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Abstract

The DDD-FM9001 is a 32-bit general purpose microprocessor formally derived directly from Hunt's

mechanically veri�ed Nqthm FM9001 microprocessor speci�cation. The exercise was part of a project to

construct an implementation of the FM9001 by applying the DDD design derivation system to the Nqthm

FM9001 speci�cation. The main thesis of this work maintains that derivation and veri�cation represent

interdependent facets of design and must be integrated if formal methods are to support the natural

analytical and generative reasoning that takes place in engineering practice. In this paper we describe

the continuation of previous work in which the DDD system was applied to Hunt's FM8501 speci�cation.

This paper describes the derivation of the DDD-FM9001 and compares the derived architecture and

hardware realization with that of the FM9001 in an e�ort to better understand the interplay between

derivation and veri�cation.

1 Introduction

Derivation and veri�cation are interdependent facets of design which re
ect alternate modes of reasoning

in the design space. Derivation re
ects a design perspective where algebra is used to correctly transform a

speci�cation into an implementation. Veri�cation re
ects a design perspective where a proof establishes that

an implementation satis�es its speci�cation.

As a continuation in our e�orts to understand how derivation and veri�cation are interrelated, we ap-

plied the DDD system [11, 12, 14], a transformation system which implements a basic design algebra of

equivalence preserving transformations for circuit derivation, to Hunt's FM9001 speci�cation [10]. Hunt

mechanically veri�ed the FM9001 in the Nqthm theorem prover [5]. A set of transformations were applied to
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decompose and reorganize the design. A controller, next-state function, and datapath were derived. Com-

plex components, such as the memory, register �le, ALU, incrementor, and decrementor, were isolated using

DDD's abstraction mechanisms. Technology dependent, highly optimized implementations of the arithmetic

components were engineered and veri�ed against their respective abstract speci�cations. The derived and

arithmetic components were implemented in an ACTEL FPGA (�eld programmable gate array) [1]. The

memory and register �le were implemented using SRAM components. The result of this experiment was a

derived FM9001.

This work extends the experimentation on the interplay between derivation and veri�cation that was

reported in [15]. Previous work applied the DDD system to Hunt's FM8501 description [9]. Results of this

work exposed the need to take a broader view of formal reasoning in design. The DDD/FM8501 experiment

illustrated how alternative modes of reasoning could be applied to a single design. The work showed how the

massive restructuring involved at lower levels of abstraction could be implemented more easily by derivation,

and how the inventive aspects of a design could be isolated for veri�cation.

The DDD/FM9001 exercise extends the previous work on the FM8501 in three ways. First the derivation

was upgraded in conjunction with Hunt's re�nements to representation. Second, much more of the algebra

was mechanized; in fact, the entire ACTEL gate-level hardware description was generated either by mechan-

ical derivation or veri�ed using boolean equivalence methods [2, 6]. Finally, the DDD-FM9001 was realized

in hardware.

2 Experiences from the FM8501 Experiment

In the FM8501 proof [9], Hunt established an equivalence relation between speci�cations of an abstract

programmer'smodel, called soft, and an implementation, a hardware interpreter model, called big-machine.

DDD was applied to both the abstract programmer's model, soft, and the hardware interpreter model,

big-machine. The derived architecture for soft was quite close to Hunt's implementation, however, it did

not contain certain key registers such as those associated with the memory protocol. These registers were not

expected to arise in the derivation since they did not exist in the original speci�cation of soft. In fact, this

di�erence highlighted an essential aspect of Hunt's proof. Hunt's proof established an equivalence relation

between a functional model of memory with that of a process model of memory.

In the second derivation exercise, DDD was applied to the hardware interpreter model, big-machine,

to guide a top-down expansion of the design. Unlike Hunt's approach, in which a bottom-up expansion of

big-machine resulted in over 11 million gates (reduced to 1,789 gates with the identi�cation of like terms),

algebraic manipulations were used to unfold, decompose, and restructure big-machine while containing the

size of the expansion. The derived architecture was identical to Hunt's block diagram.

Experiences with the FM8501 experiment developed two central ideas. The derivation of soft exposed

elements of an implementation that could not be derived from a speci�cation. These elements re
ected

isolated components of a design that must be proved. The big-machine derivation illustrated the need for

transformational algebra to restructure and decompose a design in order to manage the logical and physical

organization necessary to construct a realization targeted to a particular technology. Our experiences with
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Figure 1: DDD-FM9001 Derivation Path

the FM8501 gave us insight into the FM9001 derivation.

3 The FM9001 Microprocessor

The FM9001 [10] is a 32-bit microprocessor representing the third generation processor description de�ned

by Hunt and mechanically veri�ed using the Nqthm theorem prover [5]. The proof establishes an equivalence

relationship between four levels of speci�cations ranging from an abstract programmer's model interpreter to

a netlist.

The highest level of speci�cation (Figure 3) is a collection of six recursive functions de�ning an instruction

level interpreter of the FM9001. This level is referred to as the programmer's model. The composition of

these six functions de�ne an abstract behavioral description: the FM9001 interpreter. The state of the

machine is de�ned by a memory, mem, a register �le, regs, four 
ags, c,v,n,z, a program counter, pc-reg,

an instruction register, ins, the operand registers, operand-a and operand-b, and an address calculation

register, b-address. The programmer's model is de�ned to have 32-bit addressing, 16 general purpose

registers, 5 addressing modes, a 16 function ALU, and a conditional assignment statement. A block diagram

of the architecture is illustrated in Figure 4.
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4 Description of the DDD-FM9001 Derivation

The DDD-FM9001 derivation was done interactively with the DDD system. The transformations were

applied to the speci�cation, developing a derivation path through the design space satisfying an intended set

of design constraints. An initial script was developed to re
ect a sequence of commands to the DDD system.

Several derivation paths were explored and the derivation re�ned. The �nal derivation script includes 30

coarsely grained commands to the derivation system. The complete script consists of 1,000 lines with a total

of 38,000 characters.

Figure 1 illustrates the derivation path from Hunt's FM9001 Speci�cation to the DDD-FM9001 Real-

ization. Transformations on the descriptions are shown as labeled arcs, < �1:::�6; �1 >, where �n denotes

the application of a transformation and �r denotes veri�cation. The diagram is intended to characterize

the distinct phases of the derivation. A class of transformations called, behavioral transformations, were

applied to the initial speci�cation in order to achieve a proper scheduling of operations. Once a suitable

behavioral description was derived, DDD constructed an abstract system description, composed of a deci-

sion combinator, Select, representing control, and a structural component, System, representing an initial

estimation of architecture. A second class of transformations, called structural transformations, imposed a

logical organization on the design. In this phase of the derivation, the structural description was re�ned to an

architecture. A sequence of factorization steps were applied encapsulating complex signals as co-processes.

The k operator denotes a communicating subsystem. Implementations for the arithmetic components were

hand designed and mechanically veri�ed with respect to the factored components. A third class of trans-

formations introduced a lower-level representation producing a hierarchy of boolean subsystems. A �nal

gate-level description was input to the ACTEL logic synthesis tool. A detailed account of the derivation

follows.

Transformations on the Behavioral Speci�cation

�1 : An initial set of transformations were applied to the FM9001 behavioral speci�cation. Some auxiliary

de�nitions were expanded and conditional expressions manipulated in order to rearrange the speci�ca-

tion. For example, conditional expressions were moved outside the function invocation. The function

invocation fm9001-alu-operation is transformed in order to move the conditional outside the call.

(fm9001-alu-operation

... (if (reg-direct-p mode-b)

(read-mem (rn-b ins) regs)

(read-mem b-address mem)) ...)

is transformed to

(if (reg-direct-p mode-b)

(fm9001-alu-operation ... (read-mem (rn-b ins) regs) ...)

(fm9001-alu-operation ... (read-mem b-address mem) ...))
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In DDD, this has the e�ect of moving the decision point of a predicate into the synthesized control

component. If the conditional had been left within the function invocation, it would be implemented

in the architecture.

�2 : In a process analogous to scheduling in high-level synthesis [16], the DDD system was guided through

a series of folding and unfolding transformations in order to achieve a desired scheduling of operations.

This was discussed in [15] but not mechanized at the time. The goal was to reduce the inherent

parallelism in the original speci�cation. In this phase, called serialization, a function call is replaced

by a sequence of function calls, whose composition is equivalent to the original term. New registers

may also be added if necessary to store intermediate results.

For example, the fm9001-fetch function in Figure 3 was serialized to impose an ordering on the

memory and register �le read/write operations. A new function was created to represent the addition

of a state. A temporary register, tmp, was also created to hold the intermediate value being read

from the register �le. In this example, further serialization steps will be necessary to serialize the two

remaining read/write operations on the register �le and memory in fm9001-fetch 1.

...

(defn fm9001-fetch (regs flags mem pc-reg)

(let ((tmp (read-mem pc-reg regs)))

(fm9001-fetch_1 regs flags mem pc-reg tmp)))

(defn fm9001-fetch_1 (regs flags mem pc-reg tmp)

(let ((ins (read-mem tmp mem)))

(let ((pc+1 (v-inc tmp)))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem ins)))))

...

Seven serialization steps were necessary to produce a design in which abstract operations on memory

and the register �le were restricted to at most one memory access per state. The operations were also

serialized to insure that accesses to memory and the register �le could be multiplexed. A single

temporary register and �ve new states were added to the design.

System Synthesis

�3 : The next step involves a series of transformations which decompose the behavioral speci�cation into a

control abstraction and a structural component. Details of this transformation is reported in [4, 11, 14].

The transformations are completely automatic and require no user guidance. At this point in the

derivation, the structural component represents an initial estimation of architecture and a logical

organization must be imposed on the design.
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Structure to Architecture

�4 : In the next phase, DDD's abstraction mechanisms were used to transform the design into a reasonable

description of functional components for implementation. Operations were encapsulated in modules

and complex components such as the memory, register �le, ALU, incrementor, and decrementor were

factored from the description [13]. Figure 2 diagrams this decomposition.

The isolation of components into abstract modules provides a mechanism by which individual

components can be veri�ed. It is this process which is exploited in the derivation that allows the

integration of veri�cation.

�5 : As an optimization, the data bus for the memory and register �le were merged. The next-state function

was derived.

Architecture to Physical Organization

�6 : Next, concrete representations were introduced for the constants and operations of the ground type. A

collection of boolean subsystems were then generated. This set of transformations represent a massive

restructuring of the design. The transformations could not have been done manually. For example, the

datapath description increased by a factor of approximately 11 by going from a description of 8,000

characters, to a description of approximately 90,000 characters.

At this stage in the derivation, the design had been decomposed into a controller, a datapath, and

abstract modules for memory, the register �le, ALU, incrementor, and decrementor. The controller

and datapath could be assembled directly into hardware. The memory and register �le could be

implemented with SRAMs. However, we wanted to implement an engineered solution for the ALU,

incrementor, and decrementor. These modules needed to be veri�ed to preserve the integrity of the

design.

Boolean Veri�cation

�1 : The veri�cation of the arithmetic components in the DDD-FM9001 reduced to verifying a boolean

term, constructed from the FM9001 abstract ALU speci�cation, was equivalent to a hand designed

multiplexor design tuned for the ACTEL FPGA architecture. Details of the veri�cation are reported in
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[3]. Algebraic techniques were used to construct a boolean term from the abstract ALU speci�cation.

Symbolic evaluation, where base operators are extended to return symbolic values and symbols are

introduced as input values in place of real data objects [8] , was applied to both the abstract ALU

speci�cation and the ACTEL multiplexor implementation.

For example, to construct a boolean term from the expression (v-and operand-a operand-b),

where operand-a and operand-b denote 32-bit vectors:

(defn operand-a

'(operand-a_0 operand-a_1 ... operand-a_31))

(defn operand-b

'(operand-b_0 operand-b_1 ... operand-b_31))

and the de�nition for v-and given below:

(defn v-and (x y)

(if (nlistp x) nil

(cons (b-and (car x) (car y))

(v-and (cdr x) (cdr y)))))

Symbolically evaluating (v-and operand-a operand-b) returns

(b-and (b-and operand-a_0 operand-b_0)

(b-and (b-and operand-a_1 operand-b_1)

...

(b-and operand-a_31 operand-b_31)))

Technology dependent, highly optimized implementations of the ALU, incrementor, and decremen-

tor were engineered to map to the ACTEL FPGA architecture. The designs were then veri�ed in

COSMOS [7] using Boolean veri�cation [2, 6] against their respective abstract speci�cations. Figure 5

shows what aspect of the design was veri�ed and what was derived. The shaded area denotes the

components that were veri�ed. The unshaded components, except for the register �le, R, were derived.

4.1 DDD-FM9001 Realization

The �nal result of the derivation was a realization of the DDD-FM9001 speci�cation. The DDD-FM9001

realization is implemented as a chip set incorporating an ACTEL FPGA and a SRAM module for the register

�le. The register �le was made external due to the area limitations of the the ACTEL FPGA technology

and speed considerations. The design was targeted to FPGAs since they provided a cost e�ective rapid

prototyping solution.
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(defn fm9001-intr (state oracle)

(if (nlistp oracle) state

(fm9001-intr (fm9001-step state (car oracle)) (cdr oracle))))

(defn fm9001-step (state pc-reg)

(let ((p-state (car state)) (mem (cadr state)))

(fm9001-fetch (regs p-state) (flags p-state) mem pc-reg)))

(defn fm9001-fetch (regs flags mem pc-reg)

(let ((pc (read-mem pc-reg regs)))

(let ((ins (read-mem pc mem)))

(let ((pc+1 (v-inc pc)))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem ins))))))

(defn fm9001-operand-a (regs flags mem ins)

(let ((a-immediate-p (a-immediate-p ins))

(a-immediate (sign-extend (a-immediate ins) 32))

(mode-a (mode-a ins)) (rn-a (rn-a ins)))

(let ((reg (read-mem rn-a regs)))

(let ((reg- (v-dec reg)) (reg+ (v-inc reg)))

(let ((operand-a (if* a-immediate-p a-immediate

(if* (reg-direct-p mode-a) reg

(if* (pre-dec-p mode-a) (read-mem reg- mem)

(read-mem reg mem))))))

(let ((new-regs (if* a-immediate-p regs

(if* (pre-dec-p mode-a) (write-mem rn-a regs reg-)

(if* (post-inc-p mode-a) (write-mem rn-a regs reg+) regs)))))

(fm9001-operand-b new-regs flags mem ins operand-a)))))))

(defn fm9001-operand-b (regs flags mem ins operand-a)

(let ((mode-b (mode-b ins)) (rn-b (rn-b ins)))

(let ((reg (read-mem rn-b regs)))

(let ((reg- (v-dec reg)) (reg+ (v-inc reg)))

(let ((b-address (if* (pre-dec-p mode-b) reg- reg)))

(let ((operand-b (if* (reg-direct-p mode-b) reg (read-mem b-address mem)))

(new-regs (if* (pre-dec-p mode-b) (write-mem rn-b regs reg-)

(if* (post-inc-p mode-b) (write-mem rn-b regs reg+) regs))))

(fm9001-alu-operation new-regs flags mem ins operand-a operand-b b-address)))))))

(defn fm9001-alu-operation (regs flags mem ins operand-a operand-b b-address)

(let ((op-code (op-code ins)) (store-cc (store-cc ins)) (set-flags (set-flags ins))

(mode-b (mode-b ins)) (rn-b (rn-b ins)))

(let ((cvzbv (v-alu (c-flag flags) operand-a operand-b op-code))

(storep (store-resultp store-cc flags)))

(let ((bv (bv cvzbv)))

(let ((new-regs (if* (and* storep (reg-direct-p mode-b)) (write-mem rn-b regs bv) regs))

(new-flags (update-flags flags set-flags cvzbv))

(new-mem (if* (and* storep (not* (reg-direct-p mode-b)))

(write-mem b-address mem bv) mem)))

(list (list new-regs new-flags) new-mem))))))

Figure 3: Hunt's FM9001 Programmer's Model Speci�cation
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5 Observations and Future Work

The DDD-FM9001 and FM9001 are equivalent in the sense that they share a common abstract speci�cation.

Both processors de�ne a formal relationship between the abstract programmers model speci�cation and

its implementation. The DDD-FM9001 was derived and the FM9001 was veri�ed. In terms of hardware

realizations, the machines execute the same instruction set and exhibit the same state to state behavior for

each instruction cycle. At the end of each instruction, the contents of the register �le, and memory are

equivalent. However, the implementations di�er in several key respects.

Some of the quantitative di�erences between the FM9001 veri�cation and DDD-FM9001 derivation are

given in the table below. The table provides some basis for analysis, however the interesting comparisons

relate to the di�erences in architecture.

FM9001 Veri�cation DDD-FM9001 Derivation

Script entries 2957 entries 1000 lines

Execution time 4hrs (Sparc 2) 30min (Sparc 2)

Netlist 91K characters 69K characters

2215 lines 1178 lines

I/O Pins 95 92

32 bi-directional 32 bi-directional

The block diagrams for the FM9001 and DDD-FM9001 (Figure 4 & 5) show similar yet distinct architec-

tures. This is not a surprise since the goal of the derivation was not to achieve the identical implementation

as the FM9001, but to derive an implementation that preserved the behavior of the initial speci�cation.

The DDD-FM9001 has a temporary register, T, which does not exist in the FM9001. The register was a

result of a design decision made by the designer during the serialization phase of the derivation. A temporary

register was created in order to store an intermediate value. Liveness analysis of the registers would allow

us to eliminate this register by using an existing register instead.

The DDD-FM9001 implements both an incrementor and decrementor. The FM9001 implements only a

decrementor. The FM9001 ALU is used to implement the increment operation. Serialization can be used to

make sure the ALU, incrementor and decrementor operations are scheduled so that they do not occur in the

same clock cycle. This would allow us to factor the arithmetic operations as a single component and verify

it against an implementation.

The signi�cant di�erence between the FM9001 and the DDD-FM9001 is the absence of the dtack and

hold registers, and the scan path, in the derived design. The dtack signal relates to the change in the model

of memory from a functional abstraction to a process abstraction. This di�erence isolates an aspect of the

veri�cation of the FM9001. They could not be derived since they did not exist in the original speci�cation.

We have developed a formalism for process decomposition to address this very issue[17], however, at the

time of this derivation exercise, the function was not integrated with DDD.

At present, a new derivation is under way. In this derivation, the behavioral speci�cation will be serialized

such that the incrementor, decrementor and ALU operations will be implemented with a single arithmetic
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component. In addition, live variable analysis will be integrated with the serializer so that we can use the

operand-a and operand-b registers instead of the temporary register. Also, sequential abstraction will be

incorporated in order to derive an implementation with the appropriate synchronization protocols necessary

to interface with a DRAM implementation of memory.

As we begin to understand the interplay between derivation and veri�cation, we can move towards a design

framework which supports both forms of reasoning. In this paper we discuss a small aspect on how derivation

and veri�cation interrelate. In the DDD-FM9001 experiment, boolean veri�cation was incorporated into the

derivation path providing a formal mechanism to verify the arithmetic components of the design. However,

we are interested in the broader issues relating to how multiple reasoning systems in a peer relationship

interact in design. We feel that these issues, at the core, are subtle and will require further investigation.
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