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Abstract

Ants lay pheromone trails to lead other individuals to a destination.

Due to stochastic variations in path following, these paths become op-

timized. Aspects of this behavior were considered using a simulation

modeled on a physical robot colony. Milling and path optimization were

observed. This led to the conclusion that, though simplistic, the model

captures several interesting features of ant trail following including circu-

lar milling in several Eciton species.

1 Introduction

Multi-agent foraging is the underlying mechanism for accomplishing many tasks,
such as recovery of accident survivors, coordination of battle�eld units, har-
vesting, removal of land mines, and planetary exploration. These applications
require that many distributed objects be located quickly and e�ciently by a
team of agents. Similarly, ants must accomplish this task every day in order
to survive. Ants manage this task robustly (Franks & Fletcher, 1983) with the
meager allotment of roughly 500,000 neurons per individual.

2 Purpose of Experiment

The goal in this work has been to model the behavior of ants in order to gain
insight into models of simpli�ed foraging tasks for robots. This paper analyzes
a sub-task of the foraging problem, the optimization of simulated pheromone
trails by the robots following them.
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3 Experimental Setup

The robots were tested under two experimental conditions. In the �rst condition,
a robot was allowed to roam freely while emitting pheromone and turning up
the pheromone gradient, if any. The intention was to verify that a simple
`turn towards pheromone' rule would produce path following. The second `task'
was to optimize paths during an idealized foraging task. The robot(s) start
at randomly chosen locations. They roam around the colony, ignoring any
pheromones, until they reach one of two distinguished corners in the colony.
On entering one of the special corners (\home"), a robot begins emitting and
following a characteristic pheromone. The robot follows this pheromone until
it reaches the other special corner (\food") where it switches to emitting and
following the other pheromone. This behavior simpli�es the data logging for the
experiment by creating clearly de�ned end points for the paths. The biological
footing is more tenuous: ants do use multiple signaling pheromones (H�olldobler
& Wilson, 1990), but most ants generally only lay trails when returning to the
nest with food. Anthropomorphizing the resulting behavior, the robot initially
roams around looking for \home" or \food", on �nding one it starts looking for
the other.

3.1 Colony

The simulator which was used to conduct the experiments is based on a robot
colony under development at IU. The robot performance parameters were set
by measuring a Stiquito robot. Brie
y, Stiquito is a 15cm long hexapod robot
which derives its motive power from wires of shape-memory alloy. Descriptions
of previous versions of Stiquito robots are available in (Mills, 1992; Mills, 1993;
Mills, 1994). The low level controllers are implemented with o�ine reprogram-
able FPGAs. This allows the robots to be easily used for di�erent purposes
by di�erent experimenters. The high level robot controllers are currently im-
plemented o�board on a central workstation. The robot bodies receive motion
commands via an IR transmitter connected to a serial port of the worksta-
tion. The control loop is closed by a vision system which tracks the locations
of the robots. This information is used to inform each of the individual robot
controllers of the inputs it receives from its sensors. While `global' position
information is used within the simulated pheromone system, these coordinates
are not available to the robot controllers. Instead, the robots detect the \scent"
of their peers when they are too close and move away from them.

3.2 Robot

The robots have very simple behavioral controllers vaguely reminiscent of the
subsumption architecture (Brooks, 1986). The most basic response of the robots
is to avoid the walls of their arena and other robots. When they are too close
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Figure 1: Single robot newly trapped in a mill (t=2300s)

to a wall or robot, they turn away from it until they are no longer pointed at it.
If a default `walk forward' behavior is added at this point, a robot will tend to
walk along the walls of the arena. To produce trail following, a `turn towards
greater simulated pheromone concentration' behavior was added.

4 Results

4.1 Milling

A free roaming robot, Figure 1, falls into a circular mill (turning round and
round) in a manner similar to ants (Schneirla, 1944; Deneubourg & Goss, 1989).
This behavior was expected, but we did not know that ants exhibited this be-
havior until it was found in a subsequent literature search. In this particular
case, the interaction between the robot's `need' to avoid the walls and its `de-
sire' to perceive a balanced pheromone level caused it to reverse directions at
the lower left corner. This trail remains stable until the end of the simulation
(Figure 2). The two �gures also demonstrate that the robot `optimizes' the
path by smoothing out any tight turns. This appears to happen because the
robots receptive �elds are in front of the turn axis of the robot, so that the
robot perceives the turn in the trail before it gets to it and `cuts the corner'.
Ants exhibit a similar behavior (Schneirla, 1944), but via a di�erent underlying
mechanism:
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Figure 2: Previous robot some time later (t=57600s)

(A)fter Ecitons have formed a column around a glass jar on a glass
substratum, removal of the jar leaves a regular circular procession
which usually is able to maintain its formation for a considerable
time. The chemical trail which is formed as the ants follow the
surface becomes su�cient alone to canalize the column. Thus in
a number of instances, Ecitons ceased trekking around the outside
edge in running around the top surface of a square wooden block,
gradually shifting to a course that cut the corners more and more,
until �nally they followed a circular course which neared the edge
only at the center of each side (Schneirla, 1944, pg. 10).

A tripartite mechanism was identi�ed in the case of the Ecitons. The ants turn
towards a weak tactile stimulation, away from a strong tactile stimulation, and
up the pheromone gradient (Schneirla, 1944). The primary di�erences between
the resulting behavior appear to be in the number of agents needed for path
optimization to occur and in the robots' tendency to lose the wall. In the
former case, a single robot has been seen to be su�cient for path optimization.
However, a single ant follows a trail without optimization. The latter di�erence
is not surprising since the robots have no rules for turning towards any object.

4.2 Path Optimization

To further study the optimization e�ects, we extended the simulation to in-
clude an abstraction of a foraging task. Two opposing corners of the colony

4



0
0

120

160

80

40

120

6030 90
Pheromone Duration (min)

Laps to Criterion
A B C

Figure 3: Laps to Criterion (13 min. half-lap) vs. Pheromone Duration His-
togram

are distinguished. On entering a corner, a robot changes its behavior mode
and begins following and marking a trail with the pheromone associated with
that corner. This was done for ease of computing statistics, not for biological
realism. Figure 3 is a histogram of the raw data for one robot with step decay
of pheromones. Pheromone duration is varied from zero to 120 minutes in steps
of one minute with 128 runs per step for a total of 256 half-lap trials per step.
We will examine four interesting features of these data.

Region A of the plot (durations from zero to 27 minutes) corresponds to
trails which are not long enough for the robot to catch before they evaporate.
In this case they walk along the edge of the colony, much like Schneirla's ants
(Schneirla, 1944). The robots are not actually attracted to the walls, but since
they are only repelled by the walls while pointed at them the e�ect is similar
for the straight walls of the current colony.

In region B (durations from 27 to 54 minutes), the trails are long enough for
the robot to catch up to and form a cycle that is then optimized. However, the
trails are weak enough that they can be lost at the corners. This is caused by
the geometry of the receptive �elds, pheromone deposition, and the turn mode
of the robot. The change from one behavioral mode to the other tends to cause
a kink in the pheromone trail. Because the receptive �elds are in front of the
pheromone emitter, there is a region near the distinguished corners where the
robots are still following the previous trail but the trail has ended. After walking
forward, the robot enters the corner and begins following the other pheromone.
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Figure 4: Laps to Criterion (13 min. half-lap) vs. Pheromone Duration His-
togram for Two Robots

The optimization of this new trail requires the robot to make a hard turn which
it occasionally cannot manage. This causes the broad spread of data points as
the robots fall in and out of the cycles at various times during the trial.

Pheromone durations from 54 minutes onward (region C) create trails that
are strong enough for the robots to follow fairly robustly. As indicated above,
there are occasional outliers that indicate that a robot has lost a trail, but they
are uncommon.

Next, we ran the same experiment with two robots (Figure 4 is a 3D his-
togram of the raw data for two robots collected under the same conditions as
the one robot case.) Here we notice that the transition region B between the
no optimization region and the optimization region has disappeared. Examin-
ing several individual trials led to the unexpected observation that the robots
tended to clump together instead of spreading evenly. The conclusion we drew
was that the e�ective length of the trail did not lead to more robust trail fol-
lowing behavior, but rather the doubled strength of the trail was responsible.

We tested this hypothesis by running a single robot with double the usual
pheromone deposition rate (data in Figure 5.) This experiment supports the
trail strength theory. Close inspection of optimized pheromone durations sug-
gests that after the point of robustness is reached path optimization slows down
due to the `mass' of the trail that must evaporate before a new, optimized region
can predominate.
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Figure 5: Laps to Criterion (13 min. half-lap) vs. Pheromone Duration His-
togram for One Robot with Double Pheromone Deposition Rate

5 Perspectives

The current version of the model, while producing some interesting and unex-
pected behavior, is still too simple to model realistic foraging tasks. Future
work will extend the model so that further learning questions can be addressed.
When presented with a choice between two trails of di�ering lengths (Goss et al.,
1989; Deneubourg & Goss, 1989) or a choice between two food sources (Pasteels
et al., 1987), the reinforcement of the selection can be seen as a form of Hebbian
learning (Millonas, 1992). If an ant at a fork F with a choice between branches
A and B chooses A and leaves pheromone, then future ants will be more likely
to choose A. Future work with this system should examine the e�ect of not
just the choices between forks, but also the e�ect of the evolution of the trails
between the forks and the creation of new trails.
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