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Abstract

Functional programs are organized into procedures, each encapsulating a speci�c task. A

procedure should not cause its callers to repeat its work. This forced repetition of work we call

leakage. In this paper we describe several common instances of leakage, and show how they can

be eliminated using an extension of continuation-passing style.

1 Introduction

A goal of programming is to divide a complex task into simpler parts. In a well organized program
each of these simpler tasks is represented by a procedure. Each procedure should perform a distinct
action. Its user should not have to be conscious about the details of its implementation and should
not have to undo or repeat work performed by it. This excess interaction between procedures is
called leakage. When leakage is eliminated, the clarity and correctness of programs is enhanced.
Our goal in this paper is to show how some leakage can be removed by using a generalization of
continuation-passing style. We emphasize the development of a clear programming style rather
than e�ciency.

Leakage is a problem in the interface between procedures. One example is when a procedure
needs an accumulator as an argument. In this case the user is made aware of an implementation
decision of the procedure, that it is written in accumulator style. In this case since the caller has no
need to interact with accumulator it can be eliminated from the interface by using a help procedure.
Another Leakage problem arises when the single return-value channel from a procedure to its caller
is insu�cient. Using this channel a procedure is only able to return the values it sees as appropriate
in the format it chooses. But since the procedure is not the one that will use the information, this
rigidity causes problems. The procedure must create a single structure that the caller must decode.
This decoding is especially undesirable if the called procedure has already performed a similar task
to generate the result. In this case both the caller and the procedure need to use the value, so we
cannot eliminate this form of leakage as simply as we could eliminate the leakage caused by the
accumulator. In this paper we show how to eliminate this form of leakage. Our approach shifts the
emphasis from what the procedure sees as appropriate to what the caller actually wants. When
the caller controls the content and format of the information returned, it is less likely to have to
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repeat the work of the called procedure. Our extension of continuation-passing style enables this
shift to a caller-directed method of return values.

Continuation-passing style is a style of programming in which all procedures calls are in tail
position. Rather than relying on the language implementation to remember what to do with the
result, an abstraction of the context of the call is explicitly passed to the procedure. The called
procedure is then responsible for passing its return value to this procedure. Algorithms exist
to convert any sequential program to continuation-passing style without changing the program's
extensional behavior [10].

There are two characteristics that de�ne continuation-passing style. Because in most applicative
languages procedures may only return one value, continuations always take just one argument.
Continuations are always invoked in tail position. Otherwise the current value would not be the
procedure's �nal answer, and thus it would be an inappropriate argument to the continuation.

Continuations are, however, just ordinary procedures and thus only continuation-passing style
restricts how we build and use them. In this paper we remove these restrictions. The resulting
programs come closer to this ideal of programs free of extraneous computation. We refer to this
style as continuation-constructing style, to emphasize that care goes into the construction of a
continuation as well as its use.

The next two sections each deal with a typical example of leakage. The fourth addresses leakage
in a larger example and solves a problem arising from the naive application of the techniques
developed in the previous two sections. The procedures used have been chosen because they best
illustrate our discussion of the 
ow of information, although they may not use the best algorithms.
In each case we develop a technique for using constructed continuations to close the action of a
procedure within the procedure itself.

2 Flags

When a procedure has �nished, it has to communicate to its caller a representation of what it did.
If the caller is only interested in whether the procedure was able to complete its task successfully,
an appropriate boolean can be used to communicate success or failure. The caller then has to
test the result to determine what happened. This test is a repetition of work that was done
inside the procedure. The procedure knew whether it succeeded, so the caller should not have to
�gure out that information again. Here the test seems harmless enough because it only involves
a simple examination of a boolean value. Sometimes, however, more than two conditions need to
be signalled. Arbitrary indicators can be chosen to represent each condition. Flags of any sort,
however, are open to misinterpretation because they have no intrinsic meaning.

A more serious problem can arise when it is necessary to return an answer or an indication of
failure. An example is the typical program for �nding the value associated with a key in a table.
Any value that the lookup procedure might return to indicate that the key is not in the table might
also be the value associated with the key. One solution is to return an element of a union type, as
might be done in a typed language such as ML [8]. Valid values are injected into one element of the
union and the failure indicator is injected into another. This solution causes leakage in two ways.
Not only is it necessary to test for the procedure's failure both inside and outside, but the injection
tag, added to the returned value inside the procedure, then has to be removed by the caller before
the value can be used.
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Rather than returning separate 
ags for each condition and then decoding those 
ags to deter-
mine what to do next, we can construct and pass continuations describing what to do in each case.
This solution is especially appealing when either a value or a failure indicator is returned. Now
there is no problem about what value to choose for the 
ag, because no 
ag is needed. Instead
what to do next is determined entirely by which continuation is invoked. Similarly once the called
procedure determines it has failed it is not necessary for anyone else to test for a failure condition.
A table lookup program written in this style is shown below. Because the caller wants to know
the value, not just whether one was found, the value is an argument to the success continuation

[13], k. Since in the failure case there is no information that needs to be communicated, the failure
continuation, q, takes no arguments.

(define lookup

(lambda (key table k q)

(cond

[(null? table) (q)]

[(eq? key (key-of (first table))) (k (value-of (first table)))]

[else (lookup key (rest table) k q)])))

A similar approach is to use exception handlers, or more generally Scheme's call/cc, and 
ag
a di�erent exception for each case. The exception handling code in the caller may, however, be
convoluted.

3 Multiple Return Values

An obvious way the table lookup program violates continuation-passing style is that there are two
continuations rather than only one. Another di�erence is more subtle. In continuation-passing
style it only makes sense that every continuation should take exactly one argument. In the lookup
program, however, we determined the number of arguments for each continuation by considering
just how much information is actually needed by the continuation. Thus we end up with one
continuation that has no arguments. The other indeed has exactly one, but that is just because
the only piece of information needed by the continuation is the value associated with the key. The
emphasis is, thus, not on returning a single value, but on passing to the rest of the computation the
values it needs. In this section we discuss another example where the continuation needs a number
of arguments other than one.

Some languages support multiple return values [14]. A possible solution in other functional
languages when multiple return values are needed, is to package them into a list. The list is then
returned to the caller who is responsible for decoding it to �nd the intended values. The list itself,
however, conveys no information. Instead the receiver must be knowledgeable about what the
called procedure intended. The following program, which determines the minimum and maximum
elements of a list, is an example of this technique:
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(define minmax

(lambda (l)

(if (null? (cdr l))

(list (car l) (car l))

(let ([mm (minmax (cdr l))])

(let ([min (car mm)]

[max (cadr mm)])

(cond

[(< (car l) min) (list (car l) max)]

[(> (car l) max) (list min (car l))]

[else mm]))))))

This program causes leakage. As is illustrated by the recursive call, the caller of minmax imme-
diately has to undo the work minmax did to construct the returned data structure. It is also easy
to forget which element of the list represents which value. Type constructors of a language like ML
can partially alleviate this problem [8]. Such languages provide a special pattern matching syntax
to extract the components of these structures in a concise way. The type must, however, be de�ned
in the scope of all the procedures that might call the associated structure-returning procedure.
Usually it must be de�ned globally. When there are many procedures that return structures this
increases the possibility of name con
icts. Because the de�nitions of these procedures are near
neither the call nor the return, the result can be hard to understand. Even when these procedures
are used, structures are constructed only to be immediately decomposed by the caller.

Here again we can use our idea of passing to a constructed continuation all the values that it
needs. Since the minmax program needs to return two values, it can take a constructed continuation
of two arguments. Since the values are passed as individual arguments, the result does not need to
be destructured. The parameters of the continuation can be named in a way that suggests their
role, reducing the chance of error. Furthermore, there is no need to introduce a large number of
global names. The minmax program rewritten in this style follows:

(define minmax

(lambda (l k)

(if (null? (cdr l))

(k (car l) (car l))

(minmax (cdr l)

(lambda (min max)

(cond

[(< (car l) min) (k (car l) max)]

[(> (car l) max) (k min (car l))]

[else (k min max)]))))))

In the consequent a call to the continuation has replaced the call to list. In the other branch
of the if expression there is a recursive call. Clearly its continuation must be a procedure of two
arguments. In the original program the return value is �rst destructured and then tested in the
cond statement. Now the destructuring is unnecessary. Instead only the cond is needed. In the
original program in each line of the cond, list is called to return the two new answers. Just as in
the consequent, we must now use k to return an answer.
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In this example we turn to continuations, not because we have more than one return path, but
because we have a non-standard number of values to return. Minmax is forced to be in something
like continuation-passing style because its actual return value is determined completely by the
continuation provided by the caller. Instead it can only reasonably use the values passed to the
continuation. It is not exactly in continuation-passing style, however, because the continuation
takes more than one argument.

We have identi�ed two situations that may cause leakage - the need to signal several conditions
and the need to return several values. The problem of signalling several conditions can be solved
by passing in the corresponding number of continuations. The problem of returning several values
can be solved by passing in a continuation of several arguments. Clearly it is possible for both of
these problems to occur in a single procedure. In the next section we give such an example and
address a problem that occurs in eliminating its leakage.

4 Multiple Continuations

Lookup in section 2 returns its answer to one of a number of continuations. Because it is a tail
recursive program, the continuations passed in by the caller do not change on each recursive call.
The original minmax is not tail-recursive and thus its continuation grows on each iteration. Because
there is only one continuation this does not seem unreasonable. This section discusses a di�culty
that can arise when multiple continuations are passed to a non-tail-recursive program in order to
solve the leakage problems described above. To illustrate this di�culty we consider a third example,
an extension of Scheme's lambda facility.

In Scheme, procedures created using lambda take either a �xed or a minimum number of
arguments [11]. In a curried language, like Miranda [17], a function can be applied to any number
of arguments. If not enough arguments are present a new function is built. If too many are present
the body of the function is expected to return a function that will accept the remaining arguments.
Of course, if exactly the right number of arguments are present the body is evaluated normally.
This feature has been advocated as a way to avoid using the heap in some cases when returning
higher order functions [7]. We examine the leakage problems that arise in adding this feature to a
Scheme interpreter. We assume the existence of an interpreter and concentrate on two procedures,
make-closure and extend. We have arbitrarily chosen to use 
at association lists to represent the
environment. The code to implement the traditional version of lambda is shown below.

(define make-closure

(lambda (formals body env)

(lambda (args)

(Meval body (extend env formals args)))))

(define extend

(lambda (env formals args)

(cond

[(null? formals) env]

[else

(let ([new (cons (car formals) (car args))])

(cons new (extend env (cdr formals) (cdr args))))])))
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Although we are extending an interpreter, the extension is not a solution to the leakage problem.
Instead it serves as yet another example of how leakage can occur, and be eliminated.

These procedures assume that the number of formals is the same as the number of arguments.
Thus make-closure can assume that extend returns a complete environment. Under the new
de�nition of lambda this is no longer the case. Make-closure must know how the length of the list
of formals compares to the length of the list of arguments. One approach would be for it to compute
directly the length of each list. Extend, however, as we have written it, traverses the list just as
length would. When it reaches the end of one list but not the other it knows which is longer.
Because make-closure is not interested in the exact lengths, the calls to length are not needed.
Having them would be a form of leakage. Since extend has the information make-closure needs,
it should return, not just the new environment, but also an indication of which list is longer and
what the leftovers are. Rather than return a list of several values, we recall minmax and construct a
continuation in make-closure that it passes to extend. This is an example of the caller directing
what values should be returned. The direction is made explicit by the continuation. A preliminary
implementation of the new version of lambda appears below.

(define make-closure

(lambda (formals body env)

(lambda (args)

(extend env formals args

(lambda (new-env extra-formals extra-args)

(cond

[(and (null? extra-formals) (null? extra-args))

(Meval body new-env)]

[(null? extra-args)

(make-closure extra-formals body new-env)]

[(null? extra-formals)

((Meval body new-env) extra-args)]))))))

(define extend

(lambda (env formals args k)

(cond

[(and (null? formals) (null? args)) (k env '() '())]

[(null? args) (k env formals '())]

[(null? formals) (k env '() args)]

[else

(let ([new (cons (car formals) (car args))])

(extend env (cdr formals) (cdr args)

(lambda (newenv extra-formals extra-args)

(k (cons new newenv)

extra-formals extra-args))))])))

There is some redundancy in extend, introduced to emphasize what will be done with the values
passed to the continuation. Clearly, the �rst three tests could be condensed into one. The empty
list is used in each case to emphasize that the null value will be tested for.

Comparing make-closure and extend we see that there is a direct correspondence between
the tests in the two procedures. The presence of this correspondence again indicates leakage. The
variables extra-formals and extra-args each both encode the relationship between the number

6



of formals and the number of arguments and serve as structures to hold the values left over. The
dual role played by these two variables makes the tests doubly undesirable. As in lookup we can
pass in a continuation for each condition rather than return a coded value. Each continuation need
only take the arguments it uses. For example, the action when there are no extra formals and
no extra arguments only uses the new environment, so just that value needs to be passed to it.
Make-closure is rewritten in this new style below.

(define make-closure

(lambda (formals body env)

(lambda (args)

(extend env formals args

(lambda (new-env) (Meval body new-env))

(lambda (new-env extra-formals)

(make-closure extra-formals body new-env))

(lambda (new-env extra-args)

((Meval body new-env) extra-args))))))

We now turn to the revision of extend. It must now handle three continuations instead of one.
Let us call the continuations nk for the normal case (when there is an equal number of formals
and arguments), xf for the case when there are extra formals, and xa for when there are extra
arguments. Clearly in the �rst cond line nk should be applied to env. Similarly xf should be
applied in the second to the environment and the current list of formals, and xa should be applied
in the third to the environment and the current list of arguments. But just changing these lines
is not enough. The recursive call in the last line is also a call to extend, and thus it needs three
continuations. As before the only activity of these continuations is to extend the new environment.
Any other arguments are just passed along. Extend rewritten accordingly appears below.

(define extend

(lambda (env formals args nk xf xa)

(cond

[(and (null? formals) (null? args)) (nk env)]

[(null? args) (xf env formals)]

[(null? formals) (xa env args)]

[else

(let ([new (cons (car formals) (car args))])

(extend env (cdr formals) (cdr args)

(lambda (newenv)

(nk (cons new newenv)))

(lambda (newenv extra-formals)

(xf (cons new newenv) extra-formals))

(lambda (newenv extra-args)

(xa (cons new newenv) extra-args))))])))

Here we see a di�culty with our technique for leakage elimination. On each recursive call
we extend three continuations, and all are extended in the same way. We would rather do the
computation of extend as before and then invoke one of nk, xf and xa at the very end. The
problem is that what appears to be the end, the last test, is not the end of the computation at
all. The continuation of each recursive call has to add a new association onto the front of the
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environment. The original nk, xf, and xa want the complete environment, not the one available
at the time of the last test. This is the typical case when a non-tail-recursive program needs to
signal a condition to its caller. Since the result of the recursive call can only be accessed in the
continuation, we seem forced to copy the accumulation of this context in every continuation that
might be invoked. In solving the leakage problem in a program that is not tail-recursive, we seem
to have introduced another di�culty.

In extend the continuation of each recursive call only needs the value of the environment. If
there is another value passed to it, as for xf and xa, that value is just passed on to the current
continuation. But if we were to just return the environment, there would be no way to return
the other necessary values \later." We need a way to remember the other values that should
be returned. One possibility is to have a single continuation that takes care of adding to the
environment. Besides the environment this continuation takes another argument to be invoked
by the initial continuation. This second argument, which may be thought of as a continuation
to the continuation, takes the �nal environment as an argument and then passes to one of the
continuations provided by make-closure the values it expects. The new version of extend appears
below:

(define extend

(lambda (env formals args nk xf xa)

(letrec

([loop

(lambda (formals args k)

(cond

[(and (null? formals) (null? args)) (k env nk)]

[(null? args)

(k env (lambda (newenv) (xf newenv formals)))]

[(null? formals)

(k env (lambda (newenv) (xa newenv args)))]

[else

(let ([new (cons (car formals) (car args))])

(loop (cdr formals) (cdr args)

(lambda (env fn)

(k (cons new env) fn))))]))])

(loop formals args (lambda (env fn) (fn env))))))

Because the continuation to k takes only one argument and is always applied to the �nal
environment we can do the inverse of the continuation passing style transformation of the calls to
k, making them non-tail-recursive. The code is show below. In leakage elimination it is often the
case that the continuations do not take exactly one argument so this technique cannot generally
be applied. When it can be used, however, the result can be rewritten in a more direct style using
either Felleisen's F and prompt operators [4], or Danvy and Filinski's shift and reset [2].
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(define extend

(lambda (env formals args nk xf xa)

(letrec

([loop

(lambda (formals args k)

(cond

[(and (null? formals) (null? args))

(nk (k env))]

[(null? args) (xf (k env) formals)]

[(null? formals) (xa (k env) args)]

[else

(let ([new (cons (car formals) (car args))])

(loop (cdr formals) (cdr args)

(lambda (env)

(k (cons new env)))))]))])

(loop formals args (lambda (x) x)))))

5 Comparison with Related Work

The leakage problem has been addressed in a limited way before. One approach is to use a strongly
typed language. In such a language the type of a procedure limits the range of values it may
return. Values that look the same may be distinguished by union type tags. These features of a
typed language lessen the chance of error, but do not eliminate the leakage problem.

A number of researchers have addressed the creation of unnecessary data structures within
procedures. Wadler describes a compilation scheme that automatically converts programs that use
many intermediate lists into a machine code that is more e�cient [18]. The emphasis there is on
allowing the programmer to write ine�cient looking code, whereas ours is on providing him with
a motivation to write better programs. Single threading analysis is another way of eliminating the
unnecessary creation of internal data structures. It shows where assignments can be introduced
[12]. Danvy explores the use of continuations to solve the intermediate list problem [1]. He further
exploits the technique of using continuations in non-tail position. The emphasis of these approaches
is di�erent from ours. Our primary concern is with the interface between procedures, whereas they
are interested in the 
ow of data within a procedure.

Dybvig and Hieb consider the creation of unnecessary data structures in the implementation of
a lambda taking a variable number of arguments [3]. They allow a set of argument patterns with
a di�erent action for each case. These argument patterns and associated actions are similar to the
continuations we pass in when multiple conditions need to be signalled. Their approach addresses
a speci�c design problem, whereas ours is a general programming technique.

Our use of continuations in the interface between a procedure and its caller is related to Filinski's
notion of a symmetric language [5]. In a symmetric language a procedure's value argument and
continuation argument have equal importance and are equally accessible. Our solution to the
leakage problem forces the caller to pass to the procedure not only values, but also continuations.
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6 Conclusion

In denotational semantics continuation-passing style has made it possible to express complicated
control structures that it would be clumsy to express in direct style [16]. It may be a major under-
taking to convert an existing semantics to continuation-passing style [15], but once the conversion
has been done the result is more expressive. Similarly the conversion from a direct style of building
ordinary programs to the continuation-constructing style we have discussed, may initially seem
complicated. Again the result is clearer and more extensible. As shown by the above examples,
programs in this style may not be much longer than programs written in a more direct style. While
others have addressed the issue of leakage in very speci�c cases we feel our approach can be applied
to a wider range of leakage problems and has a greater in
uence on program style. The methods
described in this paper will not, of course, eliminate leakage in every program. We have only
addressed some very common programming constructs. Developing a better understanding of the
nature of leakage may help solve these problems.
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