namely applicative contexts, and this is
naturally related to terms. However, the system only accounts for entire program
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rewriting steps and these steps are completely ordered. There is no provision for
local transformations, independent of a context, nor for a simultaneous reduction of
redexes. In other words, the C-rewriting system is not quite the calculus-extension
one would like for A,. Before we consider this problem, we briefly illustrate pro-
gramming in A, and clarify its advantages.

2.8. Programming in A,

Many traditional programming languages contain linguistic devices that can be
programmed with continuation accessing operations like C. A typical example is
the function exit facility. It permits a procedure to return a result immediately to
its caller, avoiding recursive nestings. We demonstrate with a sample program how
this is achieved with C. Yet, this is only a trivial use of continuations; for more
interesting programs we refer the reader to the literature [6].

First we recall some common combinators and syntactic forms [1, 9]. The
function I = Az.z is the identity function; T = Azy.x and F = Azy.y stand for the
truth values true and false, respectively. Given truth values, the implementation
of the call-by-value version of the branching-form (if B M N) is B(Ad.-M)(\d.N)I
where d is a dummy variable. We also adopt Barendregt’s numeral system for the
Ac-calculus where 'n! represents the number n, zero? is the O-test predicate, and +
denotes the addition function for numerals. For the example we assume that a tree
is either empty or that it consists of a left-son tree, a number, and a right-son tree.
The functions mt?, Ison, rson, and num are the respective predicate and selector
functions.

Given these definitions, consider the function X* which takes a tree of numbers
and returns their sum:

B 2V
(if (mt? ¢) 'O
(+(mum ) (+(s(lson )) (s(rsont)))))

where Y, = Af.(Az. f(Az.222))(Az. f(Az.222)) represents the call-by-value recursion
combinator [17]. Designing a purely functional program that immediately returns
'0' upon encountering a tree element 'Q' is less trivial although this is only a mi-
nor modification to the original specification. With C, this new function Xj is a
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straightforward extension of the ¥*-function:

2 = A.CAkE(Y,(As. At
(if (mt? ¢) 0
(if (zero? (numt)) (kK'0')
(+(num)(+(s(lsont))(s(rson )))))))
t).

For a comparison we give an intenstonally equivalent definition of this function
in the A-calculus. By this we mean that the following function is like 3% in that it
performs a single-pass over the tree, adds numbers only if necessary and escapes as
soon as a '0! is discovered:*

A — X = A (Yo (As Atk (if (mt ? ) (K'0')
(if (zero? (numt)) 0’
(s(Isont)
(A.(s(rson t)(Ar.(k(+(num)(+11))))))))))
tI).

The internal loop of this program simultaneously passes around the current tree
and a function that can perform the rest of the A — Xj-computation. Initially this
simulated continuation is the identity function, indicating that A — X need only
return the result. At every junction of two subtrees, A— ¢ builds two continuations:
(Al.(s(rsont)...)), which represents the application of the function to the right
subtree, and Ar.k..., which combines the two partial results, passing them on to
another continuation. When the function encounters an empty tree, it applies the
simulated continuation to the intermediate result 0; when a O is discovered, the
continuation function is thrown away so that no more tree nodes are visited.

The function A—Xj is an optimized instance of a more general programming pat-
tern: the continuation-passing style alluded to in the introduction. All A-programs
can be restructured into this style via the following well-known transformation (cps)
[4, 14]:

[z] = Ax.kz, (cpsl)
[0\e.M)] =A<z [M]), (eps2)
[(MN)] =X&.[M](Am.[N](An.mnk)). (cps3)

4 There are alternatives to this version but they are all derivable from this function [22].
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To evaluate a e¢ps’ed program, it must be applied to the initial continuation I. If
the result of a program M € A is Az.N, then [M]I yields Az.[N] [14]. For A, we
must add two clauses:

[(CM)] =2c.[M](Am.m(\vk'.kv)I), (cps4)
[(AM)] = Ax.[M]L. (cpsb)

These equations reflect the formal definition of C and A: C transfers control over
the current continuation to the program, continuing the evaluation as if it had just
begun; A throws away the current continuation.

The existence of the [ - |-morphism shows that C- and 4-applications abstract
from recurring programming patterns in a functional language. Theoretically, one
can write programs in A, and translate them into A for further manipulations [11],
but this would defeat the purpose of abstraction. The correct solution is to extend
the A,-calculus with axioms for these semantic abstractions. The need for these
additional axioms is documented by the following two reformulations of (cps4) and

(cpsb5):

[CM] = Ax. (A" £ (A fe.(fOvr' () D)) (A S [M](Am.fmk))  (cpsd')
[AM] = As.(Ac &' (QAvew)) (A f[M](Am. fmk)). (cps5')

The two equations treat C- and 4-applications as if they were applications and
as if C and A were ordinary abstractions in A, that map to the underlined parts,
respectively. On the other hand, neither € nor A are the images of values in A, and
therefore, ordinary B-reduction cannot support reasoning with C- or 4-applications.
New axioms must be developed.

3. The ).-calculus

The traditional A-calculus may be perceived as an axiomatic theory as well as a
reduction system. The two views are equivalent. The theory can only prove terms
equal that are equal under the congruence relation generated from the S-reduction.
From a computational viewpoint the reduction system is more attractive since it
exposes the rule character of the calculus and its operational nature. Thus, it is quite
natural when we go the inverse direction in this section, taking the specification of
the C-rewriting rules as the point of departure and deriving the reduction system.

Once the calculus is derived, the next step is to investigate its fundamental
properties. Among these, consistency and standardization are the most important.
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The former means that equations in the calculus make sense, the latter implies that
the calculus defines a programming language. Together, the two theorems provide
a basis to tackle a correctness proof for the calculus.

3.1. Reductions and computations

A transition step in the C-rewriting system depends on partitioning the program
into a C-redex and an applicative context. For the Cl-step this dependency is super-
ficial, for the others it is inherent because of the sequential nature of continuations.
To establish a calculus, we must try to eliminate the context dependency as far as
possible. In the case of (C1) this is trivial and yields the B,-relation:

(Az.M)N S, M|z := N] provided that N is a value. (Bv)

It completely captures (C1) and the underlying ), -calculus.

Next we consider A-applications. According to (C4), an 4-application removes
its applicative context. Case analysis of applicative contexts leads to appropriate
notions of reduction. If an A-application AM is within an applicative context C| |
and to the left of some arbitrary term N, then first the N must be thrown away and
second, the rest of the context must be removed. This is a recursive problem: C[ ]
can be eliminated in favor of M by simply placing AM in the hole. Thus, C[(AM)N]
should be related to C[AM]. Since this is independent of the applicative context,
we can formulate our first notion of reduction for A-applications:

(AM)N 2% 4M. (AL)

The second possible case, where AN is to the right of a value M, is treated sym-
metrically:

M(AN) A2, AN provided that M is a value. (Ar)

This covers all but the base case of applicative contexts.

The empty context requires special treatment. An occurrence of 4 M at the root
of a term must evaluate to M, but this cannot be a proper reduction. One can only
apply this rule when the 4-application is not embedded in a term. Otherwise the
reduction system becomes inconsistent. Consider the expression (AF)TT. Applying
the Ay-step twice results in AF; the top-level rule then leads to F. When the top-
level relation is first applied to the embedded A4-application, (AF)TT goes to FTT
which in turn results in T. T would thus equal F and this is inconsistent. We
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therefore introduce this top-level relation as a computation rule and denote it with
a > instead of the customary —:

AM >4 M. (Ar)

When we complete the calculus later, we must add this computation rule at the
right place.

The considerations for C-applications move along the same line. We must satisfy
equations (C2) and (C3). Again, (C2) specifies that the context of a C-application
must be removed. Thus, we expect that the C-reduction rules must be designed
according to the position of CM in an applicative context and that they must be
similar to A-reductions. For example, the expression (CM)N must relate to a term
CX for some term X.

For the correct design of X we appeal to the intended semantics of the C-
application. The C-application must capture the current continuation and supply
it to its argument. Hence, if X is the next C-argument, it will be applied to the
continuation which stands for the rest of the context. This continuation must be
passed on to the original C-argument M. Furthermore, M’s context includes an
application with N as the argument. In other words, if we let f be the function
which must be applied to N, then the continuation of CM could be characterized
by «(fN) where  stands for the continuation of CX. Since the continuation gets
the function when it is invoked, it must be an abstraction whose parameter is f:
Af.k(fN). The term X, on the other hand, must be a function which accepts the
continuation k and passes it on to the term Af.x(fN). A first approximation of X is
M. M(Af..(fN)). This satisfies (C2) since it removes the context of a C-application
and applies its argument to some encoding of the context, but continuation points
also need to respect (C3).

The rewriting rule (C3) demands that, when a continuation is invoked, the
current context is removed. This means for A,-continuations that the first action
must be an abort action to remove the current context. Hence, Af.A(x(fN)) is the
correct continuation for M. The symmetric case where CN is to the right of a value
M is treated in a similar way and so we define the two notions of reduction for the
C-application

(CM)N & Caw. MO\ f.A(k(fN))) (L)
M(CN) Lk, CAk.N(Av.A(x(Mv))) provided that M is a value. (Cr)
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We still need to consider the empty context, i.e., the occurrence of a C-applica-
tion at the root of a term. The C-argument M must be applied to a function which
simulates the continuation-point (p,[ ]). The natural choice is Az.4z. Again, this
relation is not a proper notion of reduction but a computation rule:

CM >e M(\z.43). (Cr)

With this last rule we have derived the reduction and computation rules that
are intuitively needed to simulate the C-transition function, but defining notions
of reduction is only the first step. The next one is to build a one-step reduction
relation. A one-step reduction relation is the extension of a notion of reduction to
a relation which is compatible with the syntactic constructors. In other words, the
extended relation connects terms which are the same except for two subterms related
by a reduction rule. In our case four syntactic constructions must be considered:
abstraction, application, C-application, and 4-application. The two computation
rules cannot be included in this relation since they are not applicable to nested
subterms. Definition 3.1 contains a formal description of the one-step reduction
relation —,.

The final step in the development of a calculus is the construction of a con-
gruence relation from the reduction relation, i.e., an equivalence relation which
respects the syntactic constructors. Conforming to tradition, we do this in two
stages: —», is the transitive-reflexive closure of —,; its respective equivalence
relation is =,. This, however, is not yet the final goal. We still need to build in the
computation rules. Without computation rules it is impossible to find a standard
computation function which simulates the machine evaluation: occurrences of C-
and A-applications at the root of a term cannot be removed. We extend the reduc-
tion relation —», to a computation relation b, by adding the top-level relations.
Forming the symmetric, reflexive, and transitive closure of b, results in an equiv-
alence relation =, which establishes equality among terms according to reductions
and computations. All these concepts are summarized in Definition 3.1.

The relation =, determines the ) -calculus and we write )\, F M =, N if the
terms M and N are equal under =,. This calculus is not traditional in the sense that
it uses incompatible relations. The congruence relation =, is somewhat weaker but
more traditional and we consider it as a subcalculus. We also write A\, F M =, N
when we refer to proofs within the subcalculus.

3.2. Fundamental properties of the \.-calculus
The development of the basic notions of the ) -calculus raises a number of interest-
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Definition 3.1: The A.-calculus

Let ~S9="% y o, Ao,y In, y B, e one-step C-reduction —, is the

compatible closure of —:

M- N=>M-—,N:

M —, N = Az M —,)z.N;

M—N=>ZM —, ZN,MZ —,NZ for Z € A,;
M-—,N=CM—,CN;
M-—,N=>AM —_, AN.

The C-reduction is denoted by —», and is the transitive-reflexive closure of —»,.
We denote the smallest congruence relation generated by —», with =, and call
it C-equality.

The C-computation b, is defined by: b.=b¢ U by U —», . The relation =, is
the smallest equivalence relation generated by .. We refer to it as computational
C-equality.

ing questions. In principle, it makes sense to inspect every M-calculus-theorem on
its validity for the extended calculus. As mentioned at the outset of this section,
we concentrate on the question of consistency and the existence of standard reduc-
tion and standard computation sequences. The central results of this subsection
are captured in the consistency theorems 3.7 and 3.8, the definition of a standard
computation function (Definition 3.9), and the standardization theorem 3.10; the
reader may wish to concentrate on these points and to skip over the proof details
in this subsection for the first reading.

The consistency problem is equivalent to proving the confluence of reduction
and computation paths that start from the same place. In other words, we must
prove a classical Church-Rosser theorem for reductions and a diamond theorem for
computations. The proof of the Church-Rosser property for — is an application
of Martin-Lo6f’s method for showing the corresponding result for #,. Since our
presentation follows Barendregt’s rather closely, we only state the necessary lemmas
and demonstrate some of the major modifications to the proofs.
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First, we define a version of the parallel reduction relation — for —s. For the
proof of the standardization theorem we also define a notion of the length or size
of a parallel reduction: see Definition 3.2. Note that if M is a value and M —» N
then N is a value.

The following lemma shows the relationship between —», and —. Its proof
is obvious and omitted.

Lemma 3.3. —c—rC—rcC — R

Next we prove that in — unlike in — the expression M[z := N] reduces to
M'[z := N'] in one step if M and N reduce to M' and N’ in one step, respectively.
However, for the proof of the standardization theorem we also need to know that
this reduction is shorter than the one from (Az.M)N to M'[z := N'|. The two
proofs have the same structure and therefore—following Plotkin—we have merged
them:

Lemma 3.4. Suppose M —» M', N —» N', and N is a value. Then the following
statements hold:

(i) M[z:= N] —p» M'[z := N'|
(ii) SR = SnMla:=Nf—pMr[z:=N'] < SL = S(Ag.M)N—y M'[z:= N

Proof. The proof is a structural induction on the reduction M —» M'. We have
omitted the cases which are similar to the given ones.

(P1) M —» M'= M.
The result follows by induction on the structure of M. We demonstrate it
for the subcase M = CP = CP' = M.

(i) (CP)[z := N] = (CP[z := N]) —» (CP'[z := N']) since P is smaller
than M.
(ii)
SR = SP[z:=N]— P'[z:=N]
< sp—yp +n(z, P')sy—y v by inductive hypothesis
<n(z,P)sy—yn+1=s;  since P'=P.

(P3) M=(AP)Q —» M'= AP and P —» P'.

(1) (4P)Q)[z := N] = (AP[z := N])Q[z := N] —p AP'[z := N'] by
inductive hypothesis for P[z := N] —» P'[z := N'].

15
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Definition 3.2: The parallel reduction —.

The parallel reduction over A, is denoted by —». SM—yn or just s is the function
which measures the size of the derivation M —» N. n(z, M) is the number of
free occurrences of = in M.

(P1) M— M, s=0
P2) M—»M,N— N,
N is a value = (Az.M)N —» M'[z:= N'],
5= SM—ypr + n(a:,M")sN_?Nr +1
(P3) M —» M' = (AM)N —» (AM'),
s=sy—pm +1
(P4) N —» N',M is a value => M(AN) —» AN',
$=S8N_yN +1
(P5) M —» M',N —» N' = (CM)N —» CAe.M'(\f.A(x(fN"))),
S = SM—yM +SN—y N+ 1
(P6) M —» M' N —» N',
M is a value = M(CN) —» CAx.N'(Av.A(x(M'v))),
8 = SM—ypM +SN—yn +1

(P7) M —» N = Az.M —» Az.N,
§ = SM—y N

(P8) M —» N=CM —» CN,
S = SM—yN

(P9) M —» N = AM —» AN,
$§ = SM—yN

(P10) M —» M',N —» N'=> MN —» M'N’,
S = SM—yM' + SN—y !




(Pe)

(P9)
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(ii)
SR = 5P[x:=N]—7P'[x:=N'] 41
< sp—yp +n(z, P')s N—yn + 1 by inductive hypothesis

<(sp—p +1) +n(z, P)sy_n +1=sy.

M = P(CQ) —p M' = CXk.Q'(M.A(k(P'v))) and P —» P',Q —» @',

and P is a value.

(i) (P(CQ))[z:=N]=
Pz := N|(CQ|z := N]) —» CAk.Q'[z := N'|(Mv.4A(k(P'[z := N']v)))
by inductive hypothesis for P and @ and the fact that P[z := N] is a
value.

(i)
SR = SP[z:=N](CQ[z:=N])—4CAx.Q'[z:=N'|(Av.A(x( P'[z:=N"]v)))
= 3P[:c:=N]—7P'[:|::=N'] + 3Q[:c:=N]—7Q'[z:=N*] 41
< sp—yp + 0z, P)sv—y v + so—yo + (2, Q" )sy—yn + 1
by inductive hypothesis for sp(;.— Nj—y Plla:=N']

and $Q[z:=N}—Q'[z:=N'|
< (SP__,:pr -|—SQ_?Qf + 1) + n(m,M’)sN_?Nf +.1 =3;.

M=CP —» M =CP' and P —p» P'.
(i) (CP)[zx := N]= CP[z:= N] —» CP'[z := N'] by inductive hypothesis.
(i)
SR = SP[a:=N|— P'[z:=N"]
< sp—yp +n(z, P’)sN_Y n+ by inductive hypothesis
<sr. 0O

In addition to Lemma 3.4 we must show that two contractums of C;- or Cp-
redexes reduce to each other in one —x-step if the respective subterms do. Again,
the second and fourth claim of the following lemma are actually needed for the
standardization theorem:

Lemma 3.5. Suppose M —» M' and N —» N'. Then the following statements

hold:

(i) CAR.MOf.A(K(FN))) —» Che. M (AL A(K(FN")))
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(ii) sg < sp, where

SR = SCAk.M(AfA(K(fN)))—4Cre.M' (A F.A(K(fN")))
SL = S(CM)N—yCox. M'(Af.A(x(fN")))

And if M is a value then
(iii) CA&.N(Av.4(x(Mv))) —» CA.N'(Mv.A(s(M'v)))

(iv) sp < sp where

SR = SCak.N(Av.A(x(Mv)))—»Crx.N'(Av.4(x(M"v)))
SL = SM(CN)—4CAx.N'(Av.A(k(Mv)))*

Proof. We show (i) and (ii) by straightforward calculations:
(i) N —» N’ hence Af.A(k(fN)) —» Af.A(x(fN")),
M — M hence M(Af.A(k(fN))) —» M'(\f.A(x(fN))),
and Ax.(M(Af.A(x(fN)))) —» As.(M'(Af.A(s(FN')))),
and therefore CAk. M(Af.A(k(fN))) —» CAe.M'(Af.A(x(fN"))).

(ll) SR = SM—y M o+ SN—y V! < SM—y M’ + SN—y N +1=sg.
The proofs of propositions (iii) and (iv) follow the same pattern.]

Everything is in place to state and prove the diamond lemma for the parallel
reduction:

Lemma 3.6. The relation — satisfies the diamond property, i.e., if M —» L;
then there exists an N such that L; —» N forz =1,2.

Proof. Again, the proof is an induction on the structure of the reduction M —»
L;. We only discuss two cases. The rest of the possible cases are either similar to
some of the presented ones or can be found in Barendregt’s corresponding proof.
(P6) M = P(CQ) —» L = CAk.Qi(\w.A(k(Pv))) and P —» P,,Q —» Q,
and P is a value.
There are two possible cases for the reduction from M to L, since P is a
value and CQ is not:
a) Ly =P(CQ;) and P —p P, Q —» Q.
Note that P is a value. An application of Lemma 3.5 yields N =
CAk.Q3(Av.A(x(Psv))) where P; and Q3 are the terms which must ex-
ist for P —» P; and Q —» @Q;, for 1 = 1,2 according to the inductive
hypothesis.
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b) Ly = CAk.Qa(Mv.4(k(P3v))) and P —p P, Q —p Q.

Again, an application of Lemma 3.5 and of the inductive hypothesis
for P —» P,,Q —» Q;,7 = 1,2 produces terms P, Q3 such that N =
CAk.Qs(Av.A(k(Psv))).

(P10) M=PQ —p» L, = PQ,and P —» P,,Q —p Q.

This time we have to distinguish 6 possible subcases:

a) Ly = Ry[z:=Q;]and P = Az.R,R —» Ry,Q —» Q,, and Q is a value.
But then P, = Az.R;,R —» R;, and @, is a value. By inductive hy-
pothesis we must be able to find B3 and Q3 such that with Lemma 3.4
N = R;[z := Qs).

b) Ly = ARy and P = AR,R —» R,.

Again, P, = AR, and R —» R;. By inductive hypothesis we can find
an R3 such that N = AR;s.

c) Ly=AR, and Q = AR,R —» Ry, and P is a value.

This case is like b).

d) Ly = CAe.Ry(Af.A(k(fQ2))) and P=CR,Q —» @2, R —» R,.

This implies that P, = CR;, R —» R;. An application of the inductive
hypothesis and Lemma 3.5 shows that N = CAx.Ry(Af.A(x(fQ3)))-

e) Ly = CAk.Ry(Mv.A(k(Pv))) and Q = CR,P —» Py,R —» R,, and P
is a value.

This case is like d).
f) Ly = P,Q,. Trivial.O
Putting things together we get the Church-Rosser property for —:

Theorem 3.7. The relation — is Church-Rosser.

Proof. —, is the transitive closure of —». Since — satisfies the diamond
property so does —»..[0

An alternative proof of the above theorem is based on the Hindley-Rosen method
for showing that the Bn-reduction is CR. This requires checking that each reduction
is CR and that they commute with each other. In our case the second part would
be laborious since five (!) different rules are involved. The above proof also has the
advantage that it neatly ties in with the proof of the standardization theorem in
the second half of this section.

Based on Theorem 3.7 we can show that >, satisfies the diamond property which
is sufficient to establish consistency:

19



20 A Syntactic Theory of Sequential Control

Theorem 3.8 (Consistency). The relation b, satisfies the diamond property.

Proof. Assuming that M b, L; for ¢ = 1,2, we need to show that there exists a
term N such that L; >, N. We proceed by a case analysis on M >, L;.
(AT) MD-A Ly and M = (ALI).
Then there are only two possible cases for the step from M to Lo:
a) M—s», (4K,).
But then L; —», K, and we can take N = K.
b) Mb,q Ls.
Trivially, M = (AL,) = (AL;) and N = L, = L,.
(Cr) Muv¢ Ly and M = (CL,;). This case is just like (A7).
(—»e) M —», L.
Three cases are possible. Two of them are symmetric to the previous ones.
The third one is M —, Lo, but then we just apply the Church-Rosser
Theorem for —.0O0
The theorem establishes the following traditional corollary:

Corollary. If M =, N then there exists an L such that M >.* L and N b,* L.

With the Church-Rosser theorem in place, we can tackle the standardization
theorem. A standard reduction sequence for the A-calculus is usually defined with
respect to the position of redexes within a term and their residuals. Plotkin gives
an equivalent, but more elegant and intuitive definition. It requires the notion
of a standard reduction function which reduces the first—top-down and left-to-
right—redex in a A-term not inside an abstraction. This function is then extended
to standard reduction sequences by forming something like a compatible closure.
The extended syntax and the computation rules in the \.-calculus require a slightly
more complex construction. In particular, the constructions of a standard reduction
function and a standard reduction sequence must proceed in two stages such that
computation rules do not interfere with reductions. Nevertheless, the definitions
remain intuitive and are formalized in Definition 3.9.

The theorem which we want to prove can now be stated as:
Theorem 3.10 (Standardization). M b.* N if and only if there exists a C”-SCS
Ly,...,L, with M = L, and L, = N.

The proof is divided into two parts. First, we show that there is a stan-
dardization theorem for reductions. Second, we give a method for reshuffling .-
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Definition 3.9: Standard reduction sequences and functions

The standard reduction function, denoted by —,,, is defined by:

M~ N = M+, N;
Mv+—, M' => MN —s,. M'N;
M is a value, N —s,, N' = MN —s,, MN'.

Standard reduction sequences, abbreviated C-SRS-s, are defined by:

z€V = zisa C-SRS;
MN,...,N; is a C-SRS =
Az.Ny,...,Az.Ng,CNy,...,CN;, and AMN,,..., AN, are C-SRS-s;
Mv+—, N;, and M;,...,N; is a C-SRS = M, Ny,...,N; is a C-SRS
M,...,M; and Ny,...,Nj are C-SRS-s =
M\ Ny, ..., M;]N,,... » M;Ny, is a C-SRS.
The standard computation function for A\, extends —, to computations:

I—b>sc=b-c Ubg Uk, .

Standard computation sequences, C”-SCS-s, are defined by:

M,...,N. isa C-SRS = NVy,...,N; is a C”-SCS;
M+, Ny and Ny,...,N; is a C>-SCS = M, My, ..., N; is a C-SCS.

The notation — 3c+ and —> 3; stand for the transitive and transitive-reflexive

=] . e 1, " . . . B
closure of ., respectively; — ;. indicates ¢ applications of .

computation sequences into C”-SCS-s. The method is based on the first standard-

ization theorem and it utilizes the consequence of Theorem 3.8 that at the root of

the term computations and reductions are interchangable.
The standardization theorem for the reductions is:

Theorem 3.11. M —s, N if and only if there isa C-SRS Ly,...,L, with M = I,
and L, = N.

21
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Proof. The direction from right to left is trivial. For the opposite we follow
Plotkin’s plan for the corresponding theorem about the \,-calculus. First, the
sequence of — .-steps is replaced by a sequence of steps using the parallel reduction
—». This follows from Lemma 3.3. Then we show with the following lemma
that one can recursively transform the resulting sequence of — reductions into a
C-SRs.O0

Lemma 3.12. If M —» N; and MVy,. .., N; is a C-SRS then there exists a C-SRS
Ly,...,L, with M = L, and L, = N;.

Proof. The proof is a lexicographic induction on j, on the size of the proof M —»
N1, and on the structure of M. We proceed by case analysis on the last step in
M — N; and omit all the cases which are similar to the presented ones or which
are treated by Plotkin:
(P3) M=(AP)Q —» Ny = AP, and P —» P,.
But then we also have M +—,, AP and AP —» AP, by a proof which is
shorter than the proof M —» N;. Hence, by inductive hypothesis we find
a C-SRS from AP to N; and can then build the required C-SRS from M to

N;.
(P6) M = P(CQ) —» N = CIk.Qi(Mv.A(k(Pv))) and P —» P,,Q —» @,
and P is a value.

Again, M can immediately be reduced to CAx.Q(Av.4(x(Pv))) by 4. By
Lemma 3.4 we know that

C(Ax.(Q(Aw.(k(Pv))))) —» CAk.Qi(Av.A(k(Prv)))

by a proof that is shorter than the one for M —» N;. Therefore, by
inductive hypothesis, we can find a C-SRS from CAk.Q;(\v.4(x(Pv))) to
Nj; from which we build the required C-SRS from M to N;.

(P9) M=CP— M =CP' and P —» P'.
Here N; = CN] for all 7,1 < 7 < 5. Now consider P —» N,...,N}. P
is obviously smaller than M and we can apply the inductive hypothesis to
find a C-SRS from P to N;. Wrapping every element of this sequence in a

C-application yields the required reduction sequence.

(P10) This case does not differ from Plotkin’s corresponding case but it requires
that M —p» N +—,, L can be transformed into M +—,, K —» L for some
appropriate term K. This is proven in a separate lemma.O
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The next lemma shows that —» and +—,, commute as required by case (P10)
of the preceding lemma:

Lemma 3.13. If M —» M' —,, M" then there exists an L such that M —s,,*
L —» M".

Proof. Plotkin’s proof of his Lemma 8, section IV goes through with almost no
change. It is a lexicographic induction on the size of the reduction M —» M’ and
of M. It is divided according to the last parallel reduction step. Cases (P1) through
(P9) are routine with (P5) and (P6) relying on Lemma 3.5. The last case again
induces the need for another lemma and deserves some explanation.

For case (P10) we assume that M = PQ —» M’ = P'Q' because P —» P,
Q —» Q', and M' —,, M". We now proceed by an analysis on this standard
reduction step and consider two typical subcases:
a) M'=(AP))Q —, M" = AP).
So we have P —» AP]|. But then we claim that there exists an L such that
Pv+—* L — AP)] and L is an 4-application. With the rules for —,, we get
that (PQ) —.* (LQ) —,. L — AP; = M".
b) M' = (CP))Q ;. M" = CAx.PI(\f.A(k(fQ"))).
We proceed just like in a). Given that P —» CP] we again claim that there is
an K such that P+—,* K —» CP{ and K is a C-application. K and Q' form
the required L in the obvious way and the rest is similar to a). O

There are four propositions left that we have claimed or that we need through
our adoption of Plotkin’s proofs. All the necessary proofs are quite straightforward,
but for the sake of completeness we state the lemmas:

Lemma. If M —» (AN) where M is an application then there exists an L which
is an A-application and M +—,,* L —» (AN).

Lemma. If M —» (CN) where M is an application then there exists an L which
is a C-application and M .t L —» (CN).

Lemma. If M —» (Az.N) where M is an application then there exists an L which
is an abstraction and M +—,,* L — (Az.N).

Lemma. If M —» z where z is a variable then M " z.

Equipped with this first standardization theorem for reductions, it is easy to
finish the proof of Theorem 3.10, but before, we need to clarify one more fact:

23
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Lemma 3.14. If Ny,...,N; is a C-SRS where Ny = CL or N;, = AL then there
exists a 3,1 < j < k such that for all 1,1 < ¢ < j,N; —s,, N;.1, and for all
1,7 <t <k,N;, —, Niy1 and N; =5 Niyq.

Proof. A straightforward induction on k.00

And finally, here is the proof of the main result of this section:
Proof of Theorem 3.10. The proof is an induction on the number of computa-
tions, b¢ and by, used in the evaluation of M to N. If there are no computations
involved, we can form the C-SRS for reducing M to N and we have the desired
result. Now suppose there is at least one reduction of type >4. Then we have the
following situation:

M=M —.... — My =AM, >4 Miyy =M, >, ...0. M, = N.

By forming the C-SRS for the reduction from Mj to M; we get by Theorem 3.11
and Lemma 3.14:

M=M vy ...t—5e M= AM] — ... — M} = AM,;
bg Myy1 = M, >, ...0. M, = N.

Since —, and by are interchangable at the root of a term—see Theorem 3.8—we
can move the computation forward:

M= M, I—+sc...l—)scMEAM}'DAM—»C...—rcAdZDc...DCM“EN.

By inductive hypothesis we get a similar reduction sequence for the reduction from
M] to N. Since M >, M we can form the desired C>-SCS from M to N.

The case of b¢g-computations is treated similarly.00
This ends the investigation of the logical properties of the ) -calculus. The

two results enable us to show that the A.-calculus corresponds to the C-rewriting
system.

4. The machine-calculus correspondence

Following Plotkin [14] a calculus is correct with respect to a programming language
if the operational semantics of the calculus agrees with the original machine se-
mantics and if equality in the calculus implies operational equality. If a calculus
is correct, we say that it corresponds to the machine, thus underlining that calculi
and programming languages are pairs which determine each other.
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To prove the equivalence of the machine semantics with the operational rewrit-
ing semantics of \,, we show that the standard computation function simulates the
rules (C1) through (C4) of Definition 2.2. Since an evaluation may return a contin-
uation point as (part of) the result, we first construct a morphism from A,-terms
to A.-terms so that the C-rewriting machine can be properly unloaded. The ma-
jor task of this morphism is to encode contexts as terms in the same way as the
C-reductions do.

For the construction of the morphism it is advantageous to look at contexts
from the inside out, i.e.,

Cl J==[11cl M| CcV] ]I

The empty context in a continuation point means that the continuation was cap-
tured with a C-application at the root of the term. Hence, [ ] maps to A\z.Az.
If the hole is to the left of some arbitrary term M in some context C[ |, then a
C-application would use C;, to construct the next piece of the continuation. This
new piece would look like Af.A(x(fM)) where k stands for the encoding of C[ ]

and so we are led to the following definition of the morphism [ ], from contexts to

e [ 11, = Ae.Az

[Cll 1M]], = Af.A([C] 11.(FM))
[CIVI Tl = M. A([C] 1].(V0)).

The map from Q to @ replaces continuation points in Q by terms:
,Cl D =[C] Il., z= =z, Xa.M = X\z.M, MN = MN, CM = CM, AM = AM.

Given the morphisms, we can attempt to prove a simulation theorem for the
four C-rewriting clauses. The f,-step, i.e. (C1), and steps (C2) and (C4) are clearly
reflected in the definition of the standard computation function. In particular the
latter two rules were a major guide in the derivation of the reduction system and
the map [ ], was designed according to the resulting notions of reduction:

Lemma 4.1. For any applicative context C| ],

() cleM] —>,." M[C] 1., and

(ﬁ) C[AM] '_)3€+ AM '_b’.sc M
Proof. The proof is a straightforward induction on the structure of applicative
contexts. O

25
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We are, however, unable to show that the standard reduction function satis-
fies rule (C3). This transition rule requires that a continuation invocation removes
the current context and that it continues as if the old context—filled with the
argument—were the new term. The first condition is clearly implemented since
continuations immediately perform an 4-application. The second one causes prob-
lems. In the A,-calculus continuations are constructed to simulate the behavior of
contexts, but in the machine continuations are contexts. Thus, when a continuation
is to be captured after another one was invoked, the transition in the machine and
the one via the standard computation function diverge. The machine simply labels
the current context which contains the old continuation context; the standard com-
putation sequence encodes for a second time the term which simulates the former
continuation.

The nature of the problem is best illustrated with an example. Suppose the
continuation point (p, C[[ ]V]) is invoked on the value F:

(p,C[[ IVI\F += C[FV].

Furthermore, assume that the application FV evaluates to D[CP] after some S,-
steps. Then the C-transition reaches the term P(p, C[D| ]]). According to Lemma 4.1,
if K. = [C[ ]],, the corresponding reduction sequence in the ).-calculus begins
with:

[Cl VILF 5" E(FV).
The next few S,-steps for F'V are correctly simulated by the standard computation
function:

K,(FV)+5,." K.D[CP].
This last term also constructs a continuation—just like C[D[CP]]—but the contin-
uation encodes the term K, instead of the context C[ |:

KCD[CP] '_b"sc+ PEKL‘D[ ]]]c

Clearly, [C[D] ]]], is not equal to [K.D[ ]]. and thus, a naive version of the sim-
ulation theorem fails. The best we can hope for is that the standard computation
simulation of the C-transition function preserves a relation between continuation
points and terms.

From the above lemma and the example one may suspect that a continuation
point like (p, C[D] ]]) is related to the terms [C[D[ ]|], and [[C[ 1],D[ ]],- How-
ever, the situation in our example could recur many times. Instead of having two
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contexts composing a new one, we would then have several of them. In fact, we
must account for all possible finite decompositions of a given context into smaller
contexts, including the empty one. Each context can be encoded as a term by it-
self; each of these encoded contexts can be a part of a bigger context which is being
encoded. We have formalized this relation in Definition 4.2.

Definition 4.2: The continuation point-term correspondence

The relation s, basically compares continuation points in A, to terms in A,. It is
defined inductively over A, and applicative contexts (over A, )

(P, Ol Dyl [IC[ NG 1N, ---Cl ]I
for all n such that C[ | = Gi[C,]...C,[ ]...]] and C[ ]=,C;[ ] for all
t < n;
TRz, AT.PRyAz.P, PQ~,PQ, CPn,CP, AP, AP iff P~,P and Qw,Q.
For applicative contexts we add [ ]as,[ |

Note, we use the notation P ambiguously for both the result of mapping P to P
and a term in A, that is related to a term P in A, via =,

The relation =, in Definition 4.2 is implicit. It is well-suited to capture the dif-
ferent continuation representations from the above example, but it does not expose
the structure of the terms which stand for continuation points. A brief investigation
reveals that these terms are rather similar. If there is a proper term contained in the
continuation point-context, exactly one of the partitioning contexts covers it, and
therefore, each subterm appears exactly once in the representation. Furthermore,
empty contexts correspond to Az.Az and, putting the two observations together,
we see that the terms that are related to a continuation point are the same modulo
some occurrences of \z.Az:

Lemma 4.3. Let (p,C[ ]) be a continuation point. Furthermore, let P,V € A,
and P,V € A, such that P », P and V w, V. Define three term sequence
schema K}, K?, and K} for all representations of K., i.e., (p,C| |} ~, K.,
such that Ki = Az.4z, K} = M.A(K.(fP)), K} = M.4(K.(Vv)), and K;1 =
Az.A((Az.Az)(K;z)). Then, a continuation point is related to exactly one of the
three schema, i.e., for all 1 and K,
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(j) (pa[ ])R‘)P slr

(i)) {p, C[[ |P)w,p K7, or

(iii) (P, CV[ I~ K7
Furthermore, we can generalize this to

(p, CID[ I~ [KeD[ ], iff (p,C[ ), K,

Proof. First note that (i), (ii), and (iii) cover all possible cases of applicative
contexts. One of them must match a particular applicative context. Furthermore,
the proof of all three statements is naturally divided into two parts: one for 7 = 1
and one for ¢ > 1. The latter is the same in all cases. For the former we demonstrate
how to prove case (ii) as a typical example.

From the definition of a5, we know that for any context C[[ |P] and finite
number of contexts C;[ ]| which compose C[[ ]P], we have

(p, Ol 1P)w[ ... [[C[ I.Co[ 1. ... Cal 11

For the base case we assume that C,[ ] #[ |. Then, in (ii), Cs[ ] = D[[ ]P] for
some context D[ | since P is the term next to the hole in the continuation-point
context. This implies that

[---[C.[ .Co[ I.---DI[ TPl = ALA(L-..[IC[ N.Co 1. --- D[ .(fP)).
On the other hand, C[ | = C[... D[ ]...] and thus

(p, Cl D&yl - [[C[ 11.Col M- D[ ]I

This proves the case for ¢ = 1.

For the inductive case assume that the last ¢ > 1 contexts in this sequence are
empty, i.e. equal to [ |. By factoring out the first one, we get

[...[MC[ LGl 1L, ---[ 11 = A=A AL - [IC:[ NGl D ---1o2))
= Az A((Az.Az)([... [[Ci[ I.Co[ I, ---1.2))-

Thus we see that, as mentioned above, every empty context adds one term Az.4z.
Hence, (p, C[[ ]P])~, K;+1 and this concludes the induction step.

The generalization follows immediately. O

Lemma 4.3 indicates an important fact about the terms in the representation
set of (p,C[ ]): they are behaviorally indistinguishable in standard computation
sequences with respect to §,-steps. They invoke a continuation and, since continu-
ations always remove the current context, none of the Az.4z ever plays a role in an
evaluation.
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Proposition 4.4. Define three term sets as in Lemma 4.3 with the initial terms
Az. Az, A\f.A(K.(fP)), and v.A(K.(Vv)). Then we can show that
K},...,)z.4...(i-times) ...z,
KZ,...,Af.A...(i-times) ... (K,(fP)),
K2,...,Qv.4...(i-times)... (K,(Vv)),

are standard reduction sequences.

Proof. Clearly, K; = Az.AM for some (open) term M?. Hence,
Kiy1 —» Ax.A((Az.A2)((Mz.AM?)z))
—»e Az A((Az.Az)(AM? [z := 2]))
—»; Az A(AMY).

and all are standard steps. But, the three M?’s for the base cases are z, (K,(zP)),
and (K.(V'z)), respectively. O

Proposition 4.4 says that all continuations related to a continuation point be-
have similarly when invoked; the difference is the number of abort operations. Thus,
we can show that evaluations via the standard computation function and the C-
rewriting system only differ in their outcome. First, we prove that the standard
computation function mirrors C-transition steps as long as no continuation is in-
voked:

Lemma 4.5. Assume C[ |~,C|[ |, P~, P, and Un,U. The simulation of the rules
(C1), (C2), and (C4) via —>,, respects -~
(i) if C[(A2.P)U] +%s C[P[z := U]] then D|(\z.P)U] —>,. D[Pz := U] for
any applicative context D[ |;
(i) if C[AP] s P then C[AP] —>,." P;
(iij) if C[CP] v P(p,C[ ]) then T[CP] ~>.." PIC ]I.-

Proof. The first statement reiterates that S-steps are simulated independently of
the context. Points (ii) and (iii) are consequences of Lemma 4.1. O

Things get more complicated when a continuation is invoked. The standard
computation sequence contains a series of auxiliary moves in order to simulate the
jump to a different context in the C-reduction sequence. Since proper simulation
steps are interspersed in this detour, it is impossible to prove a corresponding lemma
for (C3). However, a direct proof that continuation invocations are correctly im-
plemented by the standard computation function is possible:
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Lemma 4.6. Suppose (p,Co[ |)~,Ko, V=,V, and Un,,U. Then,

Clip, Go W]+ S U i ClKV] =2, T,

Proof. The condition C[ ]5,C| | is unnecessary for the antecedent since a con-
tinuation immediately performs some A-applications.

The equivalence is proved by an induction on the unique number of steps, n, in
the +Zs-reduction sequence from C[(p, Co[ ])] to U. We proceed by case analysis
on the structure of Co[ |:

(apC1)Cy[ ] = ]: This case is trivial. It implies that

Ky = K; =\z.4z, or
Ky = Ky =2z A((Mz.Az)((Az.Ax)x)), ete.

In any case, we have

(p:CD[ ])V ’i} V and KDV ’_E*sc+ v

(apC2)Cy[ ] = DI[ ]P] for some A,-applicative context and term P. Now we know
from Lemma 4.3 that

Ko = K1 = \f.A(Kp(fP)), or
Ko = K> = Mz A((Az.Az)( K z)), ete.

where (p, D[ ])V=,Kp and Pw~,P. The two reduction sequences start out
with
Cl(p, Co[ V] += D[V P]

and
C[KV] —>,." Kp(V D).

Next, we consider the possible evaluations of VP and V P. The previous
lemma reassures us that as long as the rule (C1) is used the context plays no
role and, more importantly, the relation =, is preserved. The first transition
step which does not conform to (C1) is the distinguishing criteria for the
rest of the reduction sequence. Since this sequence is finite, four cases must
be analyzed:
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VP "g":m) W where W is a value. This means that VP —5,. W and
we have the following development for the C-transition:
DV P D,
For the one according to —,. we get
Kp(VP) 5,  KpW.
By assumption we know that
DW]+S" U with m< n—2.

From the definition of +<+ we see that,
1

c m . c m+
DW]— Uiff (p,D] \WW+—  U.

Thus, we can safely replace D[W] by (p, D[ |)W since m+1<n—1.
But note, (p, D[ ])~,Kp and so, by inductive hypothesis, we get the
desired conclusion.

vp 'i’zm] E[AQ] and VP - E[AQ)] for some term Q and applica-
tive context E[ ]. Comparing the two reduction sequences

DIV PSS DIE[4Q) S @

and

KD(Vﬁ '_b*sc‘ KDE[ﬂo] '_D'*sc‘ @:

we see that both continue with related terms. From this point on, two
developments are possible: the rest of the sequence either uses the (C3)
rule or it doesn’t:

bl) If Q +%" U does not use (C3), then according to Lemma 4.5
Q +—>,, U is immediate.
b2) Suppose (C3) is used a first time. That means, that

Q+5 Fl(p, By W]
and also by Lemma 4.5 that
G ’_D’sc‘ ?[KFW
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such that (p, Fo[ ])=6,Kp. Since the reduction sequence is at least
one step shorter, we can now apply our inductive hypothesis and
this finishes case b).
c) VP »—6;»(01) E[CQ] and VP +5,,” E[CQ]. The reduction sequence
according to —,, continues as:
Kp(VP) 5.’ KpE[CQl . QIKDE] I.-

The transition rule (C2) accomplishes the capturing of this continuation
in one step:

DIV P} DIEICQ] == Q(p, DIE] 1))
By assumption (p, D[ |)=,Kp and, hence, (p, D[E[ ||)~,[KpE[ ]] by
Lemma 4.3. The rest of this subcase is as in b).
d) VP+5 oy El(p, Bo| )W]and VP +5,." E[KpW) with (p, Eo[ )~ Kp.
This is an instance of the inductive hypothesis and the case (apC2) is

finished.

(apC3)Co[ ] = D[P] ]] for some A,-applicative context and value P. Again, the
respective continuations are characterized by K; = Av.A(Kp(Pv)), ete. The
two reduction sequences immediately arrive at the same constellation as in
(apC2):

Cl(p, Co[ V] +* DIPV]
and
ClK V] >, Kp(PV).
The rest is analogous to the previous case. O
Putting the previous two lemmas together, the following theorem is obvious:

Theorem 4.7 (Simulation). For any program M € A., values V, V such that
Ve,V
& 3 R

M— VifM—, V.
Since V&,V implies V =V for V € A., the theorem can be specialized:
Corollary 4.8. For any program M € A, whose result V is continuation-free,

* =
M ViEM-S, V.

A more general consequence is that eval is only defined if the program is equivalent
to a value:
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Corollary 4.9. For any program M € A, there exists a value V such that \, F
M =,V iff evalc(M) is defined.

Informally, these results mean that the C-machine is characterized by a standard
computation function (and sequence) of a calculus modulo some syntactic difference.
In order to eliminate this difference, we would have to change the standard reduction
function in such a way that a term K(CM) evaluates to MK for a continuation K.
From the above definition of [-], one can see that recognizing terms as continuations
is possible. But one could easily construct such a term K by hand and then the
normal evaluation sequence would be preferable: without knowing the history of a
term, it is impossible to know when to apply the new rule.

Although the difference cannot be eliminated, it is not stringent. The result
of a batch computation is generally expected to be a basic constant and then,
Corollary 4.9 assures us that we get the correct result back since we encode these
values in A. Otherwise, if a non-basic value is the result, a sensible interpretation is
impossible because these values represent machine behavior. On the other hand, if a
machine is used interactively where intermediate results are saved, the user can only
be interested in getting such values back for potential future use. In this case we are
safe because of Proposition 4.4. All terms that are related to a continuation point
are behaviorally equivalent. Thus, we can assume that evals and the operational
semantics of A, are equivalent.

A disadvantage of the above theorem and corollaries is their dependence on the
standard computation function of the calculus. One would prefer to interpret terms
in a less operational way using the equivalence relation instead. Traditionally, one
thinks of terms as functions from some set of basic constants® to basic constants.
A program is equivalent to a basic constant and hence, it is a null-ary function.
Following Morris [13] and Plotkin [14] we define two interpretations of terms. For
all n > 0, the calculus interpretation of a term M is the function

15 ={(M,...,No,V)|A + MN, ... N, =, V}

where the INV; and V' are basic values. The machine interpretation of a term M is
the function

M2, = {(My,...,N,,V)|evalc(MN; ... N,) = V}.

5 For the following two theorems we must assume that constants are represented by an equivalence class
of terms, the normal form being the typical representative. Alternatively, we could have introduced constants

into A., but that would have complicated the treatment of fundamental properties.
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Given these interpretations, the correspondence of the C-machine to the \,-calculus
is independent of a standard computation function:

Theorem 4.10. For any program M in A., its calculus and machine interpretation
are the same for all n > 0:

In =M.

Proof. The theorem is a consequence of the Church-Rosser Theorem, Corollary 4.8,
and Corollary 4.9. O

Theorem 4.10 essentially says that the machine and the calculus interpret a
program as the same function. Given that the classical A-calculus is for reasoning
about the equivalence of these functions, the question naturally arises what proofs
in A\, mean.

Since the relation =, is not a congruence relation, it is clear that M =, N does
not mean that M}, = M7 for any n > 0. The relation =, only compares programs
that are already supplied with all their input arguments. Intuitively, the equivalence
relation =, equates the global control intentions of programs. The subrelation =,
is more like =,: it compares the functionality and local control structure of terms.

The question generalizes to what equality in A, means for open expressions, i.e.,
whether equality is preserved under all possible interpretations [13]. Put differently,
we are asking whether equality in the calculus implies operational equality. From
the above discussion about =, and =,, we know that only =, implies operational
equivalence. For =, we need to make sure that the terms behave equivalently in all
cases, then it also implies operational equivalence:

Theorem 4.11. For M, N in A,,
(i) if \c+ M =, N, then M ~¢ N, and
(ii) if X, F C[M] =, C|N] for all applicative contexts C[ |, then M ~¢ N.

Proof. The proof of (i) is easy. It is essentially a transcription of Plotkin’s corre-
sponding proof for the A,-calculus.

Part (ii) deserves some elaboration. Assume the hypothesis and without loss of
generality assume that M and N are in A, proper. Let D[ ] be a context such that
D[MN] is closed. Now, suppose that evalg(D[M]) is defined and, furthermore,
that it is a basic constant. By Theorem 3.10 and Corollary 4.9

A. F D[M] =, evalc(D[M]).
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Depending on the role of the fill-in term during the evaluation, we have to
distinguish two cases. It is possible that the term in the hole is never a direct
component of a standard redex. Then it gets thrown away since the result is a basic
constant. The conclusion is immediate. Otherwise, at some point a closed form of
M or N is an immediate component of some redex in some applicative context. But
note, A, F C[M] =, C[N] implies A, - C[M[z := L]] =, C[N[z := L]] for all values
L. Therefore, with the necessary generalization to multiple substitutions, we have

A b evalo(D[M]) =, evalo(C[M[Z := LJ]) 2, evals(C[N[Z := LJ)).

Hence, by the Church-Rosser theorem, D[M] and D[N] produce the same result. O

The inverse of both statements is false. This is inherited from the )\,-calculus
for which Plotkin has already shown that it is consistent but not complete with
respect to ~¢.

The second point of Theorem 4.11 is important. Together with the above theo-
rems and corollaries it yields an interesting system for dealing with continuations.
The theorem implies that it is sufficient to consider all applicative contexts instead
of program contexts for behavioral considerations. Theorem 4.7 and Corollary 4.8
provide the basis for using the context rewriting rules in conjunction with the calcu-
lus reductions; this is helpful when reasoning about redexes in arbitrary applicative
contexts. In the last section we briefly discuss some possible applications of this
theory.

5. Reasoning with the ) .-calculus

In the preceding sections we have shown how the A-calculus can be extended to a
control calculus. The resulting system is correct with respect to the C-rewriting
semantics which in turn is equivalent to a classical operational interpretation of a
denotational semantics. Together, the two characterizations form a syntactic theory
of control. The predominant use that we perceive is for symbolic manipulations of
programs, e.g., verification and evaluation.

With our first application, we return to the Xj-function from subsection 2.3.
Recall that ¥f sums the numbers in a tree unless a 0 occurs in the tree, in which
case it returns a 0. Given a predicate has-zero? that tests whether a tree contains
a 0 or not, we can formulate and prove a correctness claim:

Proposition 5.1. For all number-trees t, 3 operationally satisfies its specification:

(Z5t) ~¢ (if (has-zero?t)'0' (X°t)).
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Proof. Let C[ | be an arbitrary applicative context and consider an application
of ¥ in this context:

C[Z3t] = C[CAk.k(Y,Eit)] =, C[Y,Ft],

— Ei = As. Mt (i (mt? £) 0
(if (zero? (numt)) (¥'0')
(+(num)(+(s(lsont))(s(rsont))))))
and

F = E[k:= (p,C[ )]

At this point, we must show that the recursive function Y, F behaves correctly. To
this end, we split the claim into two subcases:

(i) if (has-zero?t) = F, then D[Y, Ft] =, D[Z*];
(ii) if (has-zero?t) = T, then D[Y,Ft] =, D[(p,C[ ])'0'] =, C['0'].
For (i), observe that (zero? (numt)) can never be true and hence,
(if (zero? (numt)) (£'0') (+(numt)(+(s(lson t))(s(rsont)))))
=, (+(numt)(s(lsont))(s(rsont)))).

From this, (i) follows immediately.

The second claim we prove by an induction on the structure of a tree. Suppose
that there is a 0 in the tree and that it is at the root. Then we have the following
evaluation in any applicative context D[ |:

DIY, Ft] £, D[(+(p,C] ])0].
Otherwise, the evaluation takes the second if-branch and we have:
D[Y,Ft] =, D|(+(num¢t)(+(Y,F(lsont))(Y,F(rsont))))].
Assuming that a 0 is in the left subtree, the inductive hypothesis yields
... 2, D[(+(@um?)(+((p,C[ )fO)(Y,F(rsont))))]

for the applicative context D[(+(numt)(+[ ](Y,F(rsont))))]. But note, because
of the abortive character of continuation representations in applicative contexts (see
Proposition 4.4), this results in

...=. D[(p,C[ ])'0'].
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For the final case, where the 0 is in the right subtree, the proof relies on part (i),
but is otherwise similar to the above. O

This first application of the ) -calculus demonstrates how to reason about a spe-
cific use of C-applications. Since C- and 4-applications abstract from an extension
of continuation-passing style programming, a more general question is whether the
Ac-calculus can prove as many results as the A-calculus about the respective c¢ps’ed
programs. The question naturally divides into two subproblems, namely, whether
the A.-calculus-relations preserve equality in the A-calculus, and vice versa. We
refer to the first as the soundness and the second as completeness question.

As for soundness, the proof is a tedious but straightforward calculation. The
soundness of the f,-reduction is known from Plotkin’s investigation of the )\,-cal-
culus [14]:8

Proposition 5.2 (Soundness). For M € A, and for L € A, an abstraction,
If M =, N, then [M]L =4 [N]L and,
if M =, N, then [M]I =4 [N]IL

Proof. The proof is a two-step procedure which for the most part can be carried
out by a program. First, the left-hand side and the right-hand side of each rule is
translated into the A-calculus via ¢ps. Then the resulting expressions are reduced
until no f-redexes are left. For the Cr and A cases one needs the assumption that
L is an abstraction; in all other cases, the respective left-hand and right-hand terms
are already equivalent.3

Unfortunately, the calculus is not complete:

Proposition 5.2' (Incompleteness). There are M and N such that for some
abstraction L, [M]L =4 [N]L but M#_N.

Proof. The proposition is a consequence of Theorem 3.8 and of Plotkin’s value-
calculus being a sub-calculus. An example is given by: M = (ww)y and N =
(Az.zy)(ww) where w = (Ar.zz). O

Thus far, we have used the ) -calculus as an equational extension of the C-
rewriting system. With the exception of the induction step in Proposition 5.1 the
C-reductions have played no role. The following proposition shows that they are
indeed useful for local program transformations:

6 See Plotkin’s Translation theorem [14, p.148] which discusses the use of cps’ed programs for the simulation

of a call-by-value abstraction in the traditional A-calculus.
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Proposition 5.3. Define [-]* as a variant of [ -]:

[i=k
[ 1MIIE = MfA([C] 11X (/M)
[CIV] D¢ = M A([C] N1 (Vv)).

Then the following two statements hold for any applicative context Cl ]
(i) Az.C[AM] ~¢c A\z.AM, and
(ii) Az.C[CM] ~¢ Az.CAk.M[C] ][*.

Proof. (i) By Lemma 4.1 ), F Az.C[AM] =, \z.AM.

(ii) We prove the statement by an induction on the structure of the context
C[ ]. I it is empty, we must show that A\z.CM ~¢ Az.CAk.Mk. But this follows
from CM ~¢ CAk.Mk, which obviously holds. Otherwise, assume without loss of
generality that we have a context of the form C[[ ]N]. Then we get the conclusion
by a simple calculation:

Az.C[(CM)N] =, Az.C[CAe. M(Af.A(x(fN)))]
v Az.CAk.(Coe. MO A((FN))C] 11!
by inductive hypothesis
=, Az.CAe MO A([C] T (FN))
=, Az.CAk.M[C[[ IN)f. O

The proposition is useful in two different areas: source-to-source transformations
and compiler optimizations. Moving the C-application to a procedure entrance can
improve a programmer’s understanding about the intension of a procedure body.
At the same time it may save some cost since on various machine architectures it
may be cheaper to label continuations at the invocation of a function.

For non-von Neumann machine architectures the reduction characterization of
control operations is even more important. For example, a term rewriting machine
[10] can reduce all (reduction) redexes in parallel. Only computation steps must
be ordered, yet, this happens naturally. At first glance, it may appear that the
reduction system exchanges short C-rewriting steps for long chains of reductions,
but these appearances are deceiving. Newly built §,-redexes within right-hand
sides of Cr- and Cp-steps can immediately be reduced. By the time a C-application
has reached the top of the term, it may already have finished the construction of
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the continuation. The trade-offs between these two computational models clearly
deserve more investigation.

In essence the development of a syntactic theory of control has demonstrated
that our understanding of programming with control operations is far from com-
plete. It raises the question of what continuations really are. In denotational
semantics they are represented by functions. But this only works because the defi-
nitions are expressed in a particular style, namely continuation-passing style. Their
nature as programming objects remains concealed. We expect that a further in-
vestigation of the A.-calculus will deepen our understanding of programming with
continuations and the nature of control operations in programming languages.
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