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Abstract

This paper presents a logical system in which various group-level epistemic actions are
incorporated into the object language. That is, we consider the standard modeling of knowl-
edge among a set of agents by multi-modal Kripke structures. One might want to consider
actions that take place, such as announcements to groups privately, announcements with
suspicious outsiders, etc. In our system, such actions correspond to additional modalities in
the object language. That is, we do not add machinery on top of models (as in, e.g., Fagin
et al [4]), but we reify aspects of the machinery in the logical language.

Special cases of our logic have been considered in Plaza [13], Gerbrandy [5, 6], and
Gerbrandy and Groeneveld [7]. The latter group of papers introduce a language in which
one can faithfully represent all of the reasoning in examples such as the Muddy Children
scenario. In that paper we find operators for updating worlds via announcements to groups
of agents who are isolated from all others. We advance this by considering many more
actions, and by using a more general semantics.

Our logic contains the infinitary operators used in the standard modeling of common
knowledge. We present a sound and complete logical system for the logic, and we study its
expressive power.

1 Introduction: Example Scenarios and Their Representations

We introduce the issues in this paper by presenting a few epistemic scenarios. These are all
based on the Muddy Children scenario, well-known from the literature on knowledge. The
intention is to expose the problems that we wish to address. These problems are first of all
to get models which are faithful to our intuitions, and then to build and study logical systems
which capture some of what is going on in the scenarios.

The cast of characters consists of three children: A, B, and C. So that we can use pronouns
for them in the sequel, we assume that A is male, and B and C are female. Furthermore, A
and B are dirty, and C is clean. Each of the children can see all and only the others. It is
known to all (say, as a result of a shout from one of the parents) that at least one child is dirty.
Furthermore, each child must try to figure out his or her state only by stating “I know whether
I’'m dirty or not” or “I don’t know whether I'm dirty or not.” They must tell the truth, and
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they are perfect reasoners in the sense that they know all of the semantic consequences of their
knowledge. The opening situation and these rules are all assumed to be common knowledge.

SCENARIO 1.  After reflection, A and B announce to everyone that at that point they do
not know whether they are dirty or not. (The reason we are having A and B make this
announcement rather than all three children is that it fits in better with our scenarios to
follow.) Let o denote this announcement.

As in the classical Muddy Children, there are intuitions about knowledge before and after
«. Here are some of those intuitions. Before «, nobody should know that he or she is dirty.
However, A should think that it is possible that B knows. (For if A were clean, B would infer
that she must the dirty one.) After o, A and B should each know that they are dirty, and hence
they know whether they are dirty or not. On the other hand, C' should not know whether she
is dirty or not.

SCENARIO 1.5. This scenario begins after . At this point, A and B announce to all three
that they do know whether or not they are dirty. We’ll call this event /. Our intuition is that
after o/, C should know that she is not dirty. Moreover, A and B should know that C' knows
this. Actually, the dirty-or-not states of all the children should be common knowledge to all
three.

SCENARIO 2. As an alternative to the first scenario, let’s assume that C' falls asleep for a
minute. During this time, A and B got together and told each other that they didn’t know
whether they were dirty or not. Let 8 denote this event. After 5, C' wakes up. Part of what we
mean by ( is that C' does not even consider it possible that 8 occurred, and that it’s common
knowledge to A and B that this is the case. Then our intuitions are that after 3, C' should
“know” (actually: believe) that A does not know whether he is dirty (and similarly for B);
and this fact about C' is common knowledge for all three children. Of course, it should also be
common knowledge to A and B that they are dirty.

SCENARIO 2.5. Following Scenario 2, we again have o/: A and B announce that they do know
whether they are dirty or not. Our intuitions are not entirely clear at this point. Surely C
should suspect some kind of cheating or miscalculation on the part of the others. However, we
will not have much to say about the workings of this kind of real-world sensibility. Our goal
will be more in the direction of modeling different alternatives.

SCENARIO 3. Now we vary Scenario 2. C' merely feigned sleep and thought she heard both A
and B whispering. C' cannot be sure of this, however, and also entertains the possibility that
nothing was communicated. (In reality, A and B did communicate.) A and B for their part,
still believe that C was sleeping. We call this event ~.

One might at first glance think that A and B’s “knowledge” of C’s epistemic state is
unchanged by 7. After all, the communication was not about C. However, we work with a
semantic notion of knowledge, and after vy, A and B know that they are dirty, hence then know
that C' knows that they are dirty. A and B did not know this at the outset.
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So we need to revise the initial intuition. What is correct is that if C' knows some fact ¢
before 7, then after v, A and B know (or rather, believe) that C knows (. This is because
after v, A and B not only know the clean-or-dirty state of everyone, they (therefore) also know
exactly which possibilities everyone is aware of, which they discard as impossible, etc. So each
of them can reconstruct C’s entire epistemic state. They believe that their reconstruction is
current, but of course, what they reconstruct is C’s original one, before +.

Conversely, if after v, A and B “know” that C knows ¢, then before v, C' really did know
. That is, the reconstruction is accurate. For example, after v, A believes that C' should not
consider it possible that A knows that he is dirty. However, C thinks it is possible that A knows
he is dirty.

There is a stronger statement that is true: C' knows ¢ before 7 iff after ~, it is common
knowledge to A and B that each of them knows that C knows ¢. Intuitively, this hold because
each of A and B knows that both of them are able to carry out the reconstruction of C’s state.

Our final intuition is that after v, C should know that if A were to subsequently announce
that he knows that he is dirty, then C' would know that B knows that she is dirty.

SCENARIO 3.5. Again, continue Scenario 3 by «'. At this point, C' should know that her
suspicions were confirmed, and hence that she is not dirty. For their part, A and B should
think that C is confused by «’: they should think that C is as she was following Scenario 2.5.

SCENARIO 4. A and B are on one side of the table and C is on the other, dozing. C' wakes
up at what looks to her like the middle of a joint confession by A and B. The two sides stare
each other down. In fact, A and B have already communicated. We call this action §. So C
suspects that ¢ is what happened, but can’t tell if it was ¢ or nothing. For their part, A and B
see that C' suspects but does not know that § happened.

The basic intuition is that after J, it should be common knowledge to all three that C sus-
pects that the communication happened. Even if C thinks that A and B did not communicate,
C should not think that she is sure of this.

One related intuition is that after §, it should be common knowledge that C suspects that
A knows that he is dirty. As it happens, this intuition is wrong. Here is a detailed analysis:
C thinks it possible that everyone is dirty at the outset, and if this were the case then the
announcement of B’s ignorance would not help A to learn that he is dirty; from A’s point of
view, he still could be clean and B would not know that she is dirty. C’s view on this does
not change as a result of d, so afterwards, C still thinks that it could be the case that A says,
“It’s possible that B and C' are the dirty one and I am clean, Hence C would see my clean face
and not suspect that I know that I am dirty.” So it certainly should not be common knowledge
that C' suspects that A knows he is dirty.

Notice also that C' would say after §: “I think it is possible that no announcement occurred,
and yet A thinks it possible that B is the only dirty one. In that case, what A would think
that I suspect that A told B that he knows that he is not dirty. Of course, this is not what
I actually suspect.” The point is that C’s reasoning about A and B’s reasoning about her
involves suspicion of a different announcement than we at first considered.



SCENARIO 4.5.  Once again, we continue with /. Our intuition is that this is tantamount
to an admission of private communication by A and B. If we disregard this and only look at
higher order knowledge concerning who is and is not dirty, we expect that the epistemic state
after o/ is the same for all three children as it is at the end of Scenario 1.5.

1.1 Models

Now that we have detailed a few scenarios and our intuitions about them, it is time to construct
some Kripke models as representations for them.

THE MODELS U AND V. We begin with a representation of the situation before o. We take
the Kripke model U whose worlds are wq,...,u7; and whose structure is given in the table on
the left below:

(World [A[B[C] % |% |5 |

(1 ® | Ui, U5 | UL, U3 | UL

U o U2, Ug | U2 U, U3 ‘World HA‘B‘C‘ = ‘ > ‘ — ‘
U3 ® | ® | U3, UT | U1, U3 | U2,U3 U1 ® | U1,V5 | U1,V3 | U1

Uyg i Uy Ug, Ug | Ug, Us U3 ® | ® | U3,V7 | V1,V3 | U3

Us o ® | Up,Us5 | Us, U7 | Uq, Us Us ® ® | V1,U5 | U5,V7 | Us
ugy/ e | o U2, Ug | Udq, Up | Ug, U7 v/ o | Vs V6 Vg, U7
U7 ® | ® & | U3z, U7 | U5, UT | U, UT U7 ® | ® | e | U3,V7 | Us,V7 | Vg, U7

For example, in world us3, A is clean, but B and C are dirty. Also, the worlds which A thinks
are possible are ug and ur. That is, A sees that B and C are dirty, so A infers that the world
is either ug or u7. The rest of the structure is explained similarly, except for the 1/ mark next
to ug. This specifies ug as the actual world in the model, the one which corresponds to our
description of the model before or. Note that U incorporates some of the conventions stated in
Scenario 1. For example, in each world, each child has a complete and correct assessment of
which worlds are possible for all three reasoners.

Each of our intuitions about knowledge before « turns into a statement in the modal logic
of knowledge. This logic has atomic sentences D 4, Dp, and D¢ standing for “A is dirty”, etc.;
it has knowledge operators 04, Op, and O¢ along with the usual boolean connectives. We are
going to use the standard Kripke semantics for multi-modal logic throughout this paper. So
given a model-world pair, say (A, a), and some agent, say D, we’ll write

(K,k) =0py iff whenever k2 [ in K, we have (K,l) = p.
The boolean connectives will be interpreted classically. We can then check the following:

(U,’U,6> ): S 0Dp

The model after « is the Kripke model V', shown on the right above. The way we got V from
U was to discard the worlds us and ug of U, since in U at each of those worlds, either A or B
would know if they were dirty. We also changed the u’s to v’s to avoid confusion, and to stress
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the fact that we get a new model. Turning back to our intuitions, we can see that the following
holds:
(V,v6) FO4D4A AOpDp A =(OcDe vV O-De)

THE MODEL W. Scenario 1.5 elaborates Scenario 1 by the event /. So we discard the worlds
where this is false in V', and we obtain a one-world model W:

[(World [A[B[C| & |
|

Cuny el o] Im

55 ]
’U)G‘QUG‘

(We have renamed vg to wg.) This model reflects our intuition that at this point, C' should
know that she is not dirty.

THE MODEL X. This corresponds to Scenario 2. We start with U and see the effect of the
private announcement . The resulting model X is:

(World _[A[B[C|#% [& [5 |

Uly. ., UT
I [ T1,T5 | T1,T3 | U1
I3 [ ] ® | T3,X7 | T1,T3 | U2,U3
Ts ® ® | T1,T5 | T5,T7 | Uq, Us
z6v/ i Ze Ze Ug, U7
T ® | ® | & | T3,T7 | T5,T7 | Us, UT
Notice that the worlds wq, ..., u; are also worlds in X. We did not put any information in the

chart above for those worlds since it should be exactly the same as in U above. The reason for
having these “old worlds” in X is that since C was asleep, the worlds that C' considers possible
after 8 should be just the ones that were possible before 8. We can check that

<X, :E6> |: —IDC(DADA V DA—|DA).

Let ¢ be the sentence above. Then also, (X, zg) = D’{‘A’B’C}go. This is our formal statement
that it is common knowledge in the group of three children that ¢ holds. The semantics of this
is that for all sequences D1,...,Dy, € {A,B,C}*, (X,z6) = Op, ---Op,,¢. Note that we have
no way of saying in the modal language that C' suspects that an announcement happened; the
best we can do is (roughly) to say that C' thinks that some sentence v is possible in the sense
that ¢ holds in some possible world. Of course, we have no way to say that A and B know that
C was asleep, either.

Note as well that in X, we do not have x5 % xg. In other words, the real world would
not be possible for C'. This is some indication that something strange is going on in this
model. Further, we consider the model of what happens after A and B’s announcement. Then
in this model, no worlds would be accessible for C' from the actual world. These anomalies
should justify our interest in the more complicated scenarios and models involving suspicions
of announcements.



THE MODEL OBTAINED BY ANNOUNCING o IN X. This would be the one-world model below:
[(World[A[B[C[ & [ ]S |
[osy/ [lele] [a6 [ [ |

We have not only deleted the worlds where either A or B does not know that they are dirty in

X, but we also discarded all worlds not reachable from the new version zf of . The anomaly
here is that C' thinks no worlds are possible.

THE MODEL Y. We consider 7 from Scenario 3, in which C thought she might have heard A
and B, while A and B think that C is unaware of y. We get the model Y displayed in Figure 1
below. Y has 24 worlds, and so we won’t justify all of them individually. We will give a more
principled construction of Y from W and ~y, once we have settle on a mathematical model of
v. For now, the ideas are that the y worlds are those where the announcement happened, and
the 3" worlds are those in which it did not. Note that some of the y worlds are missing, since
the truthful announcement by A and B presupposes that they don’t know whether they are
dirty in U at the corresponding world. The z’s and u’s are from above, and they inherit the

[ World [A]B]C]4 B |5 |
Uly. ., UT

L1, T3, L5, X6, L7

Y1 o |z, 25 | 31,23 |y, 0}

Y3 ® | ® | T3,T7|T1,T3 y3,y'2,yf°,
Y5 o ® | T1,T5 | T5,L7 ysayfpyls
Y6/ o | o Tg Tg Yo, Y7, Ys» Y7
Y7 ® | & | o | T3,T7|T5T7 yﬁay%yéay,?
?/1 ® | Ui, U5 | UT, U3 y1,y'1

Yh . Uy, ug | Ug Y3, Y2, Y3

yé, ® | ® | U3,UT | Y1,Y3 y3,y'2,y'3
?fo ® Uy Ug, Us | Y5, Y4, yé

Y5 ® o | uy,us | us,ur | Ys, Yo, Us
ylﬁ o | o U2, Up | Ug, Up y67y7ayéay,7
Y7 o | o | o | uz,uy | us,ur | Yo, Y7, Ys, Yy

Figure 1: The model Y

accessibility relations which we have seen.

Now our main intuition here is that (U, us) = Ocy iff (Y, ys) = DE“A pyHoe. (The sentence
DE’A p}X Means that A knows ¢, A knows B knows Yy, etc. It differs from D{A BIX in that it
does not entail that x is true.) To see this, note that ug < ug,u7 and no other worlds. And
the only worlds reachable from yg using one or more 4y or £ transitions followed by a <
transition are again ug and wuy.

Another intuition is that in (Y, ys), C should think that it is possible that A knows that he
is dirty. This is justified since ys < x4, and (Y, xzg) = (X, z6) (that is, the submodels of X and
Y generated by zg are isomorphic), and (X, zg) = O4D4.
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Our final intuition is that in (Y, yg), C should know that if A were to subsequently announce
that he knows that he is dirty, then C' would know that B knows that she is dirty. To check
this, we need to modify Y by deleting the worlds where A does not know that he is dirty. These
include y7, y5 and y%. In the updated model, the only world accessible for C from (the new
version of) yg is yg itself, and at yg in the new structure, B correctly knows she is dirty.

THE MODEL OBTAINED BY ANNOUNCING o/ IN Y. As when ¢ is announced in X, we only
keep the worlds of Y worlds where both A or B do know they are dirty. So we drop y7, v, and

Y7

(World [A[B[C[ % [ 5 [ & |

v | *]® of o | u
of  Jele] |af |af

We also only keep the worlds accessible from yg (this change is harmless). C' knows she is not
dirty. Technically, A and B “know” this, but this is for the nonsensical reason that they “know”
that C' knows everything.

THE MODEL Z. Corresponding to Scenario 4, we get the model Z shown below.

lw_[A[B[C[& [& |9 lw][A[B]C][S [& [&

21 o | 21,25 | 21,23 | 21,2] 2] o | 21,25 | 21,25 | 21,2

29 . 29 29 20,723, 2, 25 || 24 . 2, 2 | 22, 2 | 22,23, Zh, 2%
23 o | o | 23,27 | 21,23 | 22,23,2h, 25 || 24 o | o | 24 2L | 21,2 | 22,23, 2h, 24
n ° 24 Z4 Z4,25, 20,25 || 24 || ® 2y, 26 | 24, 26 | 24,25, 24, 25
25 . o | 21,25 | 25,27 | 24,25, 24,25 || 25 || @ o | 20,2 | 2L, 2% | 24, 25, 24, 25
26/ || ® | ® 26 26 26,27, 26,25 || 26 || ® | ® 2h, 2 | 24y 26 | 26, 27, 26y 2y
27 o | o | o | 23,27 | 25,27 | 26,27, 26,25 || 25 || @ | @ | @ | 2h 2h | 2L 2k | 26, 27, 26, 2

Recall our last point in Scenario 4, that we need to consider a few possible announcements for C
to suspect. This is reflected in the fact that the z worlds are of three types. In zo, B announced
that she knows whether she is dirty, and A announced that he doesn’t. Similar remarks apply
to z4. In all other z worlds, both announced that they do not know. The worlds accessible from
each of these is based on the relevant announcement. For example, in 2o, neither A nor B thinks
any other world is possible. (One might think that zo 4y z5. But in zg, B could not announce
that she knows she is dirty. So if the world were 2o and the relevant announcement made, then
A would not think zg is possible.) The 2z’ worlds are those in which no announcement actually
happened.

Our key intuition was that it is common knowledge that C suspects that § happened. This
will not correspond to anything in the formal language £([«], O*) introduced later in this paper.
(However, it will be representable in an auxiliary language about actions; see Example 2.3.)
Informally, the intuition is valid for Z because for every z; (or z;) there is some z; (unprimed)
such that z; & z; (or z; % z;). In addition, in this particular model there is a sentence in our



formal language which happens to hold only at the worlds where an announcement occurred.
Here is one:
X = 0aDa V O4-DaV Ofy 510c0aDs

So (Z,z) = D% 4,8,01 90X

The explanation of the mistaken intuition in Scenario 4 is that zg < 27 4 z3, and G 204Dy
fails in 29, 23, 25, and 25.. Overall, (Z, z5) = ~Oc040 404D 4.

The point that C’s suspicion varies corresponds to the fact that GO 2 04D 4 holds at
(Z,z6). Indeed 2z S 2 2 25 S 29, and (Z, z9) = O4-Dy.

A few more involved statements are true in Z. For example, O¢4 p o+ (O4D4 — OcO4Dy).
It is common knowledge to all three that if A knows he is dirty, then C thinks it possible that
A knows this.

THE MODEL OBTAINED BY ANNOUNCING o IN Z. This model is W from above. (Actually, it
is bisimilar to W; see Section 2.2.) This corresponds to the intuition that Scenarios 2.5 and 4.5
lead to the same model.

1.2 Epistemic Actions

We will formalize a language in Section 2 along with the notions of (epistemic) action structure
and actions. Before we do that, it makes sense to present the idea informally based on the
examples which we have already dealt with.

a AND o/: ANNOUNCEMENTS TO EVERYONE. We first consider « of Scenario 1. Let 1) be given
by
’gb = —I(DADA\/DA—IDA)/\—I(DBDB\/DB—IDB) (1)

So 1 says that neither A nor B know whether or not they are dirty. This is the precondition
of the announcement, but it is not the structure. The structure of this announcement is quite
simple (so much so that the reader will need to read further to get an idea for what we mean
by structure). It is the following Kripke structure K: we take one point, call it k, and we set
kL k for all D € {A,B,C}. We call (K, k) an action structure. Along with K, we also have a
precondition; this will be ¢ from (1). To deal with action structures with more than one point,
the precondition will be a function PRE from worlds to sentences. In this case, the function
PRE is just {(k,4)}. The tuple (K, k, PRE) will be an example of what we call an action. This
particular action is our model of the announcement «. Henceforth we use the symbol « to refer
ambiguously to the pretheoretic notion of the announcement event and to our mathematical
model of it.

Another example of an announcement to everyone is o’. Here we just change 1 from (1)
to the sentence ¢’ which says that both A and B know whether or not they are dirty. Yet
another example is the null announcement. This models the announcement of a tautology true
to everyone. We’'ll write this as 7.

B: A SECURE ANNOUNCEMENT TO A SET OF AGENTS. Next, suppose we have an announce-
ment made to some possibly proper subset B C A in the manner of Scenario 2. So there is some
dispute as to what happened: the agents in B think that there was an announcement, while
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those out of B are sure that nothing happened. We formalize this with a Kripke structure of
two points, [ and t. We set [ 2 [ for all D € B, [ 2 ¢ for D ¢ B, and t2 ¢ for all D. The
point is that [ here is the actual announcement, and the agents in B know that this is the
announcement. The agents not in B think that ¢ is for sure the only possible action, and ¢
in this model will behave just like the null announcement. The precondition function will be
called PRE in all of our examples. Here PRE is given by PRE(l) = ¢ and PRE(t) = true, where
1 is from (1). The action overall is (L, [, PRE), where L = {[,¢}. We call this action 5.

7v: AN ANNOUNCEMENT WITH A SUSPICIOUS OUTSIDER. This is based on Scenario 3. The
associated structure has four points, as follows:

(World | 4 | & | & |PRE |

my/ l l m,n | P
n t t m,n | true
[ l l t P
4 t t 4 true

The idea is that m is the (private) announcement that C' suspects, and n is other announcement
that C thinks is possible (where nothing was communicated by A and B). Then if m happened,
A and B were sure that what happened was [; similarly, if n happened, A and B would think
that ¢ was what happened. We call this action v; technically it is ({m,n,l, ¢}, m,PRE). We get
a different action, say ' if we use the same model as above but change the designated (“real”)
world from m to n.

d: AN ANNOUNCEMENT WITH COMMON KNOWLEDGE OF SUSPICION. Corresponding to Sce-
nario 4, we have the following model. In it 14 denotes the sentence saying that A knows
whether he is dirty but B does not, ¥p the sentence saying that B knows whether she is dirty
but A does not, and 1y the sentence stating that neither knows.

(World | 4 | & | & | PRE |
V4 o |o |os P
P p |p |ps a
q g |9 |4s YB
T T T T, S o
S S S 0,p,q,1,5 | true

We call this action §. There are five possible actions here, depending on whether it was 1, ¥4,
B, Py or nothing which was announced. In each case, A and B are sure of what happened.
Even if nothing actually happened (s), C' would suspect one of the other four possibilities. In
those, C still considers it possible that nothing happened.

Still to come. The reader is perhaps wondering what the actual connection is between the
(formal) actions just introduced and the concrete models of the previous section. The connection
is that there is a way of taking a model and an action and producing another model. When
applied to the specific model U and the actions of this section, we get the models V, ..., Z.
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We delay this connection until Section 2.2 below, since it is high time that we introduce our
language of epistemic actions and its semantics. The point is that there is a principled reason
behind the models.

The question also arises as to whether there are any principles behind the particular actions
which we put down in this section. As it happens, there is more which can be said on this
matter. We postpone that discussion until Section 2.3, after we have formally defined the
syntax and semantics of our logical languages.

1.3 The Issues

The main issue we address in this paper is to formally represent epistemic updates, i.e., changes
in the information states of agents in a distributed system. We think of these changes as
being induced by specific information-updating actions, which can be of various types: (1)
information-gathering and processing (e.g., realizing the possibility of other agents’ hidden ac-
tions, and more generally, learning of any kind of new possibility via experiment, computation,
or introspection); (2) information-exchange and communication (learning by sending/receiving
messages, public announcements, secret interception of messages, etc.); (3) information-hiding
(lying or other forms of deceiving actions, such as communication over secret channels, sending
encrypted messages, holding secret suspicions); (4) information-loss and misinformation (being
lied to, starting to have gratuitous suspicions, non-introspective learning, wrong computations
or faulty observations, paranoia); (5) and more generally sequential or synchronous combina-
tions of all of the above.

Special cases of our logic, dealing only with public or semi-public announcements to mutually
isolated groups, have been considered in Plaza [13], Gerbrandy [5, 6], and Gerbrandy and
Groeneveld [7]. These deal with actions such as a and 8 in our Introduction. Our examples
~v and 0 go beyond what is possible in the setting of these papers. But our overall setting is
much more liberal, since it allows for all the above-mentioned types of actions. We feel it would
be interesting to study further examples with an eye towards applications, but we leave this to
other papers.

In our formal system, we capture only the epistemic aspect of these real actions, disregarding
other (intentional) aspects. In particular, for simplicity reasons, we only deal with “purely
epistemic” actions; i.e., the ones that do not change the facts of the world, but affect only
the agents’ beliefs about the world. However, this is not an essential limitation, as our formal
setting can be easily adapted to express fact-changing actions (see the end of Section 2.3 and
also Section 5.3).

On the semantical side, the main original technical contribution of our paper lies in our
decision to represent not only the epistemic states, but also the epistemic actions, by Kripke
structures. While for states, these structures represent in the usual way the uncertainty of each
agent concerning the current state of the system, we similarly use action-structures to represent
the uncertainty of each agent concerning the current action taking place. The intuition is that
we are dealing with potentially ”half-opaque/half-transparent” actions, about which the agents
may be incompletely informed, or even completely misinformed. Besides the structure, actions
have preconditions, defining their domain of applicability: not every action is possible in every
state. We model the update of a state by an action as a partial update operation, given by
a restricted product of the two structures: the uncertainties present in the given state and

10



the given action are multiplied, while the “impossible” combinations of states and actions are
eliminated (by testing the actions’ preconditions on the state). The underlying intuition is that
the agent’s uncertainties concerning the state and the ones concerning the action are mutually
independent, except for the consistency of the action with the state.

On the syntactical side, we use a mixture of dynamic and epistemic logic, with dynamic
modalities associated to each action-structure, and with common-knowledge modalities for var-
ious groups of agents (in addition to the usual individual-knowledge operators). We give a
complete and decidable axiomatization for this logic, and we prove various expressivity re-
sults. From a proof-theoretical point of view, the main originality of our system is the presence
of our Action Rule, an inference rule capturing what might be called a notion of “epistemic
(co)recursion”. We understand this rule and our Knowledge-Action Axiom (a generalization
of Ramsey’s axiom to half-opaque actions) as expressing fundamental formal features of the
interaction between action and knowledge in multi-agent systems, features that we think have
not been formally expressed before.

1.4 Further Contents of This Paper

Section 2 gives our basic logic £([a]) of epistemic actions and knowledge. The idea is to define
the logic together with the action structures which we have just looked at informally. So in
L([a]) we finally will present the promised formal versions of the announcements of Section 1.2.
In Section 3 we present a sound and complete axiomatization of L([a]). We add the common
knowledge operators to get L£([a],0*) in Section 4. Completeness for this logic is proved in
Section 5. Two results on the expressive power are presented in Section 6. An Appendix
contains some technical results which, while needed for our work, seem to interrupt the flow of
the paper.

2 A Logical Language with Epistemic Actions

2.1 Syntax

We begin with a set AtSen of atomic sentences, and we define two sets simultaneously: the
language L([a]), and a set of actions (over L([])).

L([a]) is the smallest collection which includes AtSen and which is closed under =, A, O4
for A € A, and [a]p, where « is an action over L([a]), and ¢ € L([«a]).

An action structure (over L([a])) is a pair (K, PRE), where K is a finite Kripke frame over
the set A of agents, and PRE is a map PRE : K — L. We will usually write K for the action
structure (K, PRE). An action (over L(][a])) is a tuple « = (K, k, PRE), where (K, PRE) is an
action structure over L£([a]), and £ € K. Each action « thus is a finite set with relations 2
for D € A, together with a precondition function and a specified actual world.

The actions themselves constitute a Kripke frame Actions in the natural way, by setting
(K,k,PRE) 2 (L,l,PRE’) iff K =L, PRE=PRE, and k2 [ in K. (2)

When a = (K, k, PRE), we set PRE(a) = PRE(k). That is, PRE(«) is the precondition associated
to the distinguished world of the action. For this reason, we often write PRE(«) instead of
PRE(k).
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Examples 2.1 All of the sentences mentioned in Section 1.1 are sentences of L([a]), except
for the ones that use D’E AB,CY This construct gives us a more expressive language, as we shall
see. The structures «, 7, 3, v, 7/, 9, and &' described informally in Section 1.2 are bona fide
actions. As examples of the accessibility relation on the class of actions, we have the following
facts: a2 aand 72 7 forall D € {A,B,C}; 85 3; 8BS B; BS 73 v—2F 65 7,7 S v,7;
v AF T 048§, 0'—AF §' and §,0' S 4,0

Many other types of examples are possible. We can represent misleading epistemic actions,
e.g. lying, or more generally acting such that some people do not suspect that your action
is possible. We can also represent gratuitous suspicion (“paranoia”): maybe no “real” action
has taken place, except that some people start suspecting some action (e.g., some private
communication) has taken place.

2.2 Semantics

As with the syntax, we define two things simultaneously: the semantic relation (W, w) = ¢,
and a partial operation ((W,w), a) — (W, w)®. Before this, we need another definition. Given
a model W and an action structure K, we define the model W as follows:

1. The worlds of WX are the pairs (w, k) € W x K such that (W, w) = PRE(k).

2. For such pairs,
(w, k) 4 (', k") iff wd w' and k2 K. (3)
3. We interpret the atomic sentences by setting vy« ((w, k)) = vy (w). That is, p is true at
(w, k) in WE iff p is true at w in W.
Given an action « = (K, k) and a model-world pair (W, w), we say that (W, w)® is defined iff
(W,w) = PRE(k), and in that case we set (W, w)® = (W, w) k) = (WX (w,k)). One can now
check that the following holds for these definitions.
(W, w)® 4 (W,z)? iff (W, w)® and (W, z)? are defined,w 4  in W, and o 4 .
The semantics is given by extending the usual clauses for modal logic by one for actions:
(W,w) E=[a]p iff (W,w)® is defined implies (W, w)® = .
As is customary, we abbreviate —[a]—-¢ by (a)p. Then we have
(W,w) = (a)p iff (W,w)” is defined and (W, w)* = ¢.

We also abbreviate the boolean connectives classically, and we let {rue denote some tautology
such as p V —p.

The larger language L([a],0%) We also consider a larger language L([a],0%). This is
defined by adding operators O for all subsets B C A. (When we do this, of course we get more
actions as well.) The semantics works by taking O%¢ to abbreviate the infinitary conjunction

/\ Og, 04, 0.
(A1,...,An)EB*

Here B* is the set of all sequences from B. This includes the empty sequence, so O3 logically
implies ¢.
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Bisimulation Given two models, say K and L, over the same set of A of agents, a bisimulation
between K and L is a relation R C K x L such that if kRl and A € A, then:

1. For all atomic p, (K, k) = p iff (L,1) = p.
2. For all k£ 4y k' there is some [ 4 [’ such that k'Rl
3. For all [ & [’ there is some k 4 k' such that k'Rl

Given two model-world pairs (K, k) and (L,1), we write (K, k) = (L,[) iff there is some bisim-
ulation R such that kRI. It is a standard fact that if (K, k) = (L,[), then the two pairs agree
on all sentences of standard modal logic. In our setting, we also can speak about actions being
bisimilar: we change condition (1) above to refer to say that PRE(k) = PRE(/). It is easy now
to check two things simultaneously: (1) bisimilar pairs agree on all sentences of L£([a]); and
(2) if (K, k) = (L,1) and o = S, then (K, k)® = (L,1)?. Furthermore, these results extend to
L([a], O%).

Examples 2.2 We look back at Section 1.1 for some examples. We use = to denote the relation
of isomorphism on model-world pairs. It is not hard to check the following: (U, ug)® = (V, vg),
(U,ug)? = (X, x6), (U,ug)? = (Y,ye), and (U, ug)? = (Z,2). For example, the isomorphism
which shows that (U, ug)? =2 (Z, z) is (ui,0) — z; for i # 2,4, (ug,q) — 2o, (u4,p) — 24, and
(ui,r) — 2 for all 4.

Let o be the action of announcing to all agents that both A and B do know whether they
are dirty. Then (V,v6)® = (X,z¢). Moreover, (Z,v6)® = (X,x¢). Note that in this case
we only have bisimilarity. However, we know that our languages will not discriminate between
bisimilar pairs, so we can regard them as the same. This models our intuition that the epistemic
states at the end of Scenarios 1.5 and 4.5 should be the same.

Finally, all of the semantic facts about the various models in Section 1.1 now turn into
precise statements. For example, (U, us) = [a]©405Dp. Also, (U, ug) = [a][']0% 5 »OcDe.
This formalizes our intuition that if we start with (U, us), first announce that each of A and B
do not know their state, then second announce that they each do know it, then at that point it
will be common knowledge to all three that C knows she is dirty.

2.3 More on Actions

In this section, we have a few remarks on actions. The point here is to clarify the relation
between the scenarios of Section 1 and the intuitions concerning them, and the corresponding
actions of Section 1.2.

First and foremost, here are the the conceptual points involved in our formalization. The
idea is that epistemic actions present a lot of uncertainty. Indeed, what might be thought of
as a single action (or event) is naturally interpreted by agents in different ways. The various
agents might be unclear on what exactly happened, and again they might well have different
interpretations on what is happening. Our formalization reflects this by making epistemic
actions into Kripke models. So our use of possible-worlds modeling of actions is on a par with
other uses of these models, and it inherits all of the features and bugs of those approaches.

Next, we want to spell out in words what our proposal amounts to. The basic problem is
to decide how to represent what happens to a Kripke model W after an announcement «. (Of
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course, we are modeling « by an action in our formal sense.) Our solution begins by considering
copies of W, one for each action token k of o in which PRE(«) holds. We can think of tagging
the worlds of W with the worlds of «, and then we must give an account of the accessibility
relation between them. The intuition is that the agents’ relations to alternative worlds should
be independent from their relations to other possibilities for a. So the accessibility relations of
K and W should be combined independently. This is expressed formally in (3).

The auxiliary language £ has as atomic sentences all sentences ¢ of £([a],0*). It has
all boolean connectives, standard modal operators Oy for A € A, and also group knowledge
operators 0% for B C A.

We interpret £ on actions using the standard clauses for the connectives and modal opera-
tors, and by interpreting the atomic sentences as follows (K, k) |= p iff PRE(k) = p.

Examples 2.3 The idea here is that the auxiliary language formalizes talk about what the
different agents think is happening in our announcements. We refer back to the actions of
Section 1.2. For example, a = D}‘ A Byc}zp. Intuitively, in «, it is common knowledge that
was announced. Another example: that

0 = Ola,B,cyCc(¥ VibaVp).

That is, in 9§, it is common knowledge that C' thinks it is possible that some non-trivial an-
nouncement happened. Recall that this was one of our basic intuitions about §, one which is
not in general statable in our main language L([], O*).

Definition Let (K, k) be a model-world pair, and let ¢ be a sentence of L. Then X characterizes
(K, k) iff for all (L,1), (L,l) E x iff (L,l) = (K, k).

Proposition 2.4 Let (K, k) be a model-world pair with K finite. Then there is a sentence X
of L which characterizes (K, k).

Proof By replacing (K, k) by its quotient under the largest auto-bisimulation, we may assume
that if [ # m, then (K1) # (K, m). It is well-known that the relation of elementary equivalence
in modal logic is a bisimulation on models in which each world has finitely many arrows coming
in and out. It follows from this and the overall finiteness of K that we can find sentences ¢
for [ € K with the property that for all [ and m, (K, m) = ¢; iff m = [. Let ¢ be the following

sentence
Y = A <<Pz = BAVAR <>A‘Pl’>

leK,A€A 1A 1A

Going back to our original (K, k), let x be ¢, AO%1. It is easy to check that each (K, [) satisfies
1; hence each satisfies O0%1). Therefore (K, k) |= x. We claim that x characterizes (K, k). To
see this, suppose that (J,j) = x. Consider the relation R C K x J given by

KRy it (J.5') | ow A DLy

It is sufficient to see that R is a bisimulation. We’ll verify half of this: suppose that k'Rj’ and
7' 4 j"”. By using 1, we see that there is some k" such that &' 4, k" and j” | ppr. And also,
since |= O%¢ — 040%1, we see that (J,j") = O%. This completes the proof. =
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The connection of this result and our discussion of actions is that it is often difficult to go
from an informal description of an an epistemic action to a formal one along our lines. (For
example, our formulation of § was the last of several versions.) Presumably, one way to get a
formal action in our sense is to think carefully about which properties the action should have,
express them in the auxiliary language, and then write a characterizing sentence such as ¢ in
the proof of Proposition 2.4. Then one can construct the finite model by standard methods.
Although this would be a tedious process, it seems worthwhile to know that it is available.

Our formalization of actions reflects some choices which one might wish to modify. One of
these choices is to take the range of the function PRE to be some language. Another option would
be to have the range to be the power set of that language. This would make actions into Kripke
models over the whole set of sentences. (And so what we have done is like considering modal
logic with the restriction that at any world satisfies exactly one atomic sentence.) Taking
this other option thus brings actions and models closer. This idea is pursued in Baltag [1],
a continuation of this work which develops a “calculus of epistemic actions.” This replaces
the “semantic” actions of this paper with action expressions. These expressions have nicer
properties than the auxiliary language of this paper, but it would take us too far afield to
discuss this further.

On a different matter, it makes sense to restrict attention from the full collection of actions
as we have defined it to the smaller collection of S§ actions, where each accessibility 4y is an
equivalence relation. This corresponds to the standard move of restricting attention to models
with this property, and the reasons for doing this are similar. Intuitively, an S5 action is
one in which every agent is introspective (with respect to their own suspicions about actions).
Moreover, the introspection is accurate, and this fact is common knowledge.

A final modification which is quite natural is to allow actions which change the world. One
would do this by adding to our notion of action a sentential update u. This would be a function
defined on AtSen and written in terms of update equations such as u(p) := p A ¢q; u(q) = false,
etc. We are confident that our logical systems can be modified to reflect this change, and we
discuss this at certain points below. We decided not to make this change mostly in order to
keep the basic notions as simple as possible.

With respect to both of the changes mentioned in the last two paragraphs, it is not hard to
modify our logical work to get completeness results for the new systems. We discuss all of this
in Section 5.3.

3 A Logic for L([a])

In Figure 2 below we present a logic for £([a], 0*) which we shall study later. In this section,
we shall restrict the logic to the simpler language £([a]). We do so partly to break up the study
of a system with many axioms and rules, and partly to emphasize the significance of adding
the infinitary operators Oj to L£([«]). To carry out the restriction, we forget the axioms and
rules of inference in Figure 2 which are marked by a *. In particular a o 8 will be defined later
(Section 4).

The rules of the system are all quite standard from modal logic. The Action Axioms are the
interesting new ones. In the Atomic Permanence axiom, p is an atomic sentence. The axiom
then says that announcements do not change the brute fact of whether or not p holds. This

15



*

Let 1) be a sentence, and let C be a set of agents. Let there be sentences xg for all 5 such

Basic Axioms
All sentential validities
([a]-normality)
(O 4-normality)
(Og-normality)

Action Axioms
(Atomic Permanence)
(Partial Functionality)
(Action-Knowledge)

Mix Axiom
Composition Axiom

Modal Rules
(Modus Ponens)
([a]-necessitation)
(O 4-necessitation)
(Og-necessitation)

Action Rule

F (e = ) = ([alp — [a]y)
FOale = 9) = (Oap — Oath)
= O8(e = ) = (Opp — O5y)

- [a]p > (PRE(ar) = p)
= [a]-x < (PRE(@) = —[a]x)
= [0]0ap < (PRE(er) = A{Balfle : a4 B})

FO5e — o AN{OaObp: A €CY

= [e[Ble < [ao By

From F ¢ and F ¢ — %, infer -
From F ¢, infer  [a]y

From F ¢, infer - Oy
From F ¢, infer = Ogp

that @ —¢ § (including « itself), and such that

L. = xp — [Bl.

2. If Ac C and B4 v, then - (xg A PRE(S)) = Oaxy.

From these assumptions, infer - x, — [a]O5.

Figure 2: The logical system for £([a], 0*). For L([a]), we drop the % axioms and rules.
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axiom reflects the fact that our actions do not change any kind of local state. (We discuss an
extension of our system in Section 5.3 where this axiom is not sound.) The Partial Functionality
Axiom corresponds to the fact that the operation (W, w) — (W, w)® is a partial function. The
key axiom of the system is the Action-Knowledge Axiom, giving a criterion for knowledge after
an announcement. We will check soundness of this axiom leaving checking soundness of other
unstarred axioms and rules to the reader.

Proposition 3.1 The Action-Knowledge Axiom

[]0ap > (PRE(e) = A\{Da[Blp: a2 B})
18 sound.

Proof We remind the reader that the relevant definitions and notation are found in Section 2.2.
Let « be the action (K, k). Fix a pair (W,w). If (W,w) = —PRE(«), then both sides of our
biconditional hold. We therefore assume that (W,w) |= PRE(«) in the rest of this proof.
Assume that (W, w)® = Oap. Take some 8 such that a4y 5. This 8 is of the form (K, k')
for some £’ such that k2 k'. Let w4 w'. We have two cases: (W,w') | PRE(K'), and
(W,w') E —PRE(K'). In the latter case, (W,w') | [B]e trivially. We’ll show this in the former
case, so assume (W, w') = PRE(K’). Then (w', k') is a world of WX and indeed (w, k) 4 (w', k').
Now our assumption that (W, w)® = Oa¢ implies that (WX, (w', k")) = ¢. This means that
(W, w")? |= ¢. Hence (W, w') |= [B]p. Since B and w' were arbitrary, (W, w) = Ns BalBle.
The other direction is similar. -

The rest of this section is devoted to the completeness result for £([e]). The reader not
interested in this may omit the rest of this section, but at some points later we will refer back to
the term rewriting system R which we shall describe shortly. Our completeness proof is based
on a translation of £([a]) to ordinary modal logic £. And this translation is based on a term
rewriting system to be called R.

The rewriting rules of R are:

[a]p ~ PRE(a) = p

[a] = ~ PRE(a) = —[a]¢)

[a](p Ax) ~ [l Alalx

[]Bay ~ PRE(a) = AM{Da[SlY : a2 B}

As in all rewrite systems, we apply the rules of R at arbitrary subsentences of a given sentence.
(For example, consider what happens with something like [][3]¢. We might rewrite [3]¢ using
some rule, say to ¢. Then we might rewrite [«]iy to something like [y]y, etc.)

Lemma 3.2 There is a relation < on the sentences of L([a]) such that
1. < is wellfounded.
2. For all rules p ~ 1 of R, 9 < .

3. A sentence ¢ € L([c]) is a normal form iff it is a modal sentence (that is, ¢ cannot be
rewritten iff no actions occur in ¢).
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This takes some work, and because the details are less important than the facts themselves,
we have placed the entire matter in an Appendix to this paper. (The Appendix also discusses
an extension of the rewrite system R to a system R* for the larger language L([«],0%), so if
you read it at this point you will need to keep this in mind.)

In the next result, we let £ be ordinary modal logic over AtSen (where of course there are
no actions).

Proposition 3.3 There is a translation t : L([a]) — L such that for all ¢ € L([a]), ¢ is
semantically equivalent to .

Proof Every sentence ¢ of L£([e]) may be rewritten to a normal form. By Lemma 3.2, the
normal forms of ¢ is a sentence in £. We therefore set ¢’ to be any normal form of ¢, say the
one obtained by carrying out leftmost reductions. The semantic equivalence follows from the
fact that the rewrite rules themselves are sound, and from the fact that semantic equivalence
is preserved by substitutions. o

Lemma 3.4 (Substitution) Let ¢ be any sentence, and let = x + x'. Suppose that [p/x]
comes from ¢ by replacing p by x at some point, and ¢[p/x'] comes similarly. Then t ¢[p/x] <

elp/x']-

Proof By induction on ¢. The key point is that we have necessitation rules for each [a]. -

Theorem 3.5 This logical system for L([c]) is strongly complete: X F ¢ iff ¥ = .

Proof The soundness half being easy, we only need to show that if ¥ = ¢, then ¥ F ¢. First,
! = !, Since our system extends the standard complete proof system of modal logic, 3¢ F .
Now for each x of L([a]), F x <> x’. (This is an easy induction on < using Lemma 3.4.) As
a result, ¥ = x! for all x € . So ¥ F ¢'. As we know I ¢! <+ . So we have our desired
conclusion: ¥ F ¢. -

Strong completeness results of this kind may also be found in Plaza [13] and in Gerbrandy
and Groeneveld [7]. We discuss some of the history of the subject in Section 7.

4 A Logic for L([a], 0%)

At this point, we turn to the completeness result for £L([«],0%). It is easy to check that there
is no hope of getting a strong completeness result (where one has arbitrary sets of hypotheses).
The best one can hope for is weak completeness: - ¢ if and only if = ¢. Also, in contrast to
our translations results for £([c]), the larger language L£([], 0*) cannot be translated into £
or even to £(0*) (modal logic with extra modalities O}%). We prove this in Theorem 6.2 below.
So completeness results for £([a], 0%) cannot simply be based on translation.

Our logical system is listed in Figure 2 above. We discussed the fragment of the system
which does not have the * axioms and rules in Section 3. The Oj-normality Axiom and Op-
necessitation Rule are standard, as is the Mix Axiom. We leave checking their soundness to the
reader. The key features of the system are thus the Composition Axiom and the Action Rule.
We begin with the Action Rule, restated below:
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The Action Rule Let ¢ be a sentence, and let C be a set of agents. Let there be sentences
xs for all 8 such that o =5 8 (including « itself), and such that

L. Fxs = [Bly.
2. If AcCand 4 v, then - (xg A PRE(S)) = Tax,.

From these assumptions, infer - x, — [a]O%.

Remark We use —; as an abbreviation for the reflexive and transitive closure of the relation
Uaec 2 . Recall that there are only finitely many 3 such that o =5 3, since each is determined
by a world of the same finite Kripke frame that determines a. So even though the Action Rule
might look like it takes infinitely many premises, it really only takes finitely many.

Another point: if one so desires, the Action Rule could be replaced by a (more complicated)
axiom scheme which we will not state here.

Lemma 4.1 (W, w) = (a)Oby iff there is a sequence of worlds from W

w = wo A W1 Ay, TPA, W1 4, Wk
where k > 0, and also a sequence of actions of the same length k,

a = oy A Q1 A, AL, Qg1 4, O

such that A; € C and (W, w;) = PRE(q) for all 0 <i <k, and (W, wg) = (o).

Remark The case k = 0 just says that (W, w) = (a)Ofb is implied by (W, w) = (a)e.
Proof (W,u) = ()08 iff (W,w) = prE(a) and (W, (w, @) |= Ofe; iff (W,w) = prE(a)
and there is a sequence in W&,

(w,a) = vo  —a, VI —a, 0 DA, Ukl A, Uk

where k£ > 0 such that A; € C and (W%, v;) = ¢. Now suppose such sequences exist in W%,
Then we get a sequence of worlds w; in W and actions «; such that v; = (w;, ;) and (W, w;) =
PRE(c;). The condition that (W%, v;) = ¢ translates to (W, wy) = (ax)p. Conversely, if we
have a sequence in W with these properties, we get one in W by taking v; = (w;, a;). 1

Proposition 4.2 The Action Rule is sound.

Proof Assume that (W,w) | xq but also (W,w) = (a)Of—1p. According to Lemma 4.1,
there is a labeled sequence of worlds from W

w = wy A W1 A, A, Wg—1 4, Wk
where £ > 0 and each A; € C, and also a sequence of actions of length k, with the same labels,
a = Q) A a1 — As 7 Ap_1 A1 — Ay (673

such that (W, w;) = PRE(q;) for all 0 < ¢ < k, and (W, wg) = (ag)—9. If & = 0, we have

(W,w) = (a)—p. But since F xo — [@]t), we have (W, w) |= [a]tp. This is a contradiction.
Now we argue the case k¥ > 0. We show by induction on 1 <4 < k that (W, w;) = xa, A[ai]t).

In particular, (W, wy) |= [ax|t. This is a contradiction. -
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We close with a discussion of the Composition Rule, beginning with a general definition.

Definition Let a = (K, k) and 8 = (L,l) be actions. Then the action composition o 3 is the
action defined as follows. Consider the product set K x L. We turn this into a Kripke frame
using the restriction of the product arrows. We get an action structure by setting

PRE((K',I')) = PrE(K)A[(K,K)]PRE().

Finally, we set o = (K x L, (k,1)).

Proposition 4.3 Concerning the composition operation:
1. (WP =2 WeoB wig the restriction of ((w, k'), 1) — (w, (K',1")) to (W),
2. The Composition Aziom is sound: [a][f]p < [a o Blp.
3. ao(Boy) X (aof)oy.

4. aoT = a=T1odq, where the null action T is from Section 1.2.

Proof Let @ = (K,k) and 8 = (L,I). For (1), note that the worlds of (W®)? are of
the form ((w,k'),l'), where (w,k') € W and (W%, (w, k")) = PRE(l'). For such ((w,k'),l'),
(W, w) = PRE(K') and (W, w) = [(K,k')]PRE(I'). That is, (w, (k',1')) € W2, The converse is
similar, and the rest of the isomorphism properties are easy.

Part (2) follows from (1). We use the obvious isomorphism ((k,1),m) — (k,(l,m)) in
part (3). We use the Composition and [a]-necessitation axioms to show that this isomorphism
preserves the PRE function up to logical equivalence. Part (4) is easy, using the fact that

F [Tle < . 4

Extending the rewriting system R to £([a],0%). We consider L([e],0%). The rewriting
system R extends naturally to this larger language, taking new symbols for the operators Oj.
We also add a rule corresponding to the Composition Axiom: [a][S]¢ ~ [a o B]p. We call this
rewriting system R*.

Lemma 4.4 There is a relation < on the sentences and actions of L([a], 0*) such that
1. < is wellfounded.
2. For all rules o ~ 1 of R*, 9 < .
3. If 1 is a proper subsentence of @, then 1 < .

4. A sentence p € L([a],T%) is a normal form iff it is built from atomic sentences using —,
A, Oa, and Of, or if it is of the form [a]O%, where o is an action in normal form, and
¥ too is in normal form.

5. An action « is a normal form if whenever a = 3, PRE(S3) is a normal form sentence.
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6. If o= B3, then [o]O%y > [B]9p.

7. nf(p) < .

Once again, the details are in the Appendix.

In Section 3, we saw a translation ¢ from L([e]) to £ can be extended to a translation
from L([a],0%) to the infinitary language L., where we have countable conjunctions and
disjunctions. This extension is defined using Part (4) of Lemma 4.4. The additional clauses in
the definition of ¢ are

(Opp) = Aay,oanes (04, - Oa,0)
([alOs)" = Aay,anes- (@84, - 0a,9)

In this way, we see that £([«], %) may be regarded as a fragment of infinitary modal logic.

Remark It is possible to drop the Composition Axiom in favor of a more involved version
of the Action Rule. The point is the Composition Axiom simplifies the normal forms of the
L([a],0%): Without the Composition Axiom, the normal forms of sentences of £([a], 0*) would
be of the form [a;][ag] - - - [a]t), where each «; is a normal form action and 4 is a normal form
sentence. The Composition Axiom insures that the normal forms are of the form [a]i. So
if we were to drop the Composition Axiom, we would need a formulation of the Action Rule
which involved sequences of actions. It is not terribly difficult to formulate such a rule, and
completeness can be obtained by an elaboration of the work which we shall do. We did not
present this work, mostly because adding the Composition Axiom leads to shorter proofs.

This completes the discussion of the axioms and rules of our logical system for £([«], 0%).

5 Completeness for L([a], O%)

In this section, we prove the completeness of the logical system for £([a], 0*). Section 5.1 has
some technical results which culminate in the Substitution Lemma 5.3. This is used in some of
our work on normal forms in the Appendix, and that work figures in the completeness theorem
of Section 5.2.

5.1 Some Syntactic Results
Lemma 5.1 For all A € C and all B such that o — 4 3,
1. F [0y — [a].

2. F (o]0t A PRE(a) = O4[B]05.

Proof Part (1) follows easily from the Mix Axiom and modal reasoning. For part (2), we
start with a consequence of the Mix Axiom: F Op1 — O405%. Then by modal reasoning,
F [a]Op — [a]0408. By the Action-Knowledge Axiom, , we have - [a]0%¢ A PRE(a) —
DA[AIBEY. .
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Definition Let o and o be actions. We write F « <+ o/ if @ and ' are based on the same
Kripke frame W and the same world w, and if for all v € W, I PRE(v) <> PRE'(v), where PRE
is the announcement function for «, and PRE’ for .

We note the following bisimulation-like properties:
1. If - @ < ¢, then also - PRE(«) <> PRE(c).
2. Whenever /' is such that o' —5 /', then there is some /3 such that F 5 <> " and o =} .

These follow easily from the way we defined PRE on actions in terms of functions on frames.
Lemma 5.2 If- «a + &, then for all 1, - [a]y) < [/]9.

Proof By induction on . For ¢ atomic, our result is easy. The induction steps for = and A
are trivial. The step for O 4 is not hard, and so we omit it. Assuming the result for ¢ gives the
result for [x]+, using the Composition Axiom and the induction hypothesis. This leaves the
step for sentences of the form Op1), assuming the result for ). We use the Action Rule to show
that F [o]0gy — [o/]051. For each ', we let xg be [5]059, where 3 is such that = 8 < /.
We need to show that for all relevant 8’ and v/,

a. 81054 — (845 and
b. If 8" 4 4/, then I [8]0%4¢ A PRE(S') — Oaly]O%e).
For (a), we know from Lemma 5.1, part (1) that - []0% — [8]¢. By induction hypothesis on

¥, F [B]Y + [#']¢. And this implies (a). For (b), Lemma 5.1, part (2) tells us that under the
assumptions,

= [B]8¢y APRE(B) — Daly]Bcy.

As we know, F PRE() <> PRE(S'). This implies (b).
This completes the induction on ). -

Lemma 5.3 (Substitution) Let ¢ be a sentence or action of L([a],0%), and let - x < X .
Suppose that t[p/x] comes from t by replacing p by x at some point, and t[p/x'] comes similarly.

Then = t[p/x] < tlp/x']-

Proof By induction on ¢, using Lemma 5.2. o

Lemma 5.4 For every sentence ¢ € L([a], T*) there is some normal form nf(p) < ¢ such that
= < nf(p).

Proof Given ¢, there is a finite sequence @ ~ - -+ ~» ¢, = ¢’ such that g = @, and ¢, is

in normal form. This is a consequence of the fact that < is wellfounded and the rules of the
system are reducing. By Lemma 5.3, we see that for all 4, - ¢; <> ¢}. o
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5.2 Completeness

The proof of completeness and decidability is based on the filtration argument for completeness
of PDL due to Kozen and Parikh [10]. We show that every consistent ¢ has a finite model, and
that the size of the model is recursive in ¢. We shall need to use some results concerning the
rewriting system R* from Section 4.

Definition Let s(¢) be the set of subsentences of ¢, including ¢ itself. This includes all
sentences occurring in actions which occur in ¢ and their subsentences. For future use, we note
that

s(lalBep) = {la]Hep, Bept U s(p) U U{s(PRE(S)) : @ —=¢ B} (4)

We define a function f : L([e],0%) — P(L([e],0%)) by recursion on the wellfounded relation
< as follows: For normal forms, f works as follows:

f(p) = {r}

f(=p) = flp) U{—p}

floAp) = flp) U f() U{p Ay}

f(Bap) = flp) U{Dap}

f(Oze) = fle) U{Ogzpt U{Oa05p : A € B}
f(e]0gp) = {080z ¢ a—¢ B & A€C}

{BIT¢ : a—=; B & AeC}

Ufr(x) : (38) a —=¢ B & x € s(PRE(B))}
f(Bep)

ULr([Ble) : a—¢ B}

For ¢ not in normal form, let f(¢) = f(nf(¢)). (Note that we need to define f on sentences
which are not normal forms, because f([]y) figures in f([a]Of¢). Also, the definition makes
sense because the calls to f on the right-hand sides are all < the arguments on the left-hand
sides, and since nf(p) < ¢ for all p; see Lemma 4.4.)

cCcCcc

Lemma 5.5 For all ¢:

1. f(p) is a finite set of normal form sentences.

nf(p) € f(p).
If ¢ € f(p), then f(1) C f(p).
If ¢ € f(p), then s(¢) C f(p).

If ¥]O¢x € f(p), v =5 0, and A € C, then f(p) also contains O4[0]05x, [6]05x, PRE(S),
and nf ([0]x).

Proof All of the parts are by induction on ¢ in the well-order <. For part (1), note that if
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[a]0%% is a normal form, then each sentence T4[#]0%% and all subsentences of this sentence
are normal forms. For part (2), note that when ¢ is a normal form, ¢ € f(p).

In part (3), we only need to consider ¢ in normal form. The result is immediate when ¢
is an atomic sentence p. The induction steps for =, A, and Oy are easy. For Oj¢, note that
since ¢ < Oxze, our induction hypothesis implies the result for ¢; we verify it for O%p. The
only interesting case is when 1) is 0,05 for some A € B. And in this case

f) = f(Opp) U{Ba0gp} < f(Opp).

To complete part (3), we consider [a]O%p. If there is some x < [a]O%¢ such that ¢ € f(x) and
f(x) C f([a]O%¢p), then we are easily done by the induction hypothesis. This covers all of the
cases except for ¢ = [f]05¢ and 1 = O4[B]0%p. For the first of these, we use the transitivity
of = to check that f([8]0z¢) C f([a]05¢). And now the second case follows:

f(BalplBep) = f([Bl0cw) U{BalPIHcpt S fle]Ocy).

Part (4) is similar to part (3), using equation (4) at the beginning of this subsection.

For part (5), assume that [y]|O%x € f(¢). By part (1), [y]O¢x is a normal form. We show
that O4[6]0%x, [0]05x, PRE(J), and nf([d]x) all belong to f([y]T%x), and then use part (3).
The first two of these sentences are immediate by the definition of f; the third one follows from
part (4); and the last comes from part (2) since nf([d]x) € f([0]x) C f([v]T%x. —|

The set A = A(p) Fix a sentence p. We set A = f(y) (i.e., we drop ¢ from the notation).
This set A is the version for our logic of the Fischer-Ladner closure of ¢. Let A = {4)1,...,9,}.
Given a maximal consistent set U of L([a], O0*), let

[U] = 1A A+,

where the signs are taken in accordance with membership in U. That is, if ¢; € U, then 1) is a
conjunct of [U]; but if ¢; ¢ U, then —); is a conjunct.

Two (standard) observations are in order. Notice that if [U] # [V], then [U] A [V] is
inconsistent. Also, for all ¢ € A,

> \/{[[W]] : W is maximal consistent and ¢ € W}. (5)
and
F oy & \/{[[W]] : W is maximal consistent and —) € W}. (6)

(The reason is that 1) is equivalent to the disjunction of all complete conjunctions which contain
it. However, some of those complete conjunctions are inconsistent and these can be dropped
from the big disjunction. The others are consistent and hence can be extended to maximal
consistent sets.)

Definition The filtration F is the model whose worlds are the equivalence classes [U], where
U is a maximal consistent set in the logic for £([a], 0*), and the equivalence relation is U =V
iff [U]=[V] (fFUNA=VNA). Weset (F,[U]) E=piff pe UnNA. Furthermore,

[U]4 [V]in F iff whenever O 1 € UN A, then also ¢ € V. (7)
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This condition is independent of the choice of representatives: we use part (4) of Lemma 5.5 to
see that if 4y € A, then also x € A.
A good path from [Vy] for (a)Ogep is a path in F

Vol =4 ] =4, - —=a el —a Vi
such that k£ > 0, each A; € C, and such that there exist actions
a = oy —A Q1 Ay, TPAL, Ok—1 A, O

such that PRE(q;) € V; for all 0 < i < k, and (ag)9 € V.

The idea behind a good path comes from considering Lemma 4.1 in F. Of course, the
special case of that result would require that (F,[V;]) = PRE(«;) rather than PRE(w;) € V;, and
similarly for (ay)1 and Vj. The exact formulation above was made in order that the Truth
Lemma will go through for sentences of the form (a) %) (see the final paragraphs of the proof
of Lemma 5.8).

Lemma 5.6 Let [o]051¢ € A. If there is a good path from [Vy] for (a)OF—1p, then (a)Of—p €
V-

Proof By induction on the length & of the path. If £ = 0, then ()= € Vp. If (o) O5—9p ¢ W,
then [o]O5¢ € V). By Lemma 5.1, part (1), we have [a]y) € Vj. This is a contradiction.

Assume the result for k£, and suppose that there is a good path from [Vj] for (a)Oh—ep of
length £+ 1. Then there is a good path of length & from [V;] for (a;)Op—p. Also, [oq]05y € A,
by Lemma 5.5, part (5). By induction hypothesis, (a;)<Or—9 € V7.

If (a)Or—1p ¢ Vi, then [o]Of¢ € Vp. By Lemma 5.1, part (2), Vp contains [o]Oj¢ A
PRE(®) — Oala1]0p1p. So Vp contains O4[a]0j¢. Again, this sentence belongs to A by
Lemma 5.5, part (5). Now by definition of 4 in F, we see that [o;]0%1 € Vi. This is a
contradiction. -

Lemma 5.7 If [Vi] A (a)Ogy is consistent, then there is a good path from [Vo] for (a)Ogep.

Proof For each 8 such that o —¢ f3, let Sg be the (finite) set of all [W] € F such that
there is no good path from [W] for (8)Of1. We need to see that [Vp] ¢ S,; suppose toward a
contradiction that [Vp] € S,. Let

xs = V{IW]:W e Ss}

Note that —xg is logically equivalent to \/{[W'] : [W'] € F and W' ¢ Sg}. Since we assumed
Vo € Sa, we have - [Vo] = xa-

We first claim that xg A (8)1 is inconsistent. Otherwise, there would be [W] € Sg such
that xg A (8)yp € W. Note that by the Partial Functionality Axiom, F (8)y — PRE(S). But
then the one-point path [W] is a good path from [W] for (8)<Ogep. Thus [W] ¢ Ss, and this is
a contradiction. So indeed, x3 A ()9 is inconsistent. Therefore, - x5 — [5]-9.

We will need the following standard claim, an argument for which can be found in Kozen
and Parikh [10]. We will also use this claim in the proof of Lemma 5.8.

Claim If [U] A O4[V] is consistent, then [U] —4 [V].
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Proof of Claim Assume Oq1¢ € UNA. If ¢ ¢ V', then =) € V', so since ¢ € A, = [V] — .
Thus, - OA[V] — Ga—, and so - [U] A OA[V] — Oap A O a—1p, whence [U] A Ca[V] is
inconsistent. This contradiction establishes the claim.

We next show that for all A € C and all 8 such that 8 —4 7, xg A PRE(B) A Oamxy is
inconsistent. Otherwise, there would be [W] € Sg with xg, PRE(S), and < 4—x, in it. Then
V{Ca[W'] : W' ¢ S,}, being equivalent to <4-xg, would belong to W. It follows that
OA[W'] € W for some W’ ¢ S.,,. By the claim, [W] —4 [W’]. Since [W'] ¢ S, there is a good
path from [W'] for (y)OFe. But since f —4 v and W contains PRE(f), we also have a good
path from [W] for (8)Og. This again contradicts [W] € Sz. As a result, for all relevant A, £,
and v, = x3 APRE() — Oax,-

By the Action Rule, F xo — [@]05—9. Now F [Vo] = Xxao- So F [Wo] — [@]Of—1p. This
contradicts the assumption with which we began this proof. -

Lemma 5.8 (Truth Lemma) Consider a sentence ¢, and also the set A = f(p). For all
X €A and [Ul € F: x €U iff (F,[U]) = x-

Proof We argue by induction on the wellfounded < that if x € A, then: x € U iff (F, [U]) | x.
The case of x atomic is trivial. Now assume this Truth Lemma for sentences < x. Note that
by soundness, we may assume that x is in normal form. We argue by cases on .

The cases that x is either a negation or conjunction are trivial.

Suppose next that x = O41. Suppose 041 € U; we show (F,[U]) = Oa9. Let [V] be such
that [U] 4 [V]. Then by definition of 2y , ¢y € V. The induction hypothesis applies to v, since
1 < 041, and since 1 € A by Lemma 5.5, part (4). So by induction hypothesis, (F,[V]) = .
This gives half of our equivalence. Conversely, suppose that (F,[U]) = O4%. Suppose towards
a contradiction that G -1 € U. So [U] A 41 is consistent. We use equation (6) and
the fact that <4 distributes over disjunctions to see that [U] A < 42— is logically equivalent to
V([UJA < A[V]), where the disjunction is taken over all V' which contain —4). Since [UJA 4=
is consistent, one of the disjuncts [U] A $4[V] must be consistent. The induction hypothesis
again applies, and we use it to see that (F,[V]) = —%. By the claim in the proof of Lemma 5.7,
[U] 4 [V]. We conclude that (F,[U]) = $ a1, and this is a contradiction.

For x of the form O}, we use the standard argument for PDL (see Kozen and Parikh [10]).
This is based on lemmas that parallel Lemmas 5.6 and 5.7. The work is somewhat easier than
what we do below for sentences of the form [«]O5, and so we omit these details.

We conclude with the case when x is a normal form sentence of the form [a]T%y € A.
Assume that [a]O%9 € A. First, suppose that [a]0ft¢ ¢ U. Then by Lemma 5.7, there
is a good path from [U] for (a)Of—1p. We want to apply Lemma 4.1 in F to assert that
(F,|U]) = (a)yOg—1p. Let k be the length of the good path. For i < k, PRE(«y;) € U;. Now each
PRE(q;) belongs to A by Lemma 5.5, part (5), and is < [@]O5%. So by induction hypothesis,
(F,[Ui]) = PRE(cv;). We also need to check that (F,[Uy]) = (ag)—. For this, recall from
Lemma 5.5, part (5) that A contains nf ([ag]) < [ag]t. By Lemma 4.4, nf([ax|y) < [ag]yp <
[a]0%4. Since the path is good, Uy, contains (aj)—1p and hence —[oy]tp. It also must contain the
normal form of this, by Lemma 5.4. So by induction hypothesis, (F, [Ux]) = nf(—[ax]t). By
soundness, (F,[Ux]) = (o). Now it does follow from Lemma 4.1 that (F, [U]) = (o).

26



Going the other way, suppose that (F, [U]) |= (a)O5—1. By Lemma 4.1, we get a path in F
witnessing this. The argument of the previous paragraph shows that this path is a good path
from [U] for (a)Of—p. By Lemma 5.6, U contains («)<Og—1p. This completes the proof. .

Theorem 5.9 (Completeness) For all ¢, - ¢ iff = ¢. Moreover, this relation is decidable.

Proof By Lemma 5.4, F ¢ <> nf(¢). Let ¢ be consistent. By the Truth Lemma, nf(¢) holds
at some world in the filtration F. So nf(¢) has a model; thus ¢ has one, too. This establishes
completeness. For decidability, note that the size of the filtration is computable in the size of
the original ¢. -

5.3 Two Extensions

We briefly mention two extensions of the Completeness Theorem 5.9. These extensions come
from our discussion at the end of Section 2.3.

First, consider the case of S5 actions. We change our logical system by restricting to these
S5 actions, and we add the S5 axioms to our logical system. We interpret this new system on
S5 models. It is easy to check that applying an S5 action to an S5 model gives another S5
model. Further, the S5 actions are closed under composition. Finally, if « is an S5 action and
«a —4 B, then B also is an S5 action. These easily imply the soundness of the new axioms.
For completeness, we need only check that if we assume the S5 axioms, then the filtration F
from the previous section has the property that each 4y is an equivalence relation. This is a
standard exercise in modal logic (see, e.g., Fagin et al [4], Theorem 3.3.1).

Our second extension concerns the move from actions as we have been working them to
actions which change the truth values of atomic sentences. If we make this move, then the
axiom of Atomic Permanence is no longer sound. However, it is easy to formulate the relevant
axioms. For example, if we have an action a which effects the change p := p A =g, then we
would take an axiom [a]p <> (PRE(«) — p A —¢). Having made these changes, all of the rest of
the work we have done goes through. In this way, we get a completeness theorem for this logic.

6 Results on Expressive Power

In this section, we present two results which show that adding announcements to modal logic
with &* adds expressive power as does adding private announcements to modal logic with &*
and public announcements. To show these results it will be sufficient to take the set A of
agents to be {A, B} and consider only languages contained in a language built-up from the
atomic sentences p and g, using G4, Op, &%, O, and O% 5, and the actions [p]a, [¢]p of
announcing ¢ to A or B privately, and [p|4p the action of announcing ¢ to A and B publicly.
Let L,y stand for this language. We use here the customary notation ([¢]a, [¢]|B, [¢]as) for
announcements, but [p]4 is simply the action with the Kripke structure K = {k} with 2
from k to k and PRE(k) = ¢. We think of [p]p similarly. [¢]ap is the action with the Kripke
structure K = {k} with 4 and 2, going from k to k and PRE(k) = ¢.

We need to define a rank || on sentences from L,y;. Let [p| = 0 for p atomic, |—p| = |¢],
i Al = max(|il, [91), || = I, [Ox0l = 1+ ], for X = A ox X = B, [O% | = 1 +|g] for
X =A, X =B,or X =AB, and |[¢]|x%| = max(|p], |¢|) for X = A, X = B, or X = AB.
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First we present a lemma which allows us, in certain circumstances, to do the following:
from the existence of a sentence in a language £1 which is not equivalent to any sentence in a
language Ly infer that there exists a sentence in £; not equivalent to any theory in L.

Lemma 6.1 Let Ly be a language included in Ly, and let b be a sentence in Lyy. Assume
that for each n we have models F,, and G, with some worlds f, € F, and g, € G, such that
(Fy, fn) satisfies —p, (Gp,gn) satisfies ¢, and (Fy, frn) and (Gy,gn) agree on all sentences in
Ly of rank < n. Then <41 is not equivalent with any theory in L.

Proof For a sequence of model-world pairs (Hy,hy,), n € D C w, we let @, cp(Hy,h,) be
a model-world pair defined as follows. Let h be a new world. Take disjoint copies of the H,’s
and add an A-arrow from h to each h,. All other arrows are within the H,’s and stay the same
as in H,,. No atomic sentences are true at h. Atomic sentences true in the worlds belonging to
the copy of Hy, in @,,cp(Hp,hy) are precisely those true at the corresponding worlds of H,,.

Let F' be @,,¢c,,(Fn, fn) with the new world denoted by f. Define also F, for m € w, to be
®D,.c.(Hp, hy) with the new world f where Hy, = Gy, by, = g, and for all n # m, H, = F,
and h, = f,

Now assume towards a contradiction that & 41 is equivalent with a theory @ in Ly. Clearly
O a1 fails in (F, f). Thus some sentence ¢ € ® fails in (F, f). On the other hand, each (F™, f™)
satisfies O 410, whence (F™, f™) satisfies ¢. Let my = |¢|. The following claim shows that both
(F, f) and (F™o_ f™0) make ¢ true or both of them make it false, which leads to a contradiction.

Claim Let ¢ be a sentence in ® of rank < m. Let H,, K,, n € D, with h, € H, and
k, € K, be models such that (H,, hy,) and (K,, k,) agree on sentences in ® of rank < m. Then

(D,,(Hn, hy), h) and (D,,(Kn, kn), k) agree on ¢.

This claim is proved by induction on complexity of ¢. It is clear for atomic sentences. The
induction steps for boolean connectives are trivial. A moment of thought gives the induction
step for & and ©* with various subscripts. It remains to consider the case when ¢ = [p1]a¢a.
(The cases when ¢ = [¢1]pp2 and ¢ = [p1]apy2 are similar.) Fix H,, K, h, € Hy,, k, € K,
with n € D, such that (H,,hy,) and (K,, k,) agree on sentences in ® of rank < m. Note that,
for each n € D, (Hy, hy) = o1 if and only if (K,,, k) = ¢1. Let D; be the set of all n € D for
which (H,,,h,) E ¢1. Let H], and K] be models obtained by updating H,, and K,, by [¢1]4.
By the definition of rank and the fact that |p1]| < m, we have that (H], h,) and (K], k,) agree
on sentences from ® of rank < m. Therefore, by our inductive hypothesis

(D Hy.h) e if (D Ky k) ko

neDy neDy
However,
(P H. B Ee if (P H,h)E e
n neDy
and
n nebD
and we are done. =
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6.1 Announcements add Expressive Power to Modal Logic with O*

In the result below, there will be only one agent A, and so we omit the letter A from the
notation. We let L([ |, ¢*) be modal logic with announcements (to this A) and &* = &%, We
also let £(<$*) be the obvious sublanguage.

Theorem 6.2 There is a sentence of L([ ], %) which cannot be expressed by any set of sen-
tences of L(OF).

Proof We show first that [p]Otq = [p]OO*q cannot be expressed by any single sentence of
L£(0*). (Incidentally, the same holds for [p]<¢*¢.) Fix a natural number n. We define structures
A = A, and B = B, as follows. First B has 2n + 3 points arranged cyclically as

0—=1—=---—=2n—=-n+1—--n—---—=-1-=0.

For the atomic sentences, we set p true at all points except n + 1, and ¢ true only at 0.

The structure A is a copy of B with n more points 1,...,7 arranged as
0=>1—---—>mn—0.

The shape of A is a figure-8. In both structures, every point is reachable from every point by
the transitive closure of the — relation. At the points 7, p is true and ¢ is false. Notice that
1= [p|OTgin A, but 1}~ [p]OTg in B.

The main technique in the proof is an adaptation of Fraisse-Ehrenfeucht games to the
setting of modal logic. Here is a description of the relevant game G, ((U,u), (V,v)). For n =0,
II immediately wins if the following holds: for all p € AtSen, (U,u) = p iff (V,v) = p. And
if v and v differ on some atomic sentence, I immediately wins. Continuing, here is how we
define G, 11 ((U, u), (V,v)). As in the case of Gy, we first check if v and v differ on some atomic
sentence. If they do, then I immediately wins. Otherwise, the play continues. Now I can make
two types of moves.

1. O-move

I has a choice of playing from U or from V. If I chooses U, then I continues by choosing
some u' such that v — «' in U. Then II replies with some v' € V such that v — »'. Of
course, if I had chosen in V, then IT would have chosen in U. Either way, points u’ and v’ are
determined, and the two players then play G, ((U, ), (V,v')).

2. O*-move

I plays by selecting U (or V, but we ignore this symmetric case below), and then playing
some u' (say) reachable from u in the reflexive-transitive closure —* of —; I responds with a
point in the other model, V', which is similarly related to v.

We write (U, u) ~, (V,v) if II has a winning strategy in the game G, ((U,u), (V,v)). It is
easy to check that by induction on m that if (U, u) ~, (V,v) and m < n, then (U, u) ~, (V,v).

Claim 1 If (U,u) ~yp (V,v), then for all ¢ with |p| < n, (U,u) = ¢ iff (V,v) = ¢.

The proof will be done by induction on ¢. Let ¢ be atomic. Suppose (U, u) ~, (V,v). Then
since Il has a winning strategy, the atomic sentences satisfied by v and v must be the same.
So we are done in this case.

29



The induction steps for the boolean connectives are trivial. For Oy, suppose that |Op| < n,
(U,u) ~p (V,v), and (U,u) = Op. Suppose towards a contradiction that (V,v) E O-¢p. Let v’
be such that v — ¢" in V and (V,v") = —p. Let I begin a play of Gy,_1 ((U, u), (V, v)) by choosing
to play v' € V. Then II’s winning strategy responds with some u' such that (U, u') ~,_1 (V,v").
Since || < n—1, our induction hypothesis implies that (U, u') = O—¢p. This is a contradiction.

The argument for O*p is similar and we leave it to the reader. The claim is proved.

We return to the models A and B described in the beginning of this proof. For 0 < i < n,
we let S; C A x B be the following set

S; = {(0,0),...,(n,n),(n—|—1,73—|— 1), (—n, —7_L),...,(—1,—1)}
U {(?,—1),(n—1,—2)...,(2,—(n—1)),(1,—n)}
U {(131)3---5(,”_7;’”_2-)}

In the case of ¢ = n, then the last disjunct is empty. Note that So D S1 D --- D 5,. Also, for
0 < i < n, every point of one structure is related by S; to some point of the other.

Claim 2 If 0 < i < n and (a,b) € S;, then (A, a) ~; (B,b).

The proof is by induction on 4. If ¢ = 0, this is due to the fact that pairs in Sy agree on the
atomic formulas. Assume the statement for ¢, and that ¢ + 1 < n. Let (a,b) € Sj;+1. We only
need to show that I can respond to any play and have the resulting pair belong to S;. Suppose
first that I plays a &-move. Suppose also that a = b, so that (a,a) comes from the first subset
of S;y1. In this case, we only need to notice that (a + 1,a + 1) € S; if |a] < n, (—n,—n) € §;
ifa=n+1,and (1,1) € S; if a = 0, since i < n. The case of (a,b) from the second subset is
similar. Finally, if (@, a) belongs to the third subset of Sj;1, thena <n—(i+1) =n—1i—1.
Soa+1<n—i, and (a+ 1,a + 1) belongs to the third subset of S;. This tells II how to play.

We remarked above that each S; is a total relation. Moreover, each world can be reached
from any other one in A and in B. This implies that if I makes a O*-move, IT can respond.
This completes the proof of the claim.

It follows that (Ay,1) ~, (Bs,1). So by Claim 1, for each sentence ¢ € L£(O*) and all
n > |o|, (An, 1) E ¢ iff (B,, 1) = ¢. This shows that [p]OT¢ cannot be expressed by a single
sentence in L£(<*). To prove the stronger result as stated in Theorem 6.2, we only need to
quote Lemma 6.1. o

6.2 Private Announcements Add Expressive Power

In this section, £([ ]ap,<*) denotes the set of sentences built from p using [p]an, Ca, On,
O, O%, and OF 5. L([ a4, %) denotes the set built from p using [p]4, %, and Cp.

Theorem 6.3 There is a sentence of L([ ]a,<%) which cannot be expressed by any set of
sentences in L([ |an,O%).

Proof We consider x = [p]4<o%Opp.
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Let G, be the following model. We begin with a cycle in 2 :

a1 A oo H b an B ap1 A 0 A ar S (8)

We add edges a; 4 b for all ¢ (including ¢ = 00), and also x4y ay for all 2 (again including
T = an). The only B edge is a; B b. The atomic sentence p is true at all points except b.

The first thing to note is that after a private update of p to A, (Gp,a;) = x for all i < co.
The relevant path is a; 4y --- 2y a1 & b; the important point is that since the announcement
was private, the edge a1 B b survives the update. On the other hand, (G, ax) = —x. This is
because the only way to go from a to b is to go through b, and the edge o, 25 b is lost in the
update.

Suppose towards a contradiction that x were equivalent to ¢ € L([ |ap,<C*). Let i = |¢|,
and let n =4 + 1. As we know from our discussion of x, (Gpn,an) = x and (G, ax) = —x-
However, this contradicts the claim below.

Claim Assume that 1 < j < n, ¢ € L([ ]ap,O*) and |p| < j. Then (Gp,a;) E ¢ iff
(G, aco) = o

The proof is by induction on ¢. For ¢ = p, the result is clear, as are the induction steps
for = and A. For O 49, suppose that a; = Cap. Either as = ¢, in which case ax = Oap, or
else aj_1 |= ¢. In the latter case, by induction hypothesis, as, |= ¢; whence as = O ap. The
converse is similar.

The case of Opy is trivial: a; = ~Opy and ax = 7Opy.

For &% ¢, note that since we have a cycle (8) containing all points, the truth value of &%
does not depend on the point. The cases of Chp and &% g are similar.

For [p]ap®, assume the result for ¢ and v, and let |[p]apy| < j. Then also |¢| < j and
|| < j. Let H = {z : z = ¢} be the updated model, and recall that (G,,z) = [¢|laBy
iff € H and (H,z) |= 9. We have two cases: First, H = G,,. Then (G,,z) = [p|lapy iff
(Gp,x) E 1. So we are done by the induction hypothesis.

The other case is when there is some = ¢ H. If ay ¢ H for some k > j or for k = oo, then
all these aj do not belong to H. In particular, neither a; nor a, belong. And so both a; and
(oo satisfy [p|apt. 1f b ¢ H, then H is bisimilar to a one-point model. This is because every
a; € H would have some 4y -successor in H (e.g., a), and there would be no 2, edges. So we
assume b € H. Thus a; ¢ H for some i < j. Let k be least so that for £ <1 < o0, a; = ¢. Then
1<k<j. Let Ay = {a; : k <1 < oo}. The submodels generated by a; and ax contain the
same worlds: all worlds in A>; and b. We claim that (A>y X A>g) U {(b,b)} is a bisimulation
on H. The verification here is easy.

So in H, a; and as agree on all sentences in any language which is invariant for bisim-
ulation. Now L([ ]ap,<*) has this property (as do all the languages which we study: they
are translatable into infinitary modal logic). In particular, (H,a;) |= v iff (H,ax) = 1. This
concludes the claim.

We get Theorem 6.3 directly from the claim, the observation that (Gp,a,) E x and
(Gn,a00) = —x, and Lemma 6.1. .

We feel that our two results on expressive power are just a sample of what could be done in
this area. We did not investigate the next natural questions: Do announcements with suspicious
outsiders extend the expressive power of modal logic with all secure private announcements
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and common knowledge operators? And then do announcements with common knowledge of
suspicion add further expressive power?

7 Conclusions and Historical Remarks

The work of this paper builds on the long tradition of epistemic logic as well as technical results
in other areas. In recent times, one very active arena for work on knowledge is distributed
systems, and the main source of work in recent times on knowledge in distributed systems is
the book Reasoning About Knowledge [4] by Fagin, Halpern, Moses, and Vardi. We depart
from [4] by introducing the new operators for epistemic actions, and by doing without temporal
logic operators. In effect, our Kripke models are simpler, since they do not incorporate all
of the runs of a system; the new operators can be viewed as a compensation for that. We
have not made a detailed comparison of our work with the large body of work on knowledge on
distributed systems, and such a comparison would require both technical and conceptual results.
On the technical side, we suspect that neither framework is translatable into the other. One
way to show this would be by expressivity results. Perhaps another way would use complexity
results. In this direction, we note that Halpern and Vardi [8] examines ninety-six logics of
knowledge and time. Thirty-two of these contain common knowledge operators, and of these,
all but twelve of these are undecidable. But overall, our logics are based on differing conceptual
points and intended applications, and so we are confident that they differ.

As far as we know, the first paper to study the interaction of communication and knowl-
edge in a formal setting is Plaza’s paper “Logics of Public Communications” [13]. As the title
suggests, the epistemic actions studied are announcements to the whole group, as in our « and
o/. Perhaps the main result of the paper is a completeness theorem for the logic of public an-
nouncements and knowledge. This result is closely related to a special case of our Theorem 3.5.
The difference is that Plaza restricts attention to the case when all of the accessibility relations
are equivalence relations. Incidentally, Plaza’s proof involves a translation to multi-modal logic,
just as ours does. In addition to this, [13] contains a number of results special to the logic of
announcements which we have not generalized, and it also studies an extension of the logic with
non-rigid constants.

Other predecessors to this paper are the papers of Gerbrandy [5, 6] and Gerbrandy and
Groeneveld [7]. These study epistemic actions similar to our /3, where an announcement is made
to set of agents in a private way with no suspicions. They presented a logical system which
included the common knowledge operators. An important result is that all of the reasoning
in the original Muddy Children scenario can be carried out in their system. This shows that
in order to get a formal treatment of the problem, one need not posit models which maintain
histories. They did not obtain the completeness/decidability result for their system, but it
would be the version of Theorem 5.9 restricted to actions which are compositions of private
announcements. So it follows from our work that all of the reasoning in the Muddy Children
can be carried out in a decidable system.

We should mention that the systems studied in [5, 6, 7] differ from ours in that they are
variants of dynamic logic rather than propositional logic. That is, announcements are particular
types of programs as opposed to modalities. This is a natural move, and although we have not
followed it in this paper, we have carried out a study of expressive power issues of various
fragments of a dynamic logic with announcement operators. We have shown, for example, that
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the dynamic logic formulations are more expressive than the purely propositional ones. Details
on this will appear in a forthcoming paper.

Incidentally, the semantics in [5, 6, 7] use non-wellfounded sets. In other words, they work
with models modulo bisimulation. The advantages of moving from these to arbitrary Kripke
models are that the logic can be used by those who do not know about non-wellfounded sets,
and also that completeness results are slightly stronger with a more general semantics. The
relevant equivalence of the two semantics is the subject of the short note [11].

The following are the new contributions of this paper:

1. We formulated a logical system with modalities corresponding to intuitive group-level
epistemic actions. These actions include natural formalizations of announcements such as
~v and §, which allow various types of suspicion by outsiders. Our apparatus also permits
us to study epistemic actions which apparently have not yet been considered in this line
of work, such as actions in which nothing actually happens but one agent suspects that a
secret communication took place.

2. We formulated a logical system with these modalities and with common knowledge opera-
tors for all groups. Building on the completeness of PDL and using a bit of term rewriting
theory, we axiomatized the validities in our system.

3. We obtained some results on expressive power: in the presence of common knowledge op-
erators, it is not possible to translate away public announcements, and in our framework,
private announcements add expressive power to public ones.

8 Appendix: the lexicographic path order

In this appendix, we give the details on the lezicographic path ordering (LPO), both in general
and in connection with £([e]) and L([e], 0%).

Fix some many-sorted signature ¥ of terms. In order to define the LPO < on the ¥-terms,
we must first specify a well-order < on the set of function symbols of ¥. The LPO determined
by such choices is the smallest relation < such that:

(LPO1) If (t1,...,tn) < (S1,...,8n) in the lexicographic ordering on n-tuples, and if ¢; <
f(s1y...,8,) for 1 < j <m, then f(t1,...,tn) < f(S15--,8n).

(LPO2) If ¢t < s; for some i, then t < f(s1,...,8y).
(LPO3) If g < f and t; < f(s1,...,8p) for all i < m, then g(t1,...,tm) < f(S1,---,5n).

Here is how this is applied in this paper. We shall take two sorts: sentences and actions.
Our signature contains the usual sentence-forming operators p (for p € AtSen) —, A, and Oy
for all A € A. Here each p is 0-ary, — and Oy are unary, and A is binary. We also have an
operator app taking actions and sentences to sentences. We think of app(i), a) as merely a
variation on [a]y. (The order of arguments to app is significant.) We further have a binary
operator o on actions. (This is a departure from the treatment of this paper, since we used o
as a metalinguistic abbreviation instead of as a formal symbol. It will be convenient to make
this change because this leads to a smoother treatment of the Composition Axiom.) Finally,
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for each finite Kripke frame K over £([a]) and each 1 < i < |K|, we have a symbol Fi taking
| K| sentences and returning an action.

Each sentence ¢ has a formal version ¢ in this signature, and each action « also has a formal
version @. These are defined by the recursion which is obvious except for the clauses

le = app(p,Q)
= Fi (PRE(k1), ..., PRE(ky))

S

Here a = (K, k;, PRE) with K = {ky,...,k,} in some specified order. However, outside of the
proof of Proposition 8.2 we shall not explicitly mention the formal versions at all, since they
are harder to read than the standard notation.

We must also first fix a wellfounded relation < on the function symbols. We set app to
be greater than all other function symbols. In all other cases, distinct function symbols are
unordered.

Theorem 8.1 (Kamin and Levy [9]; Dershowitz [3]) Let < be an LPO on X-terms.
1. < 1is transitive.
2. < has the subterm property: if t is a proper subterm of u, then t < u.

3. < is monotonic (it has the replacement property): if y < z; for some i, then

flx, oy, xn) < f(X1y. oy Tiy e Ty).

~

< is wellfounded.

R

Consider o term rewriting system every rule of which of the form | ~» r with r <. Then
the system is terminating: there are no infinite sequences of rewritings.

Proof Here is a sketch for part (1): We check by induction on the construction of the least
relation < that if s < ¢, then for all u such that ¢ < u, s < u. For this, we use induction on the
term u. We omit the details. Further, (2) follows easily from (1) and (LPO2), and (3) from
(LPO1), (1) and (2). Moreover, (5) follows easily from (4) and (3), since the latter implies that
any replacement according to the rewrite system results in a smaller term in the order <.

Here is a proof of of the wellfoundedness property (4), taken from Buchholz [2]. (We
generalized it slightly from the one-sorted to the many-sorted setting and from the assumption
that < is a finite linear order on ¥ to the assumption that < is any wellfounded order.)

Let W be the set of terms ¢ such that the order < is wellfounded below ¢. W is then itself
wellfounded under <. So for all n, W™ is wellfounded under the induced lexicographic order.
We prove by induction on the given wellfounded relation on function symbols of 3 that for all
n-ary f, f[W"] C W. So assume that for g < f, say with arity m, g[W™] C W. We check
this for f by using induction on W". Fix § € W", and assume that whenever @ < §in W",
that f(#) € W. We prove that f(3) € W by checking that for all ¢ such that ¢t < f(5), t € W.
And this is done by induction on the structure of t. If ¢ = f(@) < f(§) via (LPO1), then
% < § lexicographically, and each u; < f(8). This last point implies that @ € W™ by induction
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hypothesis on ¢, so ¢ € W by induction hypothesis on W". If ¢t < s; so that ¢ < f(8) via (LPO2),
then ¢ € W by definition of W. And if t = g(uq,...,up) < f(5) via (LPO3), then g < f and
each u; < f(8). By induction hypothesis on ¢, each u; € W. So by induction hypothesis on f,
g(@) e W.

Now that we know that each f takes tuples in W™ to elements of W, it follows by induction
on terms that all terms belong to W. o

For more on the LPO, its generalizations and extensions, see the surveys Dershowitz [3] and
Plaisted [12].

Proposition 8.2 Consider the LPO < on L([a],0%) defined above.
1. If a =5 B, then PRE(f) < a.
2. If a = B, then [Bly < [a]O53).

PRE(a) — p < [ap.

PRE(c) = —[alth < [a] .

[addp A alx < [al(y Ax)-

PRE(a) = A{D4[flY : a & B} < [o]Dav.
7. [eco Ble < [a][BlY.

In particular, for all rules ¢ ~» 4 of the rewriting system R*, 1 < ¢.

S ;o S

Proof Part (1) holds because we regard « as a term o = Fi (71, ...,7,), for some frame K
and i. So whenever a =5 3, each PRE(f3) is a proper subterm of «.

Here is the argument for part (2): We need to see that app(y,3) < app(0%¢,@). Now
lexicographically, (1,8) < (O%t,@). So we only need to know that B < app(Oft,@). Let
a = Fe(71,...,%). Now according to equation (2) in Section 2.1, f is F‘%(W, ee s Yn), for the
same K and 71, ...,7y, but perhaps for j # . Then it is clear by (LPO2) that 7; < app(0O;y, @)
for all i. So by (LPO3), B < app(0%y, @).

The remaining parts are similar. o

A normal form in a rewriting system is a sentence which cannot be rewritten in the system. Of
course, we are interested in the systems R and R* from Sections 3 and 4, respectively. It follows
from the wellfoundedness of < that for every ¢ there is a normal form nf(¢) < ¢ obtained by
rewriting ¢ in some arbitrary fashion until a normal form is reached.

Lemma 8.3 A sentence p € L([c]) is a normal form of R* iff ¢ is a modal sentence (i.e.,
iff ¢ contains no actions). Moreover, the rule [a][B]e ~ [a o B]p is not needed to reduce ¢ to
normal form. So for L([a]), R has the same normal forms as R*.

A sentence p € L([a],0%) is a normal form of R* iff v is built from atomic sentences using
=, A, D4, and O, or if @ is of the form [a]O%, where « is a normal form action, and 1 is a
normal form. An action « is a normal form if whenever o =5 3, then PRE(S) is a normal form.

Proof It is immediate that every modal sentence is a normal form in £([«]), that every [a]O5¢
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is a normal form in £([a], 0%), and that if each PRE(f), with « =5 /3, is a normal form, then «
is a normal form action. Going the other way, we check that if ¢ € L([]), [@]p is not a normal
form. So we see by an easy induction that the normal forms of L£([a]) are exactly the modal
sentences. We also argue by induction for £([a],0*), and we note that every [o][S]e is not a
normal form, using the rule [a][B]p ~ [a o B]. .

One fine point concerning R and our work in Section 3 is that to reduce sentences of L([c])
to normal form we may restrict ourselves to rewriting sentences which are not subterms of
actions. This simplification accounts for the differences between parallel results of Sections 3
and 4.
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