256 Ugser-Defined Data Types

list_of _lists case of y.tl
NIL: join{cons(y.hd.cary.hd.cdr)y.tl)
join: join(merge(cons(y.hd.car,y.hd.cdr),hd(y.t]),
pair_merge(ti(y.t))
SIMPLIFIES TO:
- TRUE
PROOF OF +5 RELATIVE TO THE ASSERTIONS: +7

The sample theorems proved in this paper are typical of the theorems which
can be proved using our verifier with a reasonable amount of programmer
guidance. Among the theorems we have proved using our verifier are: the total
correctness of a program implementing a unification algorithm (assuming all
variables have been renamed), the equivalence of an iterative algorithm (using a
stack) and a simple recursive algorithm for counting the leaves of a binary tree,
the total correctness of an extended version (including assignment) of the
McCarthy-Painter compiler for arithmetic expressions [McCarthy and Painter
19671, and the total correctness of a very simple set of data base management
functions.

FURTHER WORK

At the moment, we are concentrating our research efforts in two areas:

1) Extending our verification system to handle partial functions so that we can
prove the correctness of a simple compiler.

2) Enlarging the class of theorems the simplifier can automatically prove, without
jeopardizing the verifier's potential usefulness as a practical tool.

Eventually we hope to extend TYPED LISP to include enough "impure” features

such as assignment to make it a practical language for implementing real

programs.

ACKNOWLEDGMENTS

I would like to thank my advisor David Luckham for his patient guidance and
encouragement, and my colleagues Derek Oppen, Nicholas Littlestone, and
Richard Weyhrauch for their helpful advice and criticism.

REFERENCES

Boyer, R. S, and J S. Moore (1975) Proving Theorems about LISP Functions. /.
Ass. Comput. Mach. 1, 129-144. ,

Cartwright, Robert (1976) A Practical Formal Semantics and Verification System
for TYPED LISP, forthcoming A. I. Memo, Computer Science Department,
Stanford University.

Hoare, C. A. R. (1973) Recursive Data Structures. A. 1. Memo 223, Computer
Science Department, Stanford University.

McCarthy, J. and J. A. Painter (1967) Correctness of a Compiler for Arithmetic
Expressions. Proc. Symp. Appl. Math. 19, 33-41.

Moore,] S. (1975) Computational Logic: Structure Sharing and Proof of Program
Properties. CSL 75-2, Xerox Palo Alto Research Center, Palo Alto, California.

SRR

D.P. Friedman
D.S. Wise

CONS SHOULD NOT EVALUATE ITS ARGUMENTS

The constructor function which allocates and fills
records in recursive, side-effect-free procedural
languages is redefined to be a non-stftnfet (Vuille-
min 1974) elementary operation. Instead of evalu-
ating its arguments, 1t builds suspensions of themn
which are not coerced until the suspension is
accessed by a strict elementary function. The
resulting evaluation procedures are strictly more
powerful than existing schemes for languages such
as LISP. The main vresults are that Landin's streams
are subsumed into McCarthy's LISP merely by the
redefinition of elementary functions, that invoca-
tions of LISP's evaluator can be minimized by re-
defining the elementary functions without redefining
the interpreter, and as a strong conjecture, that
redefining the elementary functions yields the
least fixed-point semantics for McCarthy's evalua-
tion scheme. This new insight into the role of
constructor functions will do much to ease the in-
terface between recursive programmers and iterative
programmers, as well as the interface between
programmers and data structure designers.

INTRODUCTION

It i§ common to perceive functional evaluation as
requiring argument evaluation to be completed be-
fore actual functional application begins. In com-
puter programs, however, there has been considerable
development of delayed argument evaluation through
schemes such as call-by-name in ALGOL 60. Probably
because of obsession with arithmetic examples,

which are strict (that is, require all arguments in
evaluated form), it has been commonly assumed that
all elementary functions were strict. During the
course of a project on compilation of pure recursive
LISP 1.0 (McCarthy et al. 1962) source code into
iterative object code, we have uncovered a critical
class of elementary functions which probably should
never be treated as strict: the functions which

258 CONS should Not Evaluate its Arguments

allocate or condtruct data structures.

We use the term cond to refer to this class of
functions and later to refer to a particular func-
tion which allocates records of two fields. The
term is common to several list processing languages
(McCarthy et al. 1962; Burstall, Collins, and
Popplestone 1971) which require that the arguments
to consd Ffix the values of the fields in the new
record. This requirement 1s essential to our analy-
sis because we assume a side-effect-free evaluation
scheme in order to guarantee the integrity of envi-
ronments which are passed subliminally about the

system.
It is our thesis that the fields of a newly allo-

cated record can be filled with a structure repre-
senting the suspended evaluation of the respective
argument, instead of the value of that argument, as
is done on systems with strict implementation of
consd. If all other elementary functions are able
to detect these suspensions and to force evaluation
only at the time that the value is genuinely criti-
cal to the course of the computation (necessary to
the value of the main function), then the results
are the same as those of a strict evaluation scheme
whenever both converge. Convergence is more likely
in the new scheme since potentially divergent yet
immaterial argument evaluation can be avoided. In
programming terms the scheme allows exponential im-
provement in run times at the cost of linear degra-
dation of the elementary system functions' times
and of space overhead in dragging around environ-
ments. We arve interested in the insights provided
for the recursion-compiler problem because the role
of constructors is critical in the definition of
the source language.

Hoare (1975) has discussed the role of cons in
building recursive data structures. The power of
these structures is welcome because our restriction
to purely recursive programs allows us no other

kind. The language model we shall use is McCarthy's
LISP, known in its basic form as LISP 1.0 or pure
LISP. We owe a great deal to his definition and

description of the language in terms of its own
structures using only five elementary functions.
The major results of this paper, in effect, have
been implemented on his system with dramatic
effects on his semantics resulting from simply
changing three of these five functions.

Landin approached the non-strict implementation

FRIEDMAN, WISE 259

of cons in his discussion of streams (Landin 1965).
He describes three elementary functions which accom-

plish a cons strict in only one of its two parameters.

This version is satisfactory when the recursion
pattern is peculiarly linear and when semantic
improvements available from these structures
within the interpreter can be ignored.

The remainder of this paper is divided into five
sections followed by conclusions. Section I is a
brief introduction to LISP notation as interpreted
in this paper. Section II presents definitions of
the five elementary functions used for the defining
%anguage. They provide that consé does not evaluate
its arguments, but delays them in a form detectable
and coercible by two of the other four strict ele-
mentary functions. Results in this section are
proofs that McCarthy's interpreter built with these
glementary functions is properly more powerful than
it was as originally specified, and a strong conjec-
ture that the new interpreter, in fact, gives the
least fixed-point semantics for LISP. Section III
presents a practical implementation for suspensions
which prevents repeated coercion of the same sus-
pension. This is accomplished by storing the ulti-
mate value back into the node which ought to have
contained it in the original interpretation scheme,
replacing the suspension which led to it.

Section IV relates Landin's streams to LISP as in-
terpreted with the new coné. Streaming is shown to
be less powerful by considering cases where evalua-
tion should not follow a sequential pattern. An
analogy between streams and sequential files is ex-
tended to an analogy between suspensions and random
access (overlapping tree structure) files which
suggests that file handling may be implicit in pro-
gramming style. In Section V we consider familiar
functions whose arguments are to be selectively
evaluated which have hitherto been implemented in
LISP as special forms but now are expressible as
ordinary functions.

I. LISP

The five elementary functions presented by McCarthy
will be called :can, :cdr, :cons, :eq, and :atom.
These functions are redefined in two ways to allow
the interpretation of coné to postpone evaluation
of its arguments. In both cases the five are sim-
ply called can, cdr, cons, eq, and afom. Our first

260 CONS Should Not Evaluate its Arguments

redefinition is sufficient for the theoretical
results in Section II and even Section IV, but are
extremely inefficient. The versions of basic func-
tions presented in Section III yield a system of
equivalent power, but are more efficient and these
definitions are used in both Section IV and Section
V.

The notation used throughout the paper for form
invocation is the S-expression of McCarthy. The
invocation (f a b ¢) asks that the function, f, be
applied to the arguments a, b, and c¢. Usually this
means that the values of the three actual parameters
are to be bound to the three formal parameters
in the interpretation of the body of f, but there
are exceptions. If f were a special form (McCarthy
1962), then the list of the three unevaluated
arguments would be bound to the first actual
parameter of f. If f were defined with a nontrivial
atom as 1its formal parameter list, as discussed in
Section V, then the list of the three values associ-
ated with the arguments would be bound to that atom.

A List is a sequence of zero or more atomic
elements or lists. A list is also written using the
parenthesis notation; whether the interpreter
accesses it as an expression rather than as a value
determines whether evaluation will occur. The empty
list is denoted by the atom NIL®; the value of
(:car z) is the first element on the list, z; the
remainder of the list, z, exclusive of (:car z) is
(:cdr z); (:cons g z) gives the list which is the
list z with the form q stuck on the front.

A little of the record manipulation of LISP is
needed for Section III. Atoms are references to
distinguishable structures. The rest of the data
structure 1s represented by references to records
of two fields: the A-{ield and the D-{ield. New
nodes are available through :(cons which places its
two arguments in the A-4Leld and D-fLeld, respec-
tively. The functions :eat and tcdi extract the
respective fields from a reference to a non-atomic

structure. The predicate :fafom tests if its argu-
ment 1s atomic, and the predicate. :¢¢ tests 1f its
two atomic arguments are the same. On non-atomic

arguments :eq is undefined.

*Symbol strings composed entirely of upper case
letters are constants; that is, they evaluate to
themselves. LISP provides the function quofe for
this role; only atoms may be quoted.

FRIEDMAN, WISE 261

We have made a notational change in the syntax
of conditional expressions which needs to be
explained only to LISPers who have thus far breezed
through this section. McCarthy's conditional form,
cond, requires its tail to be structured as a series
of lists of two elements which are often called
"cond-pairs." Rather than introduce the redundant
extra parentheses which make the pairings explicit,
we use the commenting keywords 4§, then, elsedif,
and efse to group and to enhance legibility. In
the interpreter we define cond to take its predi-
cates and selections unpaired as one long alterna-
ting list. The reader who wishes to interpret an
invocation of cond literally should ignore the com-
menting keywords.

For example, we postulate the predicate same
which is defined only in terms of feq and :atom,
exclusive of the other three elementary functions
whose semantics are altered in this paper.

(same sexp atm) Z (cond
44 (:atom sexp) then (:eq sexp atm)
efse NIL).

This function is a convenient way of avoiding
applications of :¢q to non-atoms in the interpreter.
In many implementations :eq¢ is a reference compara-
tor, which is sufficient for its semantics but also
provides unnecessary comparisons on non-atoms.

Even in McCarthy's Appendix B interpreter :eq is
applied to (potential) non-atoms in a manner which
we judiciously avoid with sdme.

II. ALLOCATING WITH INCOMPLETE CONTENTS

Degindition: A function is stndet An L3 th param-
eten if divergence of its ith argument implies the
function diverges with that argument.
Definition: A function is sfndiet (Vuillemin 1974)
if it is strict in all of its parameters.

A strict function may be evaluated by evaluating
all of its arguments before its definition is

interpreted. If it is strict in only a few’
parameters then the corresponding arguments may be
evaluated first. In an environment where all func-

tions are strict, the behavior is like the call-by-
value scheme of ALGOL 60, Vuillemin specifies that
all elementary (machine level) functions, except
conditional expressions, are strict, although other

262 CONS should Not Evaluate its Arguments

functions need not be. The foundation of our
scheme is that we weaken this requirement.

In recursive programming languages the role of
the constructor function, here called consé (McCarthy
1963; Burstall, Collins and Popplestone 1971), is
to allocate a new node from the available space
pool and to fill its fields with its arguments.
Languages with iterative control structures and
assignment statements separate these two operations
with sequential statements, allowing fields to be
undefined while other operations intervene. In both
protocols, the value returned by ¢0ns is a reference
to the allocated node.

Definition: A foam is an unevaluated expression.
Defindtion: An environment is a function which maps
formal parameters to their values.

Defindition: A suspension is a data structure, acces-
sible only to the interpreter of a program, which

is composed of a form and an environment for the
form's eventual evaluation.

A suspension provides enough information to eval-
uate a form whenever its value is needed. This ob-
tains because an environment 1s not subject to side~
effects which could invalidate delayed evaluation.
Several languages like LISP and SIMULA (Dahl and
Nygaard 1966) allow the environment to be.accessible
as a single data structure. By hiding the environ-
ment in a data structure inaccessible to the user,
we avoid such a situation. The function, suspend,
takes a form and an environment as arguments and
creates a suspension from them. The auxilliary
selector functions, foam and env, are defined over
suspensions to return the respective fields. There
is also a type predicate, suspended®.

Our cons allocates a fresh node from available
space and fills the appropriate fields with a
suspension for each argument. This specification
makes no assumption about the number of fields
within a node, but assumes each field must be large
enough to hold a reference to a suspension instead
of the eventual value of the suspension. Our
examples will presume a node of only two fields,

%#From these definitions, suspend, foam, and env
act very much like :consd, :car andicdi. The dif-
ference is that the nodes created by suspend and
tcons are disjoint and clearly distinguished by
suspended whose domain is the set of references
within the system.

FRIEDMAN, WISE 263

which is a model sufficient to represent a node of
any size through the '"naturally corresponding' list
structure described for trees by Knuth (1975). This
gonvention of suspending arguments for cons allows
it to be non-strict yet never allows the contents of
an allocated node to be undefined. The value re-
turned by coné, as in the earlier protocols, is a
reference to the newly allocated node.

First Redefinition of the Primitives

We prgsent a reinterpretation of the elementary
functions for LISP. The elementary predicates, at
least, will not be confused because

(eq g ») 2 (:eq g v)
and
(atom q) = (:atom q)

Cons is a special form (McCarthy 1962) which takes
two arguments that becaome a single list of two

forms bound to.its first formal parameter. Whatever
environment exists at the time of invocation of

cons is bound to the second formal parameter. We
define consé through scons:

(scons arg env) =
(:cons (suspend (:car args) env) -
(suspend (:car (:cdr args)) env))

The selectors, car and cdr always assume theip argu-
ment is a reference to a node allocated by feons,

- and never yield a suspension as a result.

(car q)

(eval (form (:car q))(env (:cap ql)));
(cdr q)

(eval (form (:cdr q))(env (:cdr al))).

If the evaluation process traverses other suspen-

sions, those other suspensions are only encountered
within car and cdi so evaluation continues. Eval-
uation within those two functions, called coexrcion,

?erminates when an atom or an application of aons
18 encountered.

e

Observation 1: The structures built with sc0ns
have the property that the nodes allocated by :cons
only contain references to nodes allocated by sus-
pend, and that the nodes allocated by suspend con-

tain only references to nodes allocated by :cons or
to atoms.

The evaluation scheme specified appears to be
the same as the usual call-by-value protocol similar
to that of ALGOL 60. There is a very significant

264 CONS Should Not Evaluate its Arguments

difference: not in when evaluation occurs, but
in how far evaluation proceeds. When call-by-name
forces evaluation on an actual use of a formal param-
eter, it forces a complete evaluation because the
ALGOL 60 model presumes that all elementary func-
tions are strict, at least, in one parameter. In
our LISP model with suspensions, c0né is not strict
in any argument, so evaluation stops at the first
application of consd. As a result, the coercing of

a suspension "bottoms out'" much sconer than the
forced evaluation of a similar parameter called-by-
name . Tor example, if £, g, and h are functions and
®x, v, and z are arguments to these functions, then
evaluation of

(car (cons (cons (f x)(g y)) (h z)))

does not cause evaluation of either (f x), (g y), or
(h z). It returns a reference to

(cons (f %) (g v))

after performing two storage allocations with :cond
and constructing four suspensions with suspend. In
the evaluation of

(car (cons (f x) (cons (g y) (h 2))))
the form
(cons (g y) (h 2z))

is converted into a suspension instead of being
evaluated, and since that suspension is not acces-
sible to any permanent environment it will never be
coerced. It, like the suspension for (h z) in the
former example, 1s lost to the system garbage col-
lector.

We postulate a LISP evaluator for the side-
effect-free language known as LISP 1.0 (McCarthy
1967, Chapter one). The appendix presents an in-
terpreter patterned after McCarthy's. The eyak/
apply interpreter is the same interpreter using
McCarthy's elementary functions.

We present an example below which does not
really fit the language LISP 1.0 because it uses the
data structure '"number" and arithmetic. We use the
example in later proofs about the euaﬁ/appﬂg LISP
1.0 system which depend on order of evaluation
prather than on the properties of arithmetic. We
choose to violate the data type of LISP 1.0 in order
to present an example of a function which generates
a familiar infinite sequence. All arithmetic

FRIEDMAN, WISE 265
functions are strict.

. .. 1
Example: The infinite sequence T° G grrceopasecs

can be expressed by (terms 1) where

(terms n) Z (cons(reciprocal(square n))
(terms(addl n))).

This sequence has partial sums which converge to
w%/6, but that property is not critical to the
following discussion. The important fact is that
evaluation of (terms n) does not immediately diverge;
it results in a node referencing two suspensions.
The interpretation of this value may, nevertheless,
reflect its divergent behavior. An attempt

to print it would diverge because the print routine
traverses list structures using strict elementary
functions in order to find printable atomic ele-
ments. Other uses of (terms 1) do not reflect its
potential divergence. For instance, extracting the
third term in the sequence can be accomplished by
the form

(car (cdr (cdr (terms 1)))).

The value 1/9 results from the construction of six
suspensions during the allocation of three nodes,
and frecdprocal and square are invoked only once
during the coercion of one of those six suspensions.

First Results

The first results establish that McCarthy's LISP
1.0 interpreter, here called :eval/:apply, is
strictly less powerful than the same interpreter,
called eval/apply, which interprets cai, cda, and
cons as described above. The prototype interpreter,
presented in the appendix, forms the basis for this
argument under two interpretations: :eval/:apply
is obtained by substituting :can, :cdr, and :4cons
for all instances of cax, cda, and scons in the
eval/apply interpreter. We shall refer to a para-
meter p of the former interpreter as P to make the
substitution appear more complete.

There are several occurences of :cax, :cdi, and
‘fcond in the prototype code; these are not to be
changed. They exist because the interpreter builds
structures, argument lists and environments, and
searches them. The use of :¢0ns is required to
build these structures, but the non-strict cons is
only available through the interpreter at this time.

266 CONS Should Not Evaluate its Arguments

There is no choice but to use McCarthy's original
functions for these purposes. In Theorem 3 we shall
return to bootstrap the interpreter so that these
occurrences of icons are also non-strict.

Because the first three results rest on program-
correctness arguments (Manna and Pnueli 1970), we
must define three relations which will describe the
behavior of the two interpreters for the three kinds

of data structures used: values, argument lists,
and environments.
Defdinition: The relation ”<v” , read "coerces to

value," is defined as follows:
i) If (atom a) then a <, @ s
ii) If (not (atom y)) and x < Y then both
(car x) < (:car y) and (cdr x) < (:cdr y)
Definition: The relation "<a” , read '"coerces to
arglist," is defined as follows:
i) NIL <y NIL 3
ii) If v <, 8 and x <. Y then
(:cons r x) <, (:cons s y)
Definition: The relation "< ", read "coerces to
environment,'" is defined as follows:
i) NIL <e NIL
ii) If (atom a) , v <, 5 and x e then
(:cons (:coms a r) x) <a (:cons (:cons a s) y).

It is fortunate for testing the above relations
that the predicates, afom and :afom, as well as eq
and ‘feq, coincide. i

The first theorvem says that whenever the :eval/

tapply interpreter converges then the eval/apply inte:
preter converges to a related value from related inpu

Theorem 1: If form < :form and env <_ :env
then (eval form env) <y (:eval :form :env)

Proog: The program-correctness induction proceeds

on six invariantly true predicates:

1. If form <V :form and env <e tenv then

(eval form env) <y (:eval :form :env)

FRIEDMAN, WISE

267
2. If f£n <y :fn and args <, ‘args and
env <_ :env then (apply fn args env) <
v
(:apply :fn :arg :env) ;
3. If fp1 <V :fpl and apl <4 rapl and
env <e tenv then (pairlis fpl apl env) “e
(:pairlis :fpl :apl :env) ;
4. If (atom at) and env < :env then
e
(assoc at env) <y (:assoc at :env)
5. If wunargs <V runargs and env <o renv then
(evlis unargs env) i (revlis :unargs :env) ;
6. If tail <y :tail and env <e renv then
(evcon tail env) <y (:eveon :tail :env)
Lemma: If x <, ‘¥ and y <o 'Y then
(car x) <y (tcar :x) ; (cdr x) <v (rcdr :x)
(scons x y) A (:scons :x :y)
The first two conclusions are trivial: vacuously

when x is an atom and by definition of <y Otherwise.
In the last case (using 4cons Ffrom the appendix)

(scons x y) Z (:cons (:cons (car x) v)
(:cons (car (cdr x)) y))

which is clearly not an atom. Moreover,

(car (scons x y))
(cdr (scons x y))

(eval (car x) y) and
(eval (car(ecdr %)) y)

However,

(tcar (:scoms :x :y

(:eval (:car : :
(:cdr (:scons :x) iy) and

~
e
~—
o
~

Because (car x) < (:car :x) and (car(cdr x)) <
v

(tcar{(:cdr %)) by the first part of the lemma, and
because of invariant Predicate 1 the result is
established. [

Results like this lemma are easily obtained for
the other relations, and similar results on afom
gnd G are availlable because these predicates are
identical in both interpreters. The proof of

teval (:car (:cdr :x)):y).

268 CONS Should Not Evaluate its Arguments

Theorem 1 now degnerates into a line-by-line analysis
of the recursive code. We shall only present

the arguments on two lines: one from "eval" and one
from "apply."
Consider the CONS line in "eval.'" We want to

show that if form <v :form and env <e renv and

(not (:atom :form)) and (:atom (:car :form)) and
(:eq (:car :form) CONS) then the following are all
true:

(not (atom form)); (atom (car form));
(eq (car form) CONS);

(scons(cdr form)env) <4 (:scons(:cdr:form):env),

The proof is easy with the lemma. The first three
fall from it and the definition of <4 They and

the lemma applied twice give the last required
result verifying Predicate 1 for this case.

Finally, consider the CAR line in "apply.'" Assume
that fn <v :fn , args <a rargs env.<e renv o,

(:atom :fn) , and (:eq :fn CAR) From the defi-
nition of < we have (:car args) <y (:car :args)

and thence by the lemma (car (:car args)) <y

(:car (:car :args)) establishing this case for
Predicate 2.
The remainder of the proof is tediously similar.B

Theorem 2: McCarthy's evaluation scheme with our
three elementary functions, eval/apply, can evaluate
forms on which the unmodified evaluator, feval/
tapply, diverges.

Proo4: The example which appeared above will suf-
fice: (car(cdr(cdr(terms 1)))) which extracts the
third term from an infinite sequence. R

Next we postulate a system for eval/apply boot-
strapped upon itself so that the occurrences of
:cons in the prototype interpreter in the appendix
now create suspensions. We call this system the
supenintenpreten for reasons which will become
apparent. In the resulting system there 1s only one
breed of cons, the kind that suspends its arguments,
and only one breed of car and cdx, the kind which
coerce suspensions.

The superinterpreter is not hampered by two kinds
of errors which normally cause a function to diverge
in :eval/apply. The first case arises from the cons

FRIEDMAN, WISE 269

in evfdis. When this cons is strict every actual
parameter is evaluated; if it is an expression only
invelving strict operators, such as (quotient 1 0),
then evaluation is complete and divergence implies
that the form being evafuated diverges immediately
(call-by-value). If, however, the cons in evlhis is
the suspending kind, then argument evaluation is
delayed until the result is accessed by the applica-
tion of a strict elementary function to a formal
parameter sometime later during the course of inter-
pretation (call-by-name). All non-elementary func-
tions are assumed to be strict in no parameters until
then.

Another error which can be avoided by the
suspending cons (see painfis) is that of insufficient
arguments. (Patinfdis builds the environment, binding
formal and actual parameters.) The only way in
which this error will be caught is, again, as a
result of a strict elementary function being applied
directly or indirectly to the formal parameter which
is unbound because of the error.

Theorem 3: The superinterpreter is properly more
powerful than the interpreters of Theorem 1.

Proog: The equivalence of the interpreters when
teval/:apply or eval/apply converges is established
through a proof much like that of Theorem 1, but
simpler because with only one coné there is only one
"coerces to" relation for all structures. The fol-
lowing example converges under the superinterpreter
by escaping the pitfalls of argument evaluation and
parameter binding by postponing the construction of

its internal data structures. Define the function
second as

(second x y z) = ¥y
The form,
(second {(quotient 1 0) 3)

evaluates to 3 in spite of the strictly divergent
first argument and the missing.third argument. B

Example: As an example of a form whose evaluation
diverges in LISP 1.0, even under the superinterpre-
ter, we offer

({label gardenpath
(A (x) (cdr (cons x (gardenpath x))))
) NIL)

In the evaluation under the superinterpreter the

270 CONS Should Not Evaluate its Arguments

arguments to consé are suspended, but the second sus-
pension is continually coerced by application of the
strict elementary function cdx.

Rosen (1973) has established least fixed-point
results for a nondeterministic version of LISP and
Wand (1975) has established related results for
Reynold's (1972) style interpreters. It is clear
that our superinterpreter operates deterministically
and that the evaluator never descends the evaluation
tree any deeper than required by the strict elemen-
tary functions within McCarthy's interpreter. As a
result, it appears that the only weaknesses in
Rosen's and Wand's proof can be avoided without
changing the description of the interpreter in the
appendix.®

Strong confectune: The superinterpreter yields the
least fixed-point semantics for McCarthy's :eval/
tapply LISP 1.0 evaluator.

Another approach to the conjecture may be based on
the facts that the interpreter performs pure call-by-
name (leftmost substitution rule) and that all elemen-
tary functions are 'sequential' (Vuillemin 1974) as

they are eventually coerced. In particular, an argu-
ment to cons is only coerced as if it were part of
the form {canrlcons...)) or l(cdr{cons...] each of

which is sequential; the other elementary functions
are strict.

Henderson and Morris (1976) have independently
discovered a "la=zy'" evaluation scheme for LISP which
is presented with lucid examples and Scott-Strachey
semantics. Their scheme is no less powerful than
ours because they also provide a non-strict cons.

By the strong conjecture, then, their scheme is
equivalent in power to ours.

III. SUICIDAL SUSPENSIONS

The scheme for implementing suspensions described in
the previous section is terribly impractical for a
running interpreter because a suspension is coerced
again and again for every access to its value by a
strict function. By Observation 1 a traversal of a
data structure requires invocation of evaluation at
every turn, and if the structure is traversed a
second time, then the evaluations will all be
repeated, just to get the same result (because
suspended environments do not change).
(“Fgr another perspective, however, see deBakker
1975).

FRIEDMAN, WISE 271

With the predicate, duspended, defined over all
references within the system, as described in the
previous section, we can modify the definition of
car and cdi to prevent any repeated coercions of the
same suspension. After the evaluation of the first
coercion on a suspension the value is stored in
place of the reference to the suspension. Future
accesses which would have found and coerced the sus-
pension are instead directed straight to the final
value which is referenced in the same way, but is
not suspended.

In the last section we saw that changing the cons
used by the interpreter from strict to non-strict
had the effect of changing all user functions from
call-by~value to call-by-name. The introduction of
the storing versions of catr and ¢dr into the inter-
preter has the effect of changing the call-by-name
scheme into a call-by-delayed-value (Vuillemin 1974)
scheme. Then no argument to any function will be
evaluated until it is required by a strict elemen~
tary function within the interpreter, and after that
it will never be evaluated a second time.

Observation 2: There is at most one reference to
every suspension in the system.

That reference is in the node allocated by the
function :fcons for which both invocations of
susdpend in the system are arguments. (We emphasigze
that the functions foam, env, suspend, suspended,
‘can, :icdh, and :cond are not available to the user,
and that the interpreter only uses them to define
the elementary functions cax, cdi, and cons.)
Moreover, the only time this reference is accessed
after its creation is during the evaluation of cax
or cdi of that node.

Let nplacliba be a function of two arguments
defined similarly to sapldca of LISP 1.5 (McCarthy
1962). The first argument is a node allocated by
fconsd and the second is a value of some sort.
Rplacliba performs four steps:

-~-Notes the reference in the A-{ield of the node,
N, which is the first argument;

--Stores the reference to its second argument in
the A-{fLeld of N;

--Liberates (returns to available space) the
single node whose reference was noted above;

--Returns the value of the second argument as
its value.

272 CONS Should Not Evaluate its Arguments

Rplaclibd is defined similarly for the D-{ield.
Rplacliba and aplaclibd are not available to the
user. In our applications the liberated node w%ll
always be a suspension and the replaced value w1%l'
always be a reference to an atom or to a node origi-
nally allocated by :conbd.) i]

Since coercions only occur within car and cdn, %t
is those functions which we change in order to avoid
repeating them.

(car node) Z (cond
A4 (suspended (:car node)) Zthen
(rplacliba node (eval (form (:car node))
(env (:car node))))

else (:car node))

(cdr node) = (cond
L4 (suspended (:cdr node)) then
(rplaclibd node (eval (form (:cdr node))
(env (:cdr node))))

else (:cdr node)) .

If the desired reference is to a suspension, it is
coerced and the resulting reference is insertgd ig
place of the original reference. The libera?l?n is
possible based on Observation 2 and the conditional
test within each function. After replacement there
is neither necessity nor ability to access the sus-
pension. If the reference isn't to a suspension,
then that replacement has already occurred and the
value is directly accessible.

Theorem 4: Theorems 1, 2, and 3, and the strong
conjecture apply as well to the interpreter using
the definition of cax and cdi of this section.

The proof 1s a trivial program-correctness argument
outlined informally above. W

Theorem 5: Using the new functions car and cdxr
defined here, the number of calls to eval wit@in the
superinterpreter during the course of evaluating any
form is less than or equal to the number of calls
under McCarthy's :eval/:apply scheme.

Proof: Since the function :fcons is strict under
McCarthy's scheme, evaluation of its arguments
always precedes its application. The only evalua-

tions which are suspended in our scheme are precise-
ly those resulting from applications of cons. The
suspended arguments are eventually evaluated at most
once, however. Since we accept his interpreter

FRIEDMAN, WISE 273

(essentially) without change, the relation between
the numbers of invocations of eval follows., W

The interpreter which uses the new cous with
suicidal car and cdn is remarkably efficient. A
cons allocates three new nodes instead of just one
as in :evak/:apply, but avoids the (perhaps infinite)
time required to evaluate its arguments. Environ-
ments tend to get dragged around the system,
preserved from garbage collection by suspended refer-
ences, but argument evaluation is avoided until
absolutely necessary and environment construction,
itself, is suspended. On coercion of a suspension
from within car or cdi the node carrying the suspen-
sion is automatically released, and when all suspen-
sions to a particular environment have been coerced,
then that environment may finally be garbage col-
lected. The only ultimate storage cost results from
suspensions which are never coerced. That space is
always balanced by the time saved in not evaluating
forms to useless arguments as indicated by Theorem
5. We have, therefore, modified the system by
increasing linearly the time required for three of
the elementary functions at the expense of space
required to carry around potentially unneeded envi-
ronments. However, that storage cost enables us to
save time by reducing potentially exponential
computation time, and even potentially divergent
computation, back to practical limits.

IV. IMPLICATIONS FOR FILE STRUCTURE

In this section we consider the implications of
suspensions on communication with external devices.
The requirement that the environment of a conversa-
tion be freezable as part of a suspension demands
random access files in order to provide easy resto-
ration of the device upon an unanticipated thaw. A
useful model for the properties of sequential files
may be found in Landin's concept of a strean (Landin
18655 Burstall, Collins, and Popplestone 1971;
Hewitt et al. 1974; Burge 1975).

Landin describes a 4fream as a particular type of
function which represents a sequence. A stream is
applicable to an empty list of arguments and
produces a pair whose first element is the next item
in the sequence and whose second element is a stream
for the remainder of the sequence. This definition
provides for a potentially infinite sequence using
only strict functions by depending on the user to

274 CONS Should Not Evaluate its Arguments

control the expansion of a stream through explicit
application of the successively generated streams.
If we assume that the application of a stream is
implicit in referring to it, then a stream may be
viewed as the result of a cons strict in its first
argument. In that view Landin's observation (1965) that
streams "enable us to postpone the evaluation of the
expressions specifying the items of a list until
they are actually needed" is true only if
lists are always processed from left to right with-
out skipping any entries. This knowledge is avail-
able in some circumstances in particular sequential
input/output which Landin was prepared to model,

The only operations which need be defined for a
stream are these:®

(hs s) = the first element of s;
(ts s) Z the stream representing all but (hs s);
(prefixs X s) I the stream whose first element
is the value of % and whose
remainder is s; and
(nulls s) = TRUE when the stream is empty,
FALSE otherwise.

Since streams cannot be arguments to any other ele-
mentary function in the system, we can compare our
system to the Landin system on the basis of these
operations.

Theorem 5: McCarthy's LISP 1.0 with our elementary
functions can model Landin's streams.

Proo4: For every occurrence of (hs s) substitute
(car s); for (ts s) substitute (cdr s); for (prefixs
% s) substitute (cons % s); for (nulls s) substitute
(same s NIL) in any program using Landin's streams.
The semantics are the same because the strict
elementary functions car and cdi coerce suspensions
planted by cons in the same way that Landin's hs and
£s apply the function, s, to get the next pair. W

Theorem 6: McCarthy's LISP 1.0 with our elementary
functions can model more than Landin's streams.

Proof: The result obtains because (prefixs x s)
evaluates its first parameter completely. The two
systems would be equivalent if we had defined cons
to be strict in its first parameter. The example in
Section II of the sequence of terms which sums to

*In these definitions we have chosen the names
from Burge (1975) rather than Landin (1865).

FRIEDMAN, WISE 275

m%/6 off i
ers a simple counterexample for Landin's
streams. Consider the Boolean form

(equal (car (cdr (terms 1)))
(car (cdr (cdr (terms 0))))) .

Our evaluation scheme returns the value TRUE because
the two terms selected from the sequence are both

l/q- Hac we deflned /tQ)LmA with Lalldlll 8 fll 1ctlor
}O/Léﬁx(,xé as

(terms n) = (prefixs(reciprocal(square n))
(terms (addl n))),

then the form would diverge because of a division by
zero. B

) For thg remaining discussion on streams the func-
tion pngﬁ&xé is treated as cond except that it is
strict in its first parameter. This makes i+ parti-
cularly useful for describing sequential files. Let
the function +#read be defined as on many LISP sys-
tems: read is a function of gzero parameters which
removes the next form from the input file and returns
1t as value. Then the function Anput could be
defined to identify the entire file without
necessarily reading it:

(input) = (prefixs (read) (input))

If one were then careful to access the input file in
order, ome could then refer to (car (input)), the
flPSF form on input and (cdr (cdr (input))),,the
remainder of the file after the first two forms. The
?uter level interpreter "listening loop" for an
interactive system might be written as one function
oufput whose value is passed to the printer: ’

(output s) = (prefixs (eval (car s) NIL)
(output (cdr s))) .

?he monitor invocation of (output (input)) runs the
interpreter and results in an appropriate output
stream.

Consider the function {nput with cons substituted
for prefix4 and a predicate endoffile:

(inpgt') z (cond
44 (endoffile) then NIL
else (cons (read) (input'))) .

If we invoke the form (reverse (input')) our expec-
tation would be that this invocation would reverse
the forms taken from the input file. However
because fead is suspended until the results o%

276 CONS Should Not Evaluate its Arguments

nevense are accessed, and because read is a side-
effecting function, the eventual effect if the
revende is printed is to copy the input unchanged be-
cause the first nead forced still gets the first form
from input. Thus (output(reverse(input'))) and (output
(input')) transfers the input file to the output file
essentially unchanged, but (output{reverse{(input)))
actually prints the reversal! The error is that the
side-effects of nead cannot be carried in the envi-
ronments within the suspensions. If the value of
(input') is taken to be a random-access file (as if
it were a data structure within the machine) then

the result would be the expected omne.

We argue that Landin's streams fit the requirement
of sequential files. (See the dynamic £Ls% of POP2
(Burstall, Collins and Popplestone 1971).) Because
prefixs is strict in its first argument it is impos-
sible to access the remainder of the sequence without
noticing the existence of the first element. On the
other hand, the non-strict cons lends itself to
manipulation of random-access (tree structured) files
as an extension of the rest of memory: one can move
across the tree at a high level without being
bothered with details at inferior levels.

In an extremely lucid discussion of streams,

Burge (1975) develops the notion of a stream-function

as a coroutine structure. With the suspension model
of consd the same structure may be being traversed by
several functions at once: when a suspension is

coerced by one function, the value generated by the
coersion is left behind in the place of the suspen-
sion for others to find if they need it. One
interesting effect of this interpretation 1s that
coroutines are written without any conscious effort
by the programmer. The parts of the structure which
are actually evaluated, as opposed to those which
remain suspended, and the order in which evaluation
cccurs are not easily predicted from outside the
system.

OQur generalization of consd to non-strict is,
therefore, a generalization of Landin's phegdxs in
the same way that, as Landin demonstrated, phefixs
is a generalization of the strict :cons. The
difference is that the structures built with the non-
strict consé can have the evaluation of the expres-
sions specifying any part of the overlapping tree
structure postponed until they are needed.

FRIEDMAN, WISE 277

V. FUNCTIONS WHICH SELECTIVELY EVALUATE ARGUMENTS

?he use of the non-strict cons within the interpreter
in a way w@ich suspends argument evaluation until the
parameter 1s used by a strict elementary function
enables certain special forms (McCarthy 1962) to be
treated as functions. In order to define some of
these.special forms, we allow a certain class of
functlogs which take an arbitrary number of arguments
The definition of these functions will be flagged by .
ex@ctly.one formal parameter directly following A
which will be bound to the list of (suspended) eval-
uated arguments. For example, the function £i4f can
?e defined as the function (X x x) so that if forced
it evaluates to the list of its (arbitrary number of;
evalua?ed arguments. In order to facilitate writing
recursions on lists of arguments we use a notation
for aPplying a function to a list of arguments. The
n?tatlon <f x> calls for an application of the func-
tion, £, to the list of evaluated arguments which
result from the evaluation of x. Thus, (f a b ¢) is
synonomous with <f (list a b ¢)>, and in LISP 1.5
(McCarthy 1962, Appendix B), <f x> means

(apply (function f) x NIL).

) The logical connectives, and and 04, are defined
in LISP to take an arbitrary number of arguments and
to evaluate them from left to right. The first argu-
ment which evalutes FALSE (respectively, TRUE) for
the spgcial form and (04) terminates evaluation
returning that value; if the argument list is
exhausted then the value which results is TRUE

(FAL?E). The explicit order of evaluation requires
care in a system implemented with strict elementary
functlons, because these special forms are not strict
in any parameter after the first argument which eval-
ua?es to FALSE (TRUE). However, in the system
whlch uses the non-strict coné internally, evaluation
is autowatically suspended so that and (04) becomes
a function yet its strictness property remains the
same.

and = (A x (cond
4§ {(same = NIL) then TRUE
elsedif (car x) then <and (cdr x)>
efse FALSE)) 5
or = (A x (cond
A4 (same x NIL) then FALSE
elsedlf (car x) then (car x)
else <or (cdr x)>)) .

The superinterpreter gives the correct results

278 CONS Should Not Evaluate its Arguments

with these definitions because the coné within evlis
suspends evaluations. The pattern of the recursion
with (cdr x) in and (on) would allow this program
to work even if evlis were implemented with prefixs
in place of cons, because that cdi coerces a .
suspended evfis only when the value of the caxn is
needed.

The function, Af-then-else, requires the cons
rather than the prefdxs within evlis because it does
not necessarily access its arguments in order.
Again, we treat A{f-then-elfse as a function, rather
than as a special form.

(if-then-else p ¢ r) Z (cond
A4 p then q
else v) .

By generalizing Lf-Lthen-else we can write

conditional = (A x (cond
Lt (same x NIL) then NIL
elseif (same (cdr x) NIL) then (car x)
elselif (car x) then (car (cdr x))
efse <conditional (cdr (cdr x))>)) .

This conditionaf does not use the cond-patlns of)
McCarthy's interpreter. Moreover, we could not write
conditional as a function if it did. Instead, forms
in odd-numbered argument positions (except the last)
are treated as predicates, and the forms in the
respectively following (even-numbered) posit%ons.are
taken as the assocliated values. With this simpli-
fication, the program is free from superfluous
bracketings and the evaluator prepares for condition-
al evaluation (which is suspended) by a normal invo-
cation on evldis. Only the odd-numbered arguments

are actually evaluated until a non-NIL value is found.

CONCLUSIONS

The result of any mechanical evaluation scheme.is
usually passed as a final structure to some print
routine which traverses 1t displaying the elementary
parts as part of a picture of the answer. We have
proposed an evaluation scheme in which the structure
building function (consdtructor) is non-strict so that
evaluation of its arguments is delayed until they are
needed by the strict elementary functions. Therefore,
the first evaluation of suspended arguments might be
delayed until the traversal procedure within the
print routine. If the only ultimate use of a result
is to display it, then the only computations

FRIEDMAN, WISE 279

necessary are those which directly contribute to the
value displayed. We have proposed a very simple
scheme for accomplishing this behavior in a nicely
structured interpreter (LISP 1.0) simply by parti-
tioning the five elementary functions into the strict
and the non-strict.

We have implemented the elementary functions and
the interpreter described in Section III, boot-
strapping on an existing LISP implementation®. The
appendix reflects an interpreter for our version of
LISP; it appears very similar to McCarthy's. Signi-
ficant differences in the behavior of the interpreter
arise because the uses of cons by the interpreter
also cause suspensions. The use in evlis suspends
argument evaluation; the use in padrlis suspends
environment construction; the uses in apply, carlis,
and cdnldis suspend construction of the multiple-
valued structures which result from our operation of
functional combination discussed elsewhere (Friedman
and Wise 1976a, 1976b). All the resulting suspen-
sions are coerced whenever they occur as arguments
to the strict elementary functioms. If McCarthy's
evaluator is taken intact and interpreted with our
elementary functions, the evaluation scheme becomes
properly more powerful. We strongly conjecture that,
in fact, this interpretation yields the least Ffixed-
point semantics for his evaluator.

In a previous paper (Friedman and Wise 1975) we
propose the compilation of recursive programs into
iterative machine code. The source code was to be
restricted to a "stylized" language in order to
assure the mechanical translation. That paper con-
centrated on the peculiar role of cons in a recur-
sive program, which may be reinterpreted in light of
the discussion herein. The result of a function
which recursively builds a list using cond, when run
under the interpreter which we propose here, develops
its answer in a top-down order as the suspensions arve
coerced in the traversal within piint. The normal

*It is noteworthy that the popular technique of
implementing context-switching with "shallow bindings"
and a push-down-1list does not allow environments to
be saved within suspensions, because suspensions are
passed from nested environments out to enclosing
environments. See Moses (1970) and Sandewall (13971)
for further discussion of the problems with shallow

binding schemes involving the role of function in
LISP.

280 CONS Should Not Evaluate its Arguments

pecursion (McCarthy's) builds the result bottom-up.
The goal of iterative code is closer with the natural
tyansformation of bottom-up to top-down code readily
available from our understanding of the role of
suspensions.

ACKNOWLEDGEMENT

Our deepest gratitude goes to Mitchell Wand who recast
our approach to the theoretical results of Section II.
The outline for the proof of Theorem 1 and the state-
ment of the strong conjecture are his. We are prive-
leged to work in an environment brighted by his
reflections.

Research reported herein was supported (in part)
by the National Sclence Foundation under grants
numbered DCR75-06678 and MCS75-081U5.

REFERENCES

W.H. Burge (1975) Recunsive Programming Techniques.
Addison-Wesley: Reading, MA.

R.M. Burstall, J.S. Collins, & R.J. Popplestone
(1971) Programming &n POP-2. Edinburgh: Edinburgh
University Press.

J. deBakker (1976) Least fixed-point revisited, in
Theoretical Computen Science (to appear).

0.J. Dahl & K. Nygaard (1966) SIMULA--an ALGOL-based
simulation language. Comm. ACM 9, 671-8678.

D.P. Friedman & D.S. Wise (1975) Unwinding structured
recursions into iterations. Tech. Report 19, Com.
Sci. Dept., Indiana Univ.

D.P. Friedman & D.S. Wise (1976a) Multiple-valued
recursive procedures. Tech. Report 27, Com. Sci.
Dept., Indiana Univ.

D.P. Triedman & D.S. Wise (1976b) An environment for
multiple-valued recursive procedures. 2nd Symp.
on Programming, Paris.

P. Hendevson & J. Morris, Jr. (1976) A lazy evaluator.

" Thind ACM Symp. on Pain. o4 Prog. Lang., 95-103.
¢. Hewitt, P. Bishop, R. Steiger, I. Greif, B. Smith,
T. Matson, & R. Hale (1974) Behavioral semantics

of nonrecursive control structures, in B. Robinet
(ed.), Prog. Symp. Springer-Verlag: Berlin, 385-
uo7.

C.A.R. Hoare (1975) Recursive data structures. Intl.
J. o4 Com. & Info. Scdiences 7, 105-132.

D.E. Knuth (1975) Fundamental ALgorndithms {2nd ed.},

Addison-Wesley: Reading, MA., 333.

FRIEDMAN, WISE 281

.J. Landin (1965) A correspondence between ALGOL 60

& Church's lambda notation, Part I. Comm. ACM §
89-101. '
McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart
& M.E. Levin (1962) LISP 1.5 Programmer's Manuwal
M.I.T. Press: Cambridge, MA,. '
McCarthy (1963) A basis for a mathematical theory
of computation, in Computer Programming and
Formal Systems (eds P. Braffort & D. Hirschberg)
33-70. North Holland: Amsterdam, ,
M?nna & A. Pnueli (1970) Formalization of proper-
Eles of functional programs. J. ACM 17, 555-569.
oses (1970) The function of F ’ i S
ACH STGSAN Bull. 15, 1acaq. oo 0N IR ISE:

.C. Reynolds (1972) Definitional interpreters for

higher-order programming languages. Proc. ACM
Natt. Cong., 717-740.

.K. Rosen (1973) Tree-manipulating systems and

Church-Rosser theorems. J. ACM 20, 160-187.
Sandewall (1971) A proposed solution to the
FUNARG problem. ACM SIGSAM Buff. 17, 29-u2,
Vuillemin (1974) Correct and optimal implementation
of recursion in a simple programming language. .J.
Comp. Sys. Sci. 9, 332-354,

Wand (1975) Efficient axioms for algebra semantics.
Tech. Report 42, Com. Sci. Dept., Indiana Univ.

282 CONS Should Not Evaluate its Arguments

APPENDIX

The appendix is in two sections.
summary of the definitions of LISP's elementary
functions as set forth in Sections Il and III.
Functions preceded by a colon (:) refer to
McCarthy's five elementary functions. The sec?nd
section is a prototype interpreter referenced in

Sections II and V.

Elementary functions fon Section

The first is a

11 proogs

For the :eval/:apply interpreter:

(:scons :ab :env)

(:cons (:eval (:car :ab)
(:eval (:car(:cdr
(:car :x) = (:car :x);
(:cdr :x) = (:cdr :x)3
(:eq.:x :y) Z (:eq :x :y);
(:atom :x) = (:atom :x).

For the eval/apply interpreter:

(scons ab env) =
(:cons (:cons

(car ab) e

renv)
ab)) :env))

nv)

(:cons (car(cdr ab)) env));

(car %) = (eval (
(

(cdr x) = (eval (
. (

(eq x y) (:eq x
(atom x) = (:atom

icar(:car
:cdr(:car
:car(:cdr
:cdr(:cdr
Vs
x).

x))
X)))
x))
x)))

ElLementany 6unct&0né forn Section 111's practical

Anterpreten

(scons ab env) =

(:icons (suspend (car ab) env)
(suspend (car(cdr ab)) env));

(car x) Z {(cond
L4 (suspended
(rplacliba
else (:car x)
(cdr x) E (cond
L4 (suspended
(rplaclibd

efse (:cdr %)
(eq = y)
(atom %)

I

(:car x))

then

% (eval (form(:car x))
(env(:icar x)) J))

)s

(:ecdr %))

then

x (eval (form(:cdr x))
(env(:cdr x))))

)

(:eq 2 V)3
(:atom x).

FRIEDMAN, WISE 283
Prototype interpretfern following McCanthy's [1962)

The following interpreter serves two purposes in the
paper. The proofs in Section II refer to the
unbracketed lines with appropriate substitutions
made for the uncoloned occurrences of the elementary
functions. The bracketed lines provide Ffor formal
parameter structures suggested in Section V and for

functional combination (Friedman and Wise 1976a,
1976b).

The function same, defined by

(same sexp atm) = (cond
4§ (atom sexp) then (eq sexp atm)
else NIL)Y,

is assumed to avoid misinterpretation due to undefined
values of eq in apply.

The prototype Ainterpretfen [Bracketed lines are ignored
in Section II.]

(eval form env) = (cond
L4 (atom form) then (assoc form env)
elseif (atom (car form)) then {(cond
Af (eq (car form) QUOTE) then (car(cdr form))
elself (eq (car form) CONS) fhen
(scons (cdr form) env)
elseif (eq (car form) COND) then
(evcon (cdr form) env)
efse (apply (car form)(evliis (cdr form)
env) env))
else (apply (car form)(evlis (cdr form) env)
env))

(apply fn args env) = (cond
L4 (atom fn) then (cond
L4 (eq £n CAR) then (car(:car args))
elsedlf (eq fn CDR) then (cdr(:car args))
elself (eq fn EQ) tLhen
(eq (:car args)(:car(:cdr args)))
elsedd (eq fn ATOM) then (atom (:car args))
elsedf (eq fn NIL) then NIL
else (apply (eval fn env) args env))
elsedlf (same (car fn) LAMBDA) then.
(eval (car(cdr(cdr fn)))
(pairlis (car(ecdr fn)) args env))
efself (same (car fn) LABEL) then
(apply (car(cdr(cdr fn))) args
(:cons (:cons (car(cdr fn))
(car(cdr(cdr fn)))) env))

284 CONS Should Not Evaluate its Arguments

[elseif (anynull args) then NIL]
[efse (cons (apply (car fn) (carlis args) env)
(apply (cdr fn) (edrlis args) env))])

(pairlis fpl apl env) = (cond
4Lf (atom fpl) then env
else (:cons (:cons (car fpl)(:car apl))
(pairlis (cdr fpl)(:cdr apl) env)))

[(pairlis fpl apl env) = (cond
L4 (atom fpl) then (cond
L4 (eq fpl NIL) Zhen env
efse (:cons {(:cons fpl apl) env))
else (pairlis (car fpl)(:car apl)
(pairlis (cdr fpl)(:cdr apl) env)))]

(assoc at env) = (cond
if (eq (:car(:car env)) at) then (:cdr(:icar env))
else (assoc at (:cdr env)))

(evlis unargs env) = {(cond
44 (atom unargs) then NIL
efse (:cons (eval (car unargs) env)
(evlis (cdr unargs) env)))

(evcon tail env) E (cond
i (atom tail) then NIL
elseif (atom (cdr tail)) Zhen
(eval (car tail) env)
efseild (eval (car tall) env) then
(eval (car(cdr tail))denv)
else (evcon (cdr(ecdr tail)denv))

[(anynull 1lis) = (cond
i4 (atom 1is) then FALSE
elself (same (:car 1is) NIL) then TRUE
else (anynull (:ecdr 1is)))]

[(carlis mtx) = (cond
if (atom mtx) fhen NIL
else (cons (car(:car mtx))
(carlis (:cdr mtx))))]

[(cdrlis mtx) = (cond
if (atom mtx) then NIL
else (cons (cdr(:car mtx))
(cdrlis (:edr mtx))))]

J. Gill
I. Simon

INK, DIRTY-TAPE TURING MACHINES, AND QUASICOMPLEXITY MEASURES

Ink, the number of times a Turing machine writes on its work-
tapes, is known not to be a Blum complexity measure for Turing
machines with two or more worktapes. We introduce a more gen-
eral computation model, the dirty-tape Turing machine, for
which no assumption is made about the initial contents of the
worktapes. We prove that for one-tape Turing machines, clean
or dirty, ink is a complexity measure. For dirty-tape Turing
machines with two or more worktapes, ink is not a complexity
measure, but is an example of a quasicomplexity measure.
Quasicomplexity measures, which properly include Blum measures,
are shown to satisfy several properties of complexity theory,
such as the speedup, compression, and gap theorems.

1. INTRODUCTION

One plausible measure of the cost of a Turing machine computa-
tion is the number of times the machine writes on its worktapes.
A machine is said to write on a worktape square only when it
changes the contents of that square. We define the cost in
ink of a halting computation to be the number of times during
the computation that worktape squares are written on; by the
usual convention, the ink cost of a nonhalting computation is
defined to be infinite.

It is well known, however, that ink is not a Blum complexity
measure for Turing machines with two or more worktapes, because

This research was supported by the National Science Foundation
under Grant GK-43121 and by the Fundacdo de Amparo a Pesquisa
do Estado de Sao Paulo under Grant 72/425.

AUTOMATA
LANGUAGES AND
PROGRAMMING

Third
International
Colloguium
at the
University
of
Edinburgh
edited
by
S.Michaelson
and
R.Milner

20.21.22.23
July
1976

*

Edinburgh

University Press

© 1976

Edinburgh University Press
22 George Square, Edinburgh

ISBN 0 85224 308 1

Printed in Great Britain by
Unwin Brothers Limited
0ld Woking, Surrey

CONTENTS

Preface p.vii

Session 1

On W-sets associated with context-free languages
M.LINNA

A characterization of LL(k) languages
E.SOISALON~SOININEN and E.,UKKONEN

The equivalence problem for DOL systems and
its decidability for binary alphabets
L.G.VALIANT

On a family of codes
A.RESTIVO

Session 2

Sur la longueur moyenne des codes préfixes
D.PERRIN

Sur les monoides syntactiques des
langages algébriques déterministes
J.SAKAROVITCH

Générateurs algébriques non-ambigus
J.BEAUQUIER

Bi-transductions de foréts
A.ARNOLD and M.DAUCHET

Session 3

Logical rules of natural reasoning about programs
F .KROGER

Verification conditions as programs
M.H.VAN EMDEN

Informational systems with incomplete information
W.LIPSKI, Jr

Event based reasoning - A system for proving
correct termination of programs
J.SCHWARZ

A theory of computation with an identity discriminator
G.LONGO and M.VENTURINI ZILLI

Session 4

Program eguivalence and canonical forms
in stable discrete interpretations
G.BERRY and B.COURCELLE

20

31

38

45

52

66

74

87

99

120

131

147

168

e of program schemes

tactic characterization
BERIAN

4 programs incorrect

i, BRAND

User-defined data types as an aid
to verifying LISP programs
R,CARTWRIGHT

CONS should not evaluate its arguments
D.P.FRIEDMAN and D.S.WISE

Session 5

Ink, dirty-tape Turing machines, and
quasicomplexity measures
J.GILL and I.SIMON

The depth of Boolean functions
W.F.McCOLL

Optimal algorithms for self-reducible problems
C.P,SCHNORR

Lower bounds for the space complexity of
context-free recognition
H.ALT and K.MEHLHORN

Session 6

On enumeration procedures for theorem proving
and for integer programming
Z.GALIL

On the construction of Huffman trees
J.VAN LEEUWEN

A linear algorithm for testing
isomorphism of planar graphs
M.FONTET

A note on the average time to compute
transitive closures
P.A.BLONIARZ, M.J.FISCHER and A.R.MEYER

Session 7
Semantics and termination of
nondeterministic recursive programs
J.W.DE BAKKER
® semantics of nondeterminism
#.HEMNESSY and E.A.ASHCROPFT
proofs of programs for synchronization
L GRETR
sk of an algebraic theory of structured objects
AL BHERICH
i blind alleys from backtrack programs
SOEE

Ceomtributors p.558

Contents

189

201

228

257

285

307

322

338

355

382

411

425

435

478

494

508

531

PREFACE

This Third Colloguium on Automata, Languages and Programming
takes place at a time when the technology for constructing
information-processing systems has raced far ahead of our
ability to theorise about the devices that we can, and do,
construct. The need for theories adequate to guide the design
and use of such systems grows more pressing every day. It is
some comfort that the papers offered to the Programme Committee
showed that the amount of good research in the Theory of ’
Computation has increased since the last Colloguium, but every
advance in technology raises more new questions than the
theoretical advances have yet answered, and we look forward to
future Programme Committees being overwhelmed by a flood of
worthwhile papers.

S.Michaelson

