

Benchmark Evaluation of Xindice as a Grid
Information Server

 Prajakta Vaidya Beth Plale

Computer Science Dept.

Bloomington, IN 47405

{pvaidya,plale}@cs.indiana.edu

TR585

Abstract

A grid information server is a repository that stores information about
resources on the Grid and forms an important part of the grid middleware.
Our aim is to explore the use of Xindice 1.1, a hierarchical native XML
database for the management of Grid resource information. This paper details
the work done as part of the benchmark with particular emphasis on a strong
and diverse query set, Xindice database generation and population, and
Xindice performance.

1. Introduction
The objective of the project is to evaluate the performance of Xindice1.1 hierarchical

native XML database. This work has been done as part of the Relational Grid Resource

Project under the guidance of Dr. Beth Plale and parts of this report are based upon the

work done by the team working on this project. This report gives an introduction to

Xindice1.1, explains the database generated for testing the performance, describes the test

suite used for benchmarking the database and details the results obtained from the tests.

2. Xindice Database
Xindice is an open source Native XML Database. It stores and indexes compressed XML

documents in order to provide that data to a client application with very little server-side

processing overhead. It also provides functionality that is unique to XML data, which

can't easily be reproduced by relational databases.

1

The benchmarking was done on two different versions of Xindice. The first version was

Xindice1.0. This is a stable release of Xindice. The other version used is Xindice 1.1,

which was in its beta-release stage. Also, Xindice 1.1 is not backward compatible. For

differences between Xindice 1.0 and Xindice 1.1 please refer to Appendix A.

3. Data Population
Xindice is a hierarchical database. The hierarchical structure is defined by collections

(equivalent of folders) and documents contained in collections (equivalent of files

contained in folders).

The data inserted in the Xindice database was taken from the existing MySQL database

to maintain consistency during the benchmarking phase. Taking a dump of the MySQL

database and parsing it to create XML documents out of every tuple maintained the data

consistency across the databases. The tables in the MySQL database correspond to the

collections in the Xindice database. So the set of tuples in a table were mapped to

documents under the corresponding collection. The hierarchical structure for the

collections is described by the UML diagram that was used as a foundation for modeling

data. This hierarchical data structure can be in Appendix B.

The data population is a two-step process. It involves creation of the XML documents

from the MySQL dump followed by population of the Xindice database with the created

documents. The population script erases the previous data in the database before

repopulating it. Also, indexes are created on elements corresponding to all indexes that

exist in the MySQL database.

4. Benchmarking
4.1 Query Language Limitations
The query language supported by Xindice is XPath. XPath is an XML query language

that was originally designed for querying a single XML document. So, to use for

querying a native XML database, the basic specification of XPath was extended to

support querying a collection which may contain more than one single document or even

for querying across multiple collections. Xindice does support querying multiple

2

documents within a single collection and hence extends the basic XPath specification.

However, Xindice does not support querying across collections even though XPath has

been extended to support it. Because of this limitation, queries issued to the Xindice

database cannot span multiple collections. Similarly, it does not support querying sub-

collections recursively. This is a limitation of Xindice, in contrast to other hierarchical

databases like LDAP. Xindice may eventually support XQuery, which is a more powerful

query mechanism. The update language used by Xindice is XUpdate.

The benchmarking involved implementing the set of queries defined as part of the

benchmark. The implementation was programmed using Java and XMLDB API to

interface with the Xindice database.

4.2 Xindice Efficiency and Ease of Use
For querying across multiple collections, the Java program has to contain the added logic

required on top of the basic operations that are supported by Xindice. This can involve

splitting a single query into multiple queries and then manipulating the results returned

by the queries programmatically. Also, Xindice does not support attribute level selection.

Hence, when attribute values are required, the element containing them has to be selected

and the value of the attribute has to be parsed out of the returned data. Hence, the amount

of data retrieved per query and the amount of computation that is required, increases.

4.3 Bench Mark Query Set
The set of queries that were used to estimate the efficiency of the database have been

defined by Prof. Beth Plale. These queries test the performance of the database based on

the following categories:

• Scoped/NonScoped Queries: The query set has 2 Scoped queries that search for

objects starting one level above the required objects. These two queries differ in

the size of the data that is queried. Also, there are 2 NonScoped queries that start

the search at the same level as that of the required objects and that differ in the

size of the data queried.

• Indexed/NonIndexed Queries: The query set includes one pair of queries that test

the performance of Xindice in the presence/absence of indexes. One query in this

3

set queries on an indexed attribute. The other query queries on a non-indexed

attribute.

• Selectivity Queries: The query set contains 3 queries that select exactly one tuple,

one percent of total number of tuples, and ten percent of total number of tuples.

This selectivity reveals the performance of the database under varying quantity of

data returned.

• Joins: Table Join is a very common and highly optimized operation in relational

databases. The query set contains 2 queries that test the performance of Xindice

when performing a query that requires a table join operation to be performed.

Xindice does not support the join operation and hence the logic is user defined.

• Other: The query set also tests the performance of Xindice for database connect

and update operation.

The actual queries executed and their SQL equivalents have been described in detail in

Appendix C.

5. Xindice Performance
5.1 Scoped Queries
The following figures show the time taken by the Scoped set of queries for both, Xindice

1.1 and Xindice 1.0.

Scoped Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Scoped NonScoped ScopedHost NonScopedHost

Ti
m

e
(m

s)

Xindice 1.1

4

Figure 1: The above graph shows the performance of Xindice 1.1 on the ‘Scoped’ set of queries.

Scoped Queries

0

50000

100000
150000

200000

250000

300000
350000

400000

450000

Scoped NonScoped ScopedHost NonScopedHost

Ti
m

e
(m

s)

Xindice 1.0

Figure 2: The above graph shows the time taken by Xindice 1.0 for the ‘Scoped’ set of queries.

The following conclusions are drawn based upon the Figure 1 and Figure 2:

• Xindice 1.1 has much better performance than that of Xindice1.0.

• It can be noted from the above figures that the NonScoped queries perform better

than the Scoped queries. The exception to this in Figure 1 can be explained by the

fact that the NonScopedHost query returns much more data as compared to the

ScopedHost query.

5

5.2 Indexed/NonIndexed Queries
Indexing on attributes that are part of the search term improves the performance of a

query in Xindice1.1 by a large factor.

Indexing Queries

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

Indexed NonIndexed

Ti
m

e
(m

s)

Xindice 1.1

Figure 3: The above figure shows the performance of indexed versus non-indexed queries.

5.3 Selectivity Queries
The following figure illustrates the effect of selecting different number of tuples.

Selectivity Queries

35000

36000

37000

38000

39000

40000

41000

42000

43000

OneTuple OnePercent TenPercent

Ti
m

e
(m

s)

Xindice 1.1

Figure 4: The above figure displays the effect of varying number of tuples.

6

5.4 Join Queries
Join operations are not supported by the XPath query language and hence additional

processing is performed by the client when performing a join operation.

Join Queries

0

200

400

600

800

1000

1200

1400

 JobSubmit ManyRelations

Ti
m

e
(m

s)

Xindice 1.1

Figure 5: The above figure shows the performance of join operations using Xindice1.1.

5.5 Basic Queries
The bench mark set included the evaluation of performance on certain basic queries such

as creating a database connection, creating a collection, dropping a collection and

updating a document.

Basic Queries

0
50

100
150
200
250
300
350
400
450
500

 Connect Create Drop Update

Ti
m

e
(m

s)

Xindice 1.1

Figure 6: The above figure shows the performance of Xindice1.1 on a basic set of queries.

7

5.6 Higher Level Scoping
To further test the behavior of Xindice1.1 on ‘Scoped’ queries, a query set was defined

that tested the performance of sets of scoped queries executed sequentially. The overall

performance of these queries was plotted for 1000 successive iterations. The following

graphs represent the results obtained.

Figure7: Performance of Xindice1.1 for a ‘NonScoped’ query for 1000 successive iterations.

Figure 8: Performance of Xindice1.1 for a single ‘Scoped’ query for 1000 successive iterations.

8

Figure 9: Performance of Xindice1.1 for two ‘Scoped’ queries for 1000 iterations.

Figure 10: Performance of Xindice1.1 for three ‘Scoped’ queries for 1000 iterations.

It is concluded from these graphs that as the number of scoped queries executed is

increased, a large amount of variation is seen in the query execution time with successive

9

iterations. Hence the performance of Xindice1.1 with multiple scoped queries is not

stable.

5.7 Byte Count
The following table shows the number of bytes returned for each query executed:

QUERY BYTE COUNT
Scoped 7511

ScopedHost 229996
NonScoped 15969

NonScopedHost 549543
OneTuple 484

OnePercent 633397
TenPercent 691095
JobSubmit 13177

ManyRelations 40082
Indexed 140918

NonIndexed 139790
Update 3491

Since Xindice does not support attribute level querying, hence the data returned contains

the entire element containing the attribute and the attribute value has to be parsed out of

this data. Hence, the amount of data received from the server is much larger than the

amount of data required.

6. Acknowledgements
I am extremely grateful to Dr. Beth Plale for her support and guidance during the course

of this project. I also thank the team members of the Relational Grid Resource Project,

Ying Liu, Rupali Parab, Charlie Moad and Craig Jacobs for their contribution to the

project.

10

7. Appendix A
Following is a list of changes going from Xindice 1.0 to Xindice 1.1 as mentioned in the

“readme” document for Xindice 1.1:

• Server side installation is now done by deploying a WAR archive within a Java

servlet engine.

• The database is now deployed within a servlet engine to enable network access.

This is different from in 1.0 where Xindice had its own server framework. This

change was made because the custom Xindice server framework just duplicated

much of the functionality provided by servlet engines. This has the nice side

effect of creating more flexibility in deployment options.

• The network access API is now based on XML-RPC rather then CORBA. This

was done for simplification and to eliminate the problems with the CORBA ORB

and consumption of resources. It also was done to address UTF-8 encoding issues

that were present with CORBA. Initial tests show a minimal performance impact

from this change.

• All CORBA related code has been removed from the system.

• The server now fully supports the storage and retrieval of documents encoded as

UTF-8.

• There is now an embedded version of the XML:DB API. This allows you to build

Xindice applications that access the database without using the network. The API

should be fully compatible with the network enabled XML:DB API

implementation. An embedded database can be used by simply changing the

XML:DB URI from xmldb:xindice:// to xmldb:xindice-embed://.

• The xindiceadmin tool has been removed. All commands that were previously

only accessible through xindiceadmin are now available through the xindice

command. This should make working with the server a little simpler.

• An option was added to the command line tools to allow the specification of

namespaces to be used with XPath queries.

11

• On the command line tools the confirmation during deletion has been removed.

Along with this the -y option that would force automatic deletion has also been

removed.

• The command line tools can be run against a network version of Xindice or

against a local database. See the -l and -d options to learn more about local

database access.

• XMLObjects have been removed.

12

8. Appendix B
8.1 Hierarchical data Structure

13

9. Appendix C
9.1 The Query Set Details
Following is the set of queries that was used for evaluating the efficiency of the Xindice

database. This description contains the SQL and XPath equivalents of the queries

executed. The XPath equivalent consists of multiple queries corresponding to each SQL

query and user level processing is required to perform the equivalent operation using the

XPath specific queries.

In the details that follow, queryXindice() function is used for performing a select

operation on an entire tuple and EvaluateQuery() is used to perform a query and extract a

certain attribute.

9.1.1 Scoped Query
Result Set: 10 Tuples
SQL Query:

SELECT CSC.ClusterId, CSC.SubClusterId, SCO.OSId, SCP.ProcessorID
FROM Cluster_SubCluster as CSC, SubCluster_Processor as SCP,

 SubCluster_OperatingSystem as SCO
WHERE

 CSC.ClusterId = "mds.sdsc.edu" and
 CSC.SubClusterId = SCO.SubClusterId

 and CSC.SubClusterId = SCP.SubClusterId;
XPath Query
This involves the following sequence of queries:

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/Cluster_SubCluster","//Cluster_SubCluster[@ClusterID='mds.sdsc.e
du']");

• EvaluateQuery("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Comp
utingElement/Cluster/SubCluster/SubCluster_Processor","//SubCluster_Processor[@Sub
ClusterId='"+subClusterId+"']","ProcessorID");

• EvaluateQuery("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Comp
utingElement/Cluster/SubCluster/SubCluster_OperatingSystem","//SubCluster_Operatin
gSystem[@SubClusterId='"+subClusterId+"']","OSId");

9.1.2 NonScoped Query
Result Set: 60 Tuples
SQL Query

SELECT SCO.OSId, SCO.SubClusterId
FROM SubCluster_OperatingSystem as SCO
WHERE SCO.OSId = "Mac OS";

XPath Query

14

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/SubCluster_OperatingSystem","//SubCluster_Operating
System[@OSId= 'Mac OS']");

9.1.3 ScopedHost Query
Result Set: 914 Tuples
SQL Query

SELECT SCH.HostId, CSC.SubClusterId, CSC.ClusterId
FROM SubCluster_Host as SCH, Cluster_SubCluster as CSC
WHERE
 CSC.ClusterId = "mds.sdsc.edu" and CSC.SubClusterId = SCH.SubClusterId;

XPath Query
This involved the following sequence of queries:

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/
ComputingElement/Cluster/Cluster_SubCluster","//Cluster_SubCluster[@Cluster
ID='mds.sdsc.edu']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/
ComputingElement/Cluster/SubCluster/SubCluster_Host","//SubCluster_Host[@
SubClusterId='"+subClusterId+"']");

9.1.4 NonScopedHost Query
Result Set: 1554 Tuples
SQL Query

SELECT H.HostId
FROM Host as H
WHERE H.HostId > "sharkestra50";

XPath Query
• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu

tingElement/Cluster/SubCluster/Host/","//Host[starts-with(@HostId,'tamarack')]");

9.1.5 Indexed Query
Result Set: 405 Tuples
SQL Query

SELECT H.HostId
FROM Host as H
WHERE H.ProcLoad1Min = .40;

XPath Query
• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu

tingElement/Cluster/SubCluster/Host","//Host[@ProcLoad1Min = 0.4]");

9.1.6 NonIndexed Query
Result Set: 356 Tuples
SQL Query

SELECT H.HostId
FROM Host as H
WHERE H.SMPLoad15Min = .50 or H.SMPLoad15Min = .40;

XPath Query

15

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/Host","//Host[@SMPLoad1Min=0.5 or@SMPLoad1Min
= 0.4]");

9.1.7 Many Relations Query
Result Set: 1 Tuple
SQL Query

SELECT SCO.OSId, SCP.ProcessorID, CSC.SubClusterId, AP.Pid
FROM SubCluster_Processor as SCP, SubCluster_OperatingSystem as SCO,
Cluster_SubCluster as CSC, SubCluster_Application as SCA, Application as AP
WHERE
CSC.ClusterId = "mds.sdsc.edu" and CSC.SubClusterId = SCO.SubClusterId
and CSC.SubClusterId = SCP.SubClusterId and CSC.SubClusterId = SCA.SubClusterID
and SCA.Pid = AP.Pid and SCO.OSId = "Linux" and SCP.ProcessorId = "PENTIUM"
and AP.RunTimeEnvironment = "Globus 2.2" and AP.Status = "NOT RUNNING";

XPath Query
This involves the following sequence of queries:

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/Cluster_SubCluster","//Cluster_SubCluster[@ClusterID='mds.sdsc.e
du']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/SubCluster_Processor","//SubCluster_Processor[@Proce
ssorId = 'PENTIUM']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/SubCluster_OperatingSystem","//SubCluster_Operating
System[@OSId = 'Linux']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/SubCluster_Application","//SubCluster_Application[@S
ubClusterId = '"+SC.get(j)+"']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Applic
ation","//Application[@Pid = '"+ pid + "' and @Status = 'NOT RUNNING' and
@RunTimeEnvironment='Globus 2.2']");

9.1.8 Job Submit Query
Result Set: 1 Tuple
SQL Query

SELECT CSC.SubClusterId, M.RAMSize, SCA.Pid, App.Owner, App.OS
FROM Cluster_SubCluster as CSC, SubCluster_Application as SCA,
Application as App, UserAccounts as UA, ClusterMembership as CM,
MainMemory as M
WHERE
CSC.ClusterId = "mds.sdsc.edu" and CSC.SubClusterId = SCA.SubClusterId and
SCA.Pid = App.Pid and App.Owner = "aksharma" and App.OS = "Linux" and
App.Source_filename = "/u" and CM.UserId = "aksharma" and UA.ActivationDate <
now() and UA.ExpirationDate >= now() and UA.UserId = CM.UserId and
CSC.ClusterId = CM.ClusterId and M.SubClusterId = CSC.SubClusterId;

XPath Query
This involves the following sequence of queries along with user defined processing logic.

16

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Users/
UserAccounts","//UserAccounts[@UserId = 'aksharma']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/ClusterMembership","//ClusterMembership[@ClusterId='mds.sdsc.e
du' and @UserId = 'aksharma']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/Cluster_SubCluster","//Cluster_SubCluster[@ClusterID='mds.sdsc.e
du']");

• EvaluateQuery("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Comp
utingElement/Cluster/SubCluster/MainMemory","//MainMemory[@SubClusterId = '" +
subClusterId + "']","RAMSize");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/SubCluster_Application","//SubCluster_Application[@S
ubClusterId = '" + subClusterId + "']");

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Applic
ation","//Application[@Pid = '" + pid + "' and @Owner = 'aksharma' and @OS = 'Linux'
and @Source_filename = '/u']");

9.1.9 One Tuple Selection Query
Result Set: 1 Tuple
SQL Query

SELECT Endpoint1_Addr, Endpoint1_Port, Endpoint2_Addr, Endpoint2_Port
FROM Connection
WHERE Num_Hops = 20 and Bandwidth_Avail_TCP_SingleStream = 65.62;

XPath Query
• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu

tingElement/Cluster/SubCluster/Connection","//Connection[@Num_Hops = 20 and
@Bandwidth_Avail_TCP_SingleStream = 65.62]");

9.1.10 One Percent Selection Query
Result Set: 131 Tuples
SQL Query

SELECT Endpoint1_Addr, Endpoint1_Port, Endpoint2_Addr, Endpoint2_Port
FROM Connection
WHERE Num_Hops = 33;

XPath Query
• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu

tingElement/Cluster/SubCluster/Connection","//Connection[@Num_Hops = 33]");

9.1.11 Ten Percent Selection Query
Result Set: 1428 Tuples
SQL Query

SELECT Endpoint1_Addr,Endpoint1_Port,Endpoint2_Addr, Endpoint2_Port,Num_Hops
FROM Connection
WHERE Num_Hops > 89;

XPath Query
• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu

tingElement/Cluster/SubCluster/Connection","//Connection[@Num_Hops > 89]");

17

9.1.12 Update Query
Result Set: Updates 11 Tuples
SQL Query

UPDATE MainMemory
SET VirtualMemoryAvailable = (VirtualMemoryAvailable * 1.05)
WHERE
 MainMemory.SubClusterId > "sharkestra01" and
 MainMemory.SubClusterId < "sharkestra12";

XPath Query
This involves the following sequence of queries
Select the required data:

• queryXindice("xmldb:xindice://bitternut.cs.indiana.edu:8080/db/GlueGeneralTop/Compu
tingElement/Cluster/SubCluster/MainMemory","//MainMemory[starts-
with(@SubClusterId,'sharkestra')]");

Perform update on each document returned in above select operation using following update
string:
"<xu:modifications version=\"1.0\"" +"xmlns:xu=\"http://www.xmldb.org/xupdate\">" +
 "<xu:update select=\"/MainMemory[@SubClusterId = '" +
key+"']/@VirtualMemoryAvailable\">" +
Double.toString(MemAvail) +
"</xu:update>" +
"</xu:modifications>";

18

References
[1] Xindice1.1 Reference Manuals.

[2] Xindice1.1 Users List.

[3] Relational Grid Resource Project: http://www.cs.indiana.edu/~plale/projects/RGR/

[4] Synthetic Database Benchmark/Workload for Grid Information Servers:
 http://www.cs.indiana.edu/~plale/documents/Plale_Bench.pdf

19

http://www.cs.indiana.edu/~plale/projects/RGR/
http://www.cs.indiana.edu/~plale/documents/Plale_Bench.pdf

	Introduction
	Xindice Database
	Data Population
	Benchmarking
	Xindice Performance
	Acknowledgements
	7. Appendix A
	8. Appendix B
	9. Appendix C
	References

