Matrix Algorithms using Quadtrees
Invited Talk, ATABLE-92*

Technical Report 357

David S. Wisef
Computer Science Department
Indiana University
Bloomington, Indiana 47405-4101, USA

dswise@cs.indiana.edu

June, 1992

Abstract

Many scheduling and synchronization problems for large-scale mul-
tiprocessing can be overcome using functional (or applicative) program-
ming. With this observation, it is strange that so much attention within
the functional programming community has focused on the “aggregate
update problem” [10]: essentially how to implement FORTRAN arrays.
This situation is strange because in-place updating of aggregates belongs
more to uniprocessing than to mathematics.

Several years ago functional style drew me to treatment of d-dimen-
sional arrays as 2%-ary trees; in particular, matrices become quaternary
trees or quadtrees. This convention yields efficient recopying-cum-update
of any array; recursive, algebraic decomposition of conventional arithmetic
algorithms; and uniform representations and algorithms for both dense
and sparse matrices. For instance, any nonsingular subtree is a candidate
as the pivot block for Gaussian elimination; the restriction actually helps
identification of pivot blocks, because searching a tree is easy.

A new block-decomposition formulation for LU decomposition, called
(L +U), D' decomposition, is particularly well suited to quadtrees. It
provides efficient representation of intermediate matrices when pivoting on
blocks of various sizes, i.e. during “undulant-block” elimination. A given
matrix, A is decomposed into two matrices, plus two permutations. The

*To appear in Proc. Intl. Workshop on Arrays, Functional Lanaugages, and Parallel
Systems, Montreal (1992).

tResearch reported herein was sponsored, in part, by the National Science Foundation
under Grant Number CCR 90-02797.

permutations, P and @, are the row/column rearrangements usual to full
pivoting (one of which is I under partial pivoting). The principal results
are (L+U) and (@QDP)™!, where L, respectively U, is proper lower—and
respectively proper upper—triangular, D is quasi-diagonal following zero
blocks in L+ U, and PAQ = (I + L)D(U +1I).

It is offered as a challenge for functional programming styles, (both
HaskELL’s and APL’s) as the kind of algorithm that is desirable under
parallel and distributed processing, and which should be lucidly expressed
in such languages. Programmers must be encouraged to express both the
parallelism and the sharing that is implicit here. Mathematics allows both;
efficient computation requires them; programs should provide them.

1991 Mathematics Subject Classification: 65F05.

CR categories and Subject Descriptors:

E.1 [Data Structures]: Trees; G.1.3 [Numerical Linear Algebral:
Linear systems, Matrix inversion, Sparse and very large systems; D.1.1
[Applicative (Functional) Programming Techniques].

General Term: Algorithms.

Additional Key Words and Phrases: Gaussian elimination, block
algorithm, LU factorization, quadtree matrices, quaternary trees, exact
arithmetic.

0 Introduction

Iverson built many novel attributes into APL; almost all of them appeared in
other languages since then. Interactive dialog, novel in the era of batch process-
ing, 1s now necessary to personal—and personalized—computers. Overloading
of operators not only is one of the pillars of Object Oriented Programming,
but also has been extensively analyzed in the development of polymorphic type
checkers, as in ML or HASKELL, for instance. A significant contribution from
APL is its rich vocabulary for array operations, which has become the heritage
of this meeting.

From the pure-functional programming camp I come to assail some con-
straining prejudices that are part of that heritage: APL’s aggregate/matrix
operations that, regrettably, focus on row/column decomposition. If one as-
serts, since the underlying model for memory in a modern computer is an array,
that row- or vector-processing is closest to “natural” computation, I want to
undo that prejudice, as well. My model of memory is a heap of relatively small
nodes, linked into trees, dags, and graphs.

Lucid expression of parallelism requires a comfortable vocabulary and style
for mapping functions. Mapping or “spreading” of application across data struc-
ture is the best applicative analog of parallelism, and is particularly important
in a functional language because the mapped function is necessarily indepen-
dent in all its applications. (Collateral argument evaluation is the simplest
and most common case of such mapping.) When mapping occurs early in the

divide-and-conquer decomposition of a problem, each application represents a
desirably large granule of computation that can be further mapped. APL maps
across arrays, which is insufficient; HASKELL [11] maps (or {cringe) zipWith3s)
only across lists; this is also too weak. The most important target for map-
ping is homogeneous tuples of relatively small size, so to control the growth of
parallelism—and the scheduling problem. Much is done here with fourples.

My task is to propose and to justify a new approach to an old algorithm,
Gaussian elimination—an essential result from matrix algebra. While the per-
formance of this algorithm won’t beat a Cray so far, it has ample opportunities
for multiprocessing, for distributed processing, for algebraic transformation, and
even for partial evaluation; that is, it exhibits lots of structured opportunities
for massive parallelism, just as we expect from a functional program.

The challenge is to express array algorithms like this in your favorite array
language. Since the principal data structure is a quaternary tree and no row
or column operations are used, vector operations may be useless. Block de-
composition and block arithmetic are important; sometimes blocks carry other
decorations, aside from their constituent elements.

The remainder of this paper is in six parts, much of it condenses results from
elsewhere. Section 1 presents the definitions of the quadtree representation and
presents analytic results and describes experience using it as a technique to
compress sparse matrices. The second section introduces quadtree operations
using the HASKELL language. Section 3 contains a mathematical presentation
of L+ U, D' decomposition, and a discussion of its motive, notably the concept
of undulant-block pivoting. Section 4 considers how to select a good pivot—
using tree search—and Section 5 reviews experience with scalar pivoting on a
multiprocessor. The final section visits the motivations and prospects for this
algorithm, and its lessons to future array languages.

1 Quadtree representation of matrices.

Dimension refers to the number of subscripts on an array. Of special interest
here are square matrices. Order of a square matrix is the cardinality of a basis
for its underlying vector space: the number of its rows or columns when it is
written as the conventional tableau. Orders and sizes here will mostly be powers
of two; arrays of other sizes can cheaply be padded with zeroes.

Thesis. Any d-dimensional array is decomposed by blocks and represented as
a 2%-ary tree.

Only vectors and matrices are considered below: where d = 1 yields binary
trees and d = 2 suggests quaternary trees—or quadtrees [12].

Binary Vector Representation. A wvector of size 2P is either homogeneously
zero and represented by NIL, or p = 0 and its element is a non-zero scalar, and

is represented by that value; or it is non-trivial is represented by a binary tree
whose subtrees each represent vectors of size 2P~ 1,

The subtrees are called north and south, consistently with the usual colum-
nar representation of vectors.

Quadtree Matrix Representation. A matriz of order 2P is either homoge-
neously zero, in which case it is represented NIL; or p = 0 and its element is a
non-gero scalar, and is represented by that scalar; or else it is represented by an
ordered quaternary tree whose subtrees each represent matrices of order 2P~1.

These subtrees are respectively identified as northwest, northeast, southwest,
and southeast, isomorphic to the four quadrants of a block decomposition of the
conventional tableau, in the order that those names suggest.

Table 1 is borrowed [19] to display analytical results of the number of nodes,
and the average path length in quadtree matrices of various patterns. The
number of nodes is a measure of space; for an n x n matrix it ranges from 4/3n?2
(33% above serial representation) down to zero. Remarkably, patterned matrices
(Hankel, banded) can otherwise be represented in linear space, also require only
linear space as quadtrees. Thus, the quadtree seems to be a general, uniform
representation that requires only slightly more space than we might expect from
other ad hoc data structures.

The path length is a measure of the time to access a random element of the
array, starting from the root. Two remarks about this column are necessary:
first, every representation for generally sparse arrays has non-constant access
time. This one requires logarithmic time that improves to a very small constant
in special cases. Second, any decent sparse matrix algorithm does not probe
repeatedly from the root of the matrix, so this measure is excessively conser-
vative. In the next section we shall see that ordinary algorithms follow the
tree decomposition to perform significant amounts of computation from nodes
interior to the tree.

Importantly, Table 1 indicates that this single representation responds well
to sparse pathologies, so that we can write uniform algorithms and run them
on both sparse and non-sparse problems with confidence that they will perform
with reasonable efficiency in special cases.

Related results by Beckman [2] show another use of quadtree representation:
to configure sparse matrices for input/output. The Harwell-Boeing test suite
[6] is formatted on magnetic media to suit Fortran transput conventions; it
contains both floating-pont entries and location descriptors about each one’s
location in the matrix. The entire tape was translated to quadtree format with
a byte (really only a 4-bit nybble) for each non-terminal node and eight bytes
for every terminal node (the floating-point entries). The data was stored in
preorder-sequential order with four bits in the single byte to identify non-NIL
sons of each father. Testing on 283 of the 293 matrices on the tape showed that
the location data compressed to about 25% of its former volume. When specific

Pattern Space Expected Path
Full n?-1) lgn+1
Symmetric 2(n+2)(n—1) lgn+1
Hankel/Toeplitz dn —lgn—3 lgn+1
Triangular 2(n+2)(n—1%) l—gz,ﬂ +3-L
fFT permutation ”l—zgﬂ + ‘%” - % l—gz,ﬂ + % - %
Random permutation ”l—zgﬂ +0.9n — % l—gz,ﬂ +0.9
Diagonal 2n—1 2 — %
Tridiagonal 6n —2lgn —5 13—0 — % + #
Pentadiagonal 8n —2lgn—9 13—0 — % — 31n—02
Heptadiagonal 11n — 2lgn — 19 13—0 + % — 3;—62
Enneadiagonal 13n — 2lgn — 27 13—0 + % — ;2—2
Shuffle permutation 3(n—1) 3(1— %)
Zero 0 0

Table 1. Costs of patterned and unpatterned matrices as quadtrees.

floating values are also stored, this netted a 20% reduction in disk space across
the entire set. In many instances, values for the entries are stored at all; the
data is purely matrix patterns. Then the savings was around 75%

Not only is the disk-resident library thereby compressed, but also its static
representation remains serially readable—for instance, to retrieve particular en-
tries. Although this compression was done for our I/O convenience, the results
might, nevertheless, be useful on any computer without room for raw represen-
tation of matrices.

2 Matrix rings in HASKELL

The code below is an introduction to HASKELL [11] and to quadtree program-
ming. Important to understand is the data declaration. It declares “construc-
tors” to be used later in pattern-matches to identify special cases. Zerol is
a nullary constructor, easily recognized and treated as an additive identity
and multiplicative annihilator. The other constructors follow the definition of
quadtrees, except for IdentM which allows efficient implementations of permu-
tations as sparse matrices.

The instance declaration establishes overloading of the ring operations +, *
so that these are now defined on quadtree matrices as well as numbers. Haskell
can infer the definition of — from negate and +, or it can also be specified: one
tree traversal rather than two. In the Gaussian elimination algorithm, there is
no syntactic distinction between scalar and block multiplication—nor is there
here. [9, §1.3]

Readers familiar with Strassen’s algorithm [14] will recognize the quadtree
as ideally suited to implement it, and HASKELL as the perfect language in which
to code it. In fact, as was pointed out early on [15], this code can even beat
Strassen’s because it knows the algebra of Zeroll, and uses it to great advantage

on sparse matrices.

module UndecoratedMatrices(..) where

type Quadrants a

data Matrx a

negate 0

= [Matrx al]

ZeroM |
[

negate (ScalarM x)
negate (Mtx

b4
0
ScalarM x

Mtx x

1
b4
ScalarM x

+
+
+

+

* ¥ %

*
*

-—Except

Mtx x

abs
signum

*

quads)

0

y
ScalarM y

Mtx y

0
y
1

ScalarM y

—-1list of *four* submatrices.

ScalarM a | Mtx (Quadrants a)

IdentHM --used mostly in permutations.

instance (Num a) => Num (Matrx a) where
fromInteger O
fromInteger 1
fromInteger _

Zerol

IdentHM

error "fromInteger defined only on 0/1 Matrces."
0

ScalarM (negate x)

Mtx (map negate quads)

bd
y
case xty of 0 > 0
z —> ScalarM z
case zipWith (+) x y of [0,0,0,0] -> 0O
quads -—> Mtx quads
error "Matrx addition undefined on IdentM"

--NB: multiplication accepts IdentM

K< OO

ScalarM (x*y)

with infinitesimal floats: case x*y of 0->0; z->ScalarM z

Mtx y

(case zipWith (+)
(zipWith (*) (colExchange x)(offDiagSqsh y))

(zipWith (*) X (prmDiagSqsh y))
of [0,0,0,0] -> 0
quads -> Mtx quads
where colExchange [nw,ne,sw,se] = [ne,nw,se,sw]
prmDiagSqsh [nw,ne,sw,se] = [nw,se,nw,se]
offDiagSqsh [nw,ne,sw,se] = [sw,ne,sw,ne]

error "abs not implemented yet on Matrces.'
error '"signum not implemented yet on Matrces."

In fact, experiments in REDUCE that applied these algorithms to integer and
symbolic matrices [1] of sizes 4 x 4 up to 100 x 100 demonstrated the acceler-
ations with sparsity that one would expect from Table 1. The improvement
depends only on the axioms on ZerolM for identity and annihilation. A blind
matrix inversion was also tested, with dramatic accelerations in sparse cases,
and understandable slowdowns on denser ones. Non-singularity of every north-
west quadrant was presumed, this unsatisfactory assumption is addressed with
the following algorithm.

3 (L+U),D' decomposition

The motivation for this algorithm is parallel processing. As parallel architec-
tures become more available, known algorithms like Gaussian elimination will
be reformulated in order to satisfy needs of parallelism that have been hith-
erto ignored: for instance, a extensible supply of independent processes, each of
slowly receding granularity. Block algorithms provide a supply, but they raise
other problems, like efficient representation and global permutations, that are
also addressed here.

This terse section is abstracted from Wise [20]. The algorithm is Gaus-
sian elimination of blocks of varying sizes. Therefore it is called “undulant”
block pivoting. It is presented in the general case of full pivoting, but partial
pivoting is surely available. This formulation supersedes earlier attempts at
Gauss-Jordan elimination on quadtrees [17, 18].

It is distinguished from pivoting on blocks of fixed size [9], that can be un-
stable when there is no decent pivot block of the fixed size [5]. Under undulant-
block pivoting, however, one can always eliminate a troublesome, large entry as
a 1 x 1 block before resuming elimination of larger blocks.

Definition. A matrix A is proper lower (upper) triangular ifa; ; = 0 fori < j

(respectively, 1 > j).

Notation. I denotes the identity matrix of any order. Similarly, 0 denotes the
zero matrix of any order.

Definition. Two matrices, A and B, are said to be disjoint if
Vi,j(ai,]- =0V bi,]' = 0).

Definition. A square matrix A is quasi-diagonal [7] if it has square submatrices
(cells) along its main diagonal with its remaining elements equal to zero.

This more obscure term is used instead of block-diagonal to emphasize that
the blocks along the diagonal can differ in size, as Faddeeva illustrates.

If D is an n X n quasi-diagonal matrix with b nonzero blocks then, following
the block decomposition, one can partition the basis of the underlying vector

space, decomposing it into b mutually complementary subspaces. Thus, prob-
lems on D can be decomposed into b small, independent problems: one in each
subspace.

The proper lower triangular matrix, L, associated below with a quasi-diagonal
matrix, D, will have zero submatrices exactly where D has nonzero matrices.
Therefore, the above decomposition on the vector space underlying D can be
applied to I + L, as well. The same can be said for associated upper triangular
matrices, U.

Definition. An (L + U), D’ decomposition of a nonsingular matrix A, is the
quadruple, (P,Q, L+ U,(QDP)~') where

e P and Q are permutations;

e L is proper lower triangular and U is proper upper triangular;

e D is quasi-diagonal and disjoint from both L and U;

e PAQ=(I+L)D(U +1I).

It is trivial to separate (L + U) into unit upper and unit lower triangular
matrices, I + L and U + I, but this is never necessary.

Notation. Subscripts n, m, s, should be read as “north, middle, south;” and
w, ¢, e as “west, central, east.”

Algorithm 1 (Pivoting nonsingular 4 to (P, @, A’, D').) Full, undulant-block
pivoting is assumed, although no strategy for selecting pivot blocks is yet ad-
dressed. The quadruple of results from repeated pivoting on a matrix A is
described recursively as follows.If A is void then the result is (I, I,0,0).

Otherwise, let the block decomposition of A4, isolating the k x k pivot block,
Apc, be labeled

j Ek n—-k—j
1 Ay Ape Are
A= k Avw Ame A
n—k—1\ Asy Asc Age

where A is n X n and Ay, is ¢ X j. The trivial case has : = 0 = j and k& = n.
Then

Doy [0 @\ (A A 4\ [Dh, O
<P:Q:AI:DI>: <(P 0 P) i 0) Aflmw 0 A'Ime) 0 D':nc
¢ ¢ 0 Qs An A AL Dy 0

where Py is (n—k) x4, Pis(n—k)x (n—k—1), Qnis j x (n—k), and Q, is
(n—k —3) x (n — k). These values can be computed as follows: first

/ _ a1
Dmc_Amc

is solved recursively (with good accuracy); then the pivot row and pivot column
are completed using BLAS Level 3 operations [5],

(A’lmw A’lme) = D’:nc (Amw Am€)

Anc\ _ (Anc) o .

A{sc - Asc me?

Q” A;’Lw A;’Le D:wu D1I’Le
(om0 (3) (B) (B 2

results from recursive pivoting on the (n — k) x (n — k) problem

Anw Ane Anc / /
(Asw Ase) - (Asc) (Amw Ame)i

that can also be derived using Level 3 operations. O

finally,

Theorem 1 . Let (P,Q, A, D'} be the result from Algorithm 1 on nonsingular
input A. Then the (L + U), D’ decomposition of A is (P,Q,PA'Q,D’).

Corollary 1 . D' in Algorithm 1 is a rearrangement of a quasi-diagonal matriz
to fit the structure of the pivots, as selected.

Algorithm 2 ((L + U), D' decomposition.) Use Algorithm 1 to compute (P, Q, 4’, D)
from A, and apply the permutations once to return (P, @, PA'Q,D’). O

Algorithm 3 (Solving a linear system.) Solve AZ = I_;using this reformu-
lation:

PAQ = (I+L)D(U +1)

implies

PYI+L)Q Y (QDP)P Y (U+DQ 'c=5b
1. Compute the (L 4 U), D' decomposition of A using Algorithm 2.
2. [forward substitution] Solve (I + L)y = Pb=2¢

e IfL+U =0 theny=c

o Otherwise, partition!

AL+ Une B\, (%N, . (G
L+U_(w L”+m)’y‘(m)’c‘(&)

1E and W should be chosen for compact representation under the matrix representation;
secondarily, one might choose E and W to be of about equal size, or to force either Ly + Unw
or Lge + Use to be entirely zero.

e Recursively solve (I + Lpy)yn = Cp.

e Recursively solve (I + L;.)y; = ¢; — Wyn.
3. [backward substitution] Similarly, solve (U + I)Z = P(D'(Q%)).

4. Permute £ = Q2. O
Algorithm 4 (Matrix inversion.) Invert
A=P I+ L)[Q YQDP)P YU +DQ "
1. Compute the (L 4 U), D' decomposition of A using Algorithm 2.
2. If L+ U = 0 then A~! = (QP)D'(QP);

3. Otherwise compute L' = (I + L)~! and U’ = (U + I)~?! recursively; then
A~ = Q(U'(PD'Q)L')P.

e Partition L + U as in the previous algorithm.

e Recursively compute
Ly = (I + Low) ™ Lye = (I + Lee) 75
U;Lw = (Unw + I)_l; U.s{e = (U5€ +I)_1‘

e Then

L! 0 U’ -U! EU!
I _ nw . I _ nw nw se
v=pin, m) o= (%).

O

The preceding presentation says nothing about matrix representation. Cer-
tainly the algorithm is intended for block decomposition, but it does not require
any particular one. Blocks may be sized according to the size of pages under
virtual memory, as long ago recommended [8], or be determined by the geogra-
phy of a block within a distributed system. Of course, a block is here intended
to be a quadrant, or a quadrant of a quadrant, etc.: some subtree of a quadtree.

The halving in quadtree decomposition assures some sort of balance—at
least early on in the pivoting—in the divide and conquer strategy. It also assures
that all represented subblocks are square and, therefore, themselves viable as
candidates for elimination. Moreover, at each level of the tree there is either
a “north” or a “south” band—mnever both, and that band is just as tall as is
the “middle” one; similarly one deals exclusively with “west” or “east” and
this simplifies the coding tremendously. Furthermore, both normalization (to
ZeroM) and tournament contention (v.i.) are of minimal degree: four rather
than nine as the displays above suggest.

10

Whatever block decomposition one choses for data, the algorithm should
decompose its control following it. In the case of quadtrees, it is intended
(Should I say required?) that elimination descend the tree recursively—just like
matrix addition—so that the array “flop”

Anw A'ne A'nc ! !
(Asw A, - A, (Amw Ame) ’
is dispatched not from the root of the tree, but at every level as the elimination
algorithm backs up the path from the newly eliminated block to the root. More-
over, it can fork to four parallel flops as it descends off-pivot blocks sibling to

that path. It is important to inject locality into implementation by distributing
the flopping across siblings—just as addition is mapped across addends.

4 Pivot Selection

Any general elimination algorithm must provide for a search of what is to be
eliminated; most often partial pivoting is used. Not only does such pivot se-
lection avoid elimination on a singular block, but also steers efficacy of the
algorithm toward practical goals like stability, parallelism, and sparsity. While
these may not change the final answer, they certainly affect the fun of getting
there.

Usually a search for the “midcentral block” occurs between applications
of elimination, between recursive invocations of Algorithm 1. Here follows an
argument that quadtrees distribute that pivot search across Algorithm 1 so that
no extra traversal (bandwidth) is incurred for “pivoting.” (The idea is hardly
new [13], but it is entertaining that its loss is blamed on FORTRAN.)

Consider, for example, the case of scalar pivoting on the element of largest
magnitude. Full pivoting seems to require traversal of the entire matrix. Instead,
decorate every non-terminal (Mtx) node of A with two bits and the maximal
magnitude of elements in that block.? The two bits identify which of the four
quadrants contains that element. Such a decoration is cheaply propagated,
tournament-style, as every incarnation of A is built. After each elimination
step A is decorated with bits leading toward the next element to be eliminated.
Thus, no special search is ever needed; pivoting has been distributed across
elimination. Moreover, when annihilation of a flop of, say, A,, occurs because,
say, As;. = 0 then the value and the decorations within A, remain valid. This
is good algebra and very good computation!

Other local properties can determine winners of the tournament: to min-
imize fill-in, and to maximize block size of the “eliminand.” Lest the search
space become overwhelming, the only blocks that correspond to subtrees of the
quadtree are pivot candidates; already encapsulated, they have addresses.

2The decorated value can be fairly coarse: e.g. the exponent from a floating-point number.

11

Eliminating a larger block increases parallelism and reduces bandwidth; two
or four elements can be eliminated for the communication and scheduling costs
associated with one; granularity of the pivoting process is raised. Fill-in is
predicted using Markovitz vectors [4] accumulated during a former elimination.
Size is isomorphic to the depth of the block within the tree; a semidecision
procedure [20] is used to identify which blocks in A are non-singular.

Finally (and new here) is the observation that the pivot block can be ex-
panded as Algorithm 1 backs up the tree that is A’. Consider the case of a

Anw A'ne
A, A,) where A, has been selected for

elimination by the tournament and has just been eliminated, but no results have
yet been propagated up the tree. Ignoring the permutations for a moment, the
results would be A’ and D’:

/ _ 0 A;’Le . / _ A’;i}l 0
Asubtree - (A’sw AL) Dsubtree - 0 0/

If, before returning these results, it determined (by inspection) that A}, is also
non-singular then it can be decomposed and the local inversion of A
completed on the spot; the results instead become

non-trivial subtree Asubtree = (

subtree

-1

0. / _
=0; subtree — Asubtree'

!
Asubtree
That is, although A,, had won the tournament and was being eliminated,
“alert” pivoting instead eliminated all of A, 71.0.- In this way, a quadtree
decorated only for scalar elimination might, nevertheless, experience elimination
of 2 x 2 blocks.

5 Experience

In order to test this family of algorithms, Beckman [3] has implemented them
in C on the BBN Butterfly 1000 computer and tested them on twenty different
matrices from the Harwell-Boeing collection [6]. Typically these were unsym-
metrical, real, assembled matrices of order 1000 or so. Absolute performance
must be interpreted because the system is layered over an expensive founda-
tion: a global heap (managed by reference counting) on an architecture where
memory latency is sensitive to non-local references (NUMA). This is not the
recommended way to use such computers.

The results of these experiments indicate that these algorithms are viable, al-
though perhaps not in the common case where the atomic elements are floating-
point numbers. That is, the Scalarll elements of the quadtree would better
require more than one flop in each step: e.g. symbolic arithmetic, exact arith-
metic, or elements of hypermatrices [4]. The problem is that there is significant
overhead in building nodes near the leaves of the tree that can only be amortized
by an advantage in parallelism.

12

Experience shows that these algorithms do perform well on problems that
have large subproblems. However, Crays still do far better on really dense
floating arithmetic, and algorithms tuned to sparse algorithms (linear list rep-
resentation) do far better on very sparse problems. The problem on large sparse
problems is that there is insufficient fan-out as elimination descends the tree;
sibling processes from early eliminations annihilate too quickly, with the result
that the quadtree algorithm tends to behave like a slow uniprocessor. The over-
head of building, decorating, and destroying leaf nodes appears to overcome
whatever parallelism remains after annihilation.

On the other hand, where the parallel processes remain alive, the perfor-
mance seems to scale. Only using six to eight processors (of 100), it can beat a
linear-list sparse matrix package tuned to a uniprocessor on a sufficiently dense
matrix. Problems that are too dense, however, are still Cray-fodder. In tests
on hypermatrices, this algorithm running on four processors beat the linear-list
package when hypermatrix entries were 8 x 8 or larger; on sixteen processors
when the entries were 6 X 6 or larger. Therefore, this algorithm seems to be
targeted for a middle ground—not too sparse and not too dense—or for an
architecture more friendly to it.

6 Conclusion

In a practical sense, we have not demonstrated that this representation is suc-
cessful, but we have confirmed the nature of problems that can use it. And we
have shown that it responds very well to parallelism, in some respects (annihi-
lation of processes) better than was anticipated.

However, regardless of its status among practitioners of matrix algebra, its
role before this audience is as a representative of a promising family of matrix
algorithms. It is presented to you a an algorithm for functional programming;
I have coded it and its kin in pure Scheme and Haskell. The challenge is that
your favorite array language should be able to express it, as well.

Whatever code results in any of these languages should address the goals that
motivated it. Eventually a compiler—if not the programmer—must be able to
extract parallelism from unannotated source code that might be written today.
This means heavy use of algebra and mapping functions, where all functional
languages can shine; most are rich in the former, but few yet in the latter.

The intent of this algorithm is to admit block operations as “first-class”
citizens in matrix arithmetic. To that end, the tree representation has been
convenient to limit the population of “blocks” and also to facilitate divide-and-
conquer algorithms that ameliorate identification and scheduling of independent
processes. It also provides an address (the root) where complicated structures
carry summarizing decoration, so that the bandwidth to share a tree and its
decoration collapses. An extreme case of this compression is the definition of
additive/multiplicative identities/annihilators as trivial constructors, allowing

13

their algebra to be realized for free. Likewise, full pivoting was proposed because
it, too, requires no additional scheduling.

Finally, this is a uniform algorithm: there is no difference between sparse
and dense matrices or anything in between. Similarly, there is no distinction
between hypermatrices, integers, floats, “bignums”, or symbolic data. Be sure
to use your favorite polymorphic type-checker.

Of course, these advantages imposed some constraints. In order to facilitate
sharing and locality, subtrees should be retained intact as much as possible
for as long as possible. Repeated row/column permutations, taken for granted
under usual matrix representations, must be avoided because they twist the tree
terribly; a shared subtree of an unpermuted matrix bears no similarity to its
arbitrary permutation. Of course, no in-place updating is specified, although
linear logic might allow it to be compiled in later.

Above all, block decomposition algorithms must descend the structure to
perform most of their computation in parallel on many substructures, rather
than serially from the root. Not only is this critical to absorbing logarithmic
access times (Table 1), but also it provides locality where, for instance, subblocks
are stored locally—either on the same distributed processor or adjacently in
cached or paged [8] memory.

My presumption that memory is a heap creates a large storage-management
problem, which a separate project at Indiana is addressing. We are already
building our second edition of a self-managing heap designed for general use
on multiprocessors like the Butterfly [16]. It would accelerate the performance
reported in the last section more than twice.

Significant work remains to be done. For instance, there has been no effort to
order the matrix before applying this decomposition. Certainly a bad ordering
can spread the data across blocks so that only scalar operations are possible;
can a good ordering be found, one that clusters the matrix into subblocks of
the proper size (powers of 2) at the proper indices (multiples thereof)? Perhaps
padding of zeroes, hitherto done only at the edges, should be injected internally,
to align blocks more favorably. Furthermore, a problem might be reordered part-
way through elimination; not only would this increase the likelihood of block
operations on resumption, but each reordering could remove level(s) from the
tree, accelerating all transactions that follow.

A novel representation and a novel approach to familiar problems has been
presented. It is encumbered by all sorts of limitations inherent in today’s ar-
chitectures and languages, which were refined for another representation and
another approach. If we find a way to write cogent parallel programs for the
new approach, then future computer designers will be able to appreciate what
is required for its proper implementation. So, if array-language designers and
implementors can deliver convenient, expressive tools to these algorithms, then
both these new languages and new algorithms will survive. Otherwise, we all will
be stuck with conventional architecture, conventional languages, conventional
algorithms, and conventional performance, because that’s all conventional com-

14

putists deserve.

References

[1]

S. K. Abdali & D. S. Wise. Experiments with quadtree representation of
matrices Proceedings 1988 Intl. Symp. on Symbolic and Algebraic Compu-
tation, Lecture Notes in Computer Science 358 Berlin, Springer (1989),
96-108.

P. Beckman. Static measures of quadtree prepresentation of the Harwell-
Boeing sparse matrix collection. Tech. Rept. 324, Computer Science Dept.,
Indiana University (Jan. 1991).

P. Beckman. Parallel LU Decomposition for Sparse Matrices using
Quadtrees on a Shared-Heap Multiprocessor. Ph.D. dissertation, Indiana
University (in preparation).

I. S. Duff, A. M. Erisman, & J. K. Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford (1989).

J. W. Demmel & N. J. Higham. Stability of block algorithms with fast
Level 3 BLAS. LAPACK Working Note 22, Computer Science Dept., The
Univ. of Tennessee (revised: July 1991). ACM Trans. Math. Software (to

appear).

I. S. Duff & R. G. Grimes & J. G. Lewis. Sparse matrix test problems.
ACM Trans. Math. Software 15, 1 (March, 1989), 1-14.

V. N. Faddeeva Computational Methods of Linear Algebra. Dover Publi-
cations, New York (1959). Translated from Russian, originally published
Moscow (1950).

P. C. Fischer & R. L. Probert. Storage reorganization techniques for matrix
computation in a paging environment. Comm. ACM 22, 7 (July 1979),
405-415.

G. H. Golub & C. F. Van Loan. Mairiz Computations 2nd edition. The
Johns Hopkins University Press, Baltimore (1989).

P. Hudak. Arrays, non-determinism, side-effects, and parallelism: a func-
tional perspective (extended abstract). In J. Fasel and R. Keller (eds.)
Graph Reduction. Lecture Notes in Computer Science 279, New York,
Springer (1987), 312-327.

P. Hudak & P. Wadler (eds.) Report on the Programming Language
Haskell, a Non-strict, Purely Functional Language, Version 1.2. ACM SIG-
PLAN Notices 27, 5 (May, 1992).

15

[12] H. Samet. The quadtree and related hierarchical data structures. Comput.
Surveys 16, 2 (June, 1984), 187-260.

[13] G. W. Stewart Introduction to Matriz Computations. Academic Press, New
York (1973), 154.

[14] V. Strassen. Gaussian elimination is not optimal. Numer. Math. 13, 4 (Aug.
1969), 354-356.

[15] D. S. Wise. Representing matrices as quadtrees for parallel processors (ex-
tended abstract). ACM SIGSAM Bulletin 18, 3 (August 1984), 24-25.

[16] D. S. Wise. Design for a multiprocessing heap with on-board reference
counting. In J.-P. Jouannaud (ed.), Functional Programming Languages
and Computer Architecture, Lecture Notes in Computer Science 201,
Berlin, Springer (1985), 289-304.

[17] D. S. Wise. Parallel decomposition of matrix inversion using quadtrees.
Proc. 1986 International Conference on Parallel Processing (IEEE Cat.
No. 86CH2355-6), 92-99.

. S. Wise. Matrix algebra and applicative programming. In Kahn, G.
18] D. S. Wise. Matrix algeb d licati g ing. In Kahn, G
(Ed.), Functional Programming Languages and Computer Architecture,
Lecture Notes in Computer Science 274, Springer, Berlin, 1987, 134-153.

[19] D. S. Wise & J. Franco. Costs of quadtree representation of non-dense
matrices. J. Parallel Distrib. Comput. 9, 3 (July 1990), 282-296.

[20] D. S. Wise. Undulant-block pivoting and (L + U), D’ decomposition. Tech.
Rept. 328, Computer Science Dept., Indiana University (Sept. 1991).

16

