
A VIRTUAL FILESYSTEM FRAMEWORK TO SUPPORT

EMBEDDED SOFTWARE DEVELOPMENT

Bhanu N. Pisupati

Submitted to the faculty of the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in Computer Science and Cognitive Science

Indiana University

June 2007



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements of the degree of Doctor of Philosophy.

Doctoral
Committee

Geoffrey Brown, Ph.D.
(Principal Advisor)

Steven D. Johnson, Ph.D.

Amr Sabry, Ph.D.

May 24, 2007 Kenneth Chiu, Ph.D.

ii



Copyright c© 2007

Bhanu N. Pisupati

ALL RIGHTS RESERVED

iii



Acknowledgements

First and foremost, I would like to thank my advisor Prof. Geoffrey Brown for his guidance and

support right through my Ph.D. His enthusiasm and involvement in my research have been instru-

mental in helping me stay motivated and excited about my dissertation all along. I am grateful

to Prof. Steve Johnson for initiating me into the world of hardware and embedded systems in my

early years as a graduate student. Prof. Kenneth Chiu provided invaluable guidance in working

and writing on the application of virtual filesystems to sensor networks, which forms an important

contribution of this dissertation. I would like to thank Prof. Amr Sabry for readily consenting to

sit on my defense committee, and who along with Prof. Kent Dybvig and Prof. Daniel Friedman

taught me functional programming, which must be the coolest thing I learnt in grad school.

Much of my work takes immaculately built hardware for granted, for which I have Bryce Hime-

baugh to thank. Bryce has also been an eternal source of ideas for my research, and I have im-

mensely benefited our conversations with regard to hardware design, realtime systems, football

and beyond. I would also like to thank the Computer Science Department Systems Group, particu-

larly Caleb Hess, Bruce Shei and Lynne Crohn for helping me keep hardware and software running

smoothly in LH328.

Spending seven years in grad school is perhaps impossible without a network of friends, and I

iv



have been greatly fortunate in that regard. The countless holidays and long summer nights spent

with close friends from Computer Science, Chemistry and SPEA provide memories that will last a

lifetime. The times were made truly memorable by the cultural vibrancy and innumerable vegetar-

ian eateries that abound the stunningly scenic IU campus in good ol’ Bloomington. Last and most

importantly, I am greatly indebted to my family, who have always taught me by example. They

have given me the freedom and support to shape my life as I saw fit, and I am eternally grateful for

that.

v



Abstract

A VIRTUAL FILESYSTEM FRAMEWORK TO SUPPORT EMBEDDED SOFTWARE

DEVELOPMENT

We present an approach to simplify the software development process for embedded systems by

supporting key development tasks such as debugging, tracing and configuration. The approach is

based on the use of distributed filesystem abstractions; principal building blocks within an embed-

ded system in the form of “systems on chip” (SoC) export filesystem abstractions that are composed

together up the system hierarchy, and provide familiar file based interfaces with which to interact

with the entire system. The central question addressed in this thesis is as to how the worksta-

tion centric idea of a distributed filesystem can be implemented and effectively applied to facilitate

various software development tasks in the embedded domain. To this end, a primary contribu-

tion of our work is the realization of distributed filesystem implementations that are compatible

with resource constrained embedded architectures. We demonstrate use of the filesystems in en-

abling debugging and tracing in heterogeneous, multiprocessor environments, while addressing

issues central to SoC based systems. The virtual filesystem model is also applied to facilitate us-

age, configuration and deployment in a contrasting embedded application domain in the form of

distributed sensor networks, thereby demonstrating the its adaptability.

vi



Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Software in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Underlying Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Motivations for using Filesystem Abstractions . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Alternate Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contributions & Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Underlying Technology 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Alternatives for File System Implementation . . . . . . . . . . . . . . . . . . . . . . . 20

vii



2.3 The Plan 9 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9P protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Implementing 9P filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Embedded Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Mount Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Clone Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Host Access of 9P filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Application to Embedded Software Development 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Requirements for SoC software development . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Present Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Overview of JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Limitations of JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Filesystem Representations for System on Chip (SoC) . . . . . . . . . . . . . . . . . . 62

Addressing SoC requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Design objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



Architecture Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Application to Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Application to Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Application to Sensor Networks 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Sensor Networks Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Filesystem Representations for Sensor Networks . . . . . . . . . . . . . . . . . . . . . 106

4.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Data Centric Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Event Based Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Sensor Application Configuration & Deployment . . . . . . . . . . . . . . . . . . . . 113

4.5 Distributed Filesystem Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



5 Enabling Proxy Based Resource Access for Embedded Devices 138

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Methodology Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Resource Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Embedded Resource Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Writing Richer code for small devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Moving to a SoC scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusion 150

6.1 Motivations for Using Filesystem Abstractions . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Long Term Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 158

x



List of Figures

1.1 IXP2850 Network Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 EFS Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Qid path format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Qid path with mntdev bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Clone operation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Request Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Typical on-chip JTAG architecture (courtesy: Sanyo Semiconductors) . . . . . . . . . 59

3.2 Model for chip-level filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Strategies for composing filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Prototype for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 SW Routines for JTAG Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Prototype for Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



3.8 Trace Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Flash Programming through Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Cluster Based Sensor Net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Filesystem Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Data-centric Section of Cluster Filesystem Namespace . . . . . . . . . . . . . . . . . . 112

4.5 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Sensor State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Sensor filesystem protocol packet format . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Resources exported to Goofy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xii



1

Introduction

1



1. Introduction 2

Embedded systems find application in diverse fields including consumer electronics, automo-

biles, aviation, industrial systems, and communication. At the core of these systems are one or more

programmable processors concurrently executing software that support system functionality. This

dissertation presents an approach to debug, trace, configure and interact with software executing

within multi-processor embedded systems through the use of virtual filesystem abstractions.

The underlying tenet behind the presented work is that a scalable solution for supporting de-

bugging and tracing of software in multi-processor embedded systems can be obtained using dis-

tributed filesystem abstractions. In using this approach, individual building blocks within an em-

bedded system export filesystem abstractions that are composed together up the system hierar-

chy, and provide familiar file based interfaces with which to interact with the entire system. Apart

from supporting embedded software debugging and tracing, these filesystem abstractions are well-

equipped to meet demands imposed by recent advances in system design, most notably the advent

system-on-chip (SoC) based devices.

The central question addressed in this thesis is as to how the workstation centric idea of a dis-

tributed filesystem can be implemented and effectively applied to facilitate various software de-

velopment tasks in the embedded domain. To this end, a primary contribution of our work is the

realization of distributed filesystem implementations that are compatible with resource constrained

embedded architectures. We demonstrate use of the filesystem architecture in enabling debugging

and tracing in heterogeneous, multiprocessor environments, while addressing issues central to SoC

based systems such as concurrent debugging, intellectual property (IP) concealment, and develop-

ment of system level debug solutions. The filesystem model is also applied to facilitate usage,

configuration and deployment in a contrasting embedded application domain in the form of dis-

tributed sensor networks, thereby demonstrating its adaptability.



1. Introduction 3

1.1 Software in Embedded Systems

The abundance of embedded systems (and correspondingly their software) is reflected by the

fact that among all microprocessors produced today, about 98% are used in the embedded domain

[17]. This surge in their prevalence has been due to a combination of software based embedded

systems replacing hardware based solutions in certain industries (in automobiles), and also in the

arrival of new devices/systems (digital cameras) that have been made feasible by embedded sys-

tems. The move to implement system logic using software in processors rather than hardware

is motivated by several reasons. Reprogramming software within the constituent processors in a

system is easier than redesigning and fabricating hardware, which means use of software based

approaches enhances system configurability. It is often simpler to implement certain sections of

a system’s design such as control algorithms and user interfaces in software. Software based de-

signs are highly portable, which means progressively newer (faster) processors can be incorporated

in designs while using the same software. On the other hand, hardware based solutions are pre-

ferred in some cases over processor based ones due to considerations of performance, power and

operation mode (eg: analog).

Software in embedded systems is often executed among multiple heterogeneous processors,

each of which is used to handle different a aspect of the system’s operation [123]. A common tech-

nique is to use a RISC processor for implementing control and device housekeeping tasks, and

specialized CISC/VLIW based processors such as DSPs for performing computationally intensive

tasks related to multimedia, cryptography, networking etc. Multiple processors of the same kind

may also be used as necessitated by the computational complexity of implemented applications.

Multiple processors running at lower clock rates can offer comparable performance to a single

higher speed processor, while consuming less power in the process [77]. With multiple, dissimi-

lar processors executing within a system, heterogeneous concurrent debugging capability proves



1. Introduction 4

invaluable during software development.

Debugging software within embedded systems in its most basic form involves use of features

commonly used in debugging workstation based software, such as: breakpoints, register/memory

analysis, single stepping etc. In addition to these ’run control’ features, tracing provides an impor-

tant tool to debug those embedded systems whose execution cannot be stopped using breakpoints

either because they operate with realtime operational constraints, or in environments where oper-

ation of surrounding entities cannot be finely controlled [23]. A generalization of tracing is system

monitoring [55], wherein various aspects of system operation can be observed during system ex-

ecution. In multi-processor systems the various software development tasks described need to be

enabled concurrently among the various processors.

Due to architectural, design and operational characteristics of embedded systems, standard ap-

proaches to debugging as used in the workstation domain cannot be directly applied to embedded

systems. Workstation debuggers access process state through features provided by the underly-

ing operating system. The popular gdb debugger on Linux for instance, uses a combination of the

ptrace system call and the ’proc’ filesystem [73, 48] to achieve run control over processes being

debugged. Using a similar approach in running debuggers within embedded systems is typically

infeasible, as they lack the memory resources required to run functionally rich operating systems

that can facilitate debugging. Systems that are able to run a capable operating system have to ad-

ditionally allow users to ’login’ from remote workstations and execute debuggers locally, which

places additional burden on the embedded system. The preferred approach to embedded software

debugging is instead to execute debuggers on the workstation side, which perform run control of

embedded software using a back-door mechanism, such as JTAG [107] or monitors. As discussed

in Chapter 3, existing mechanisms have limitations when used with multi-processor SoC based

embedded systems that are addressed as part of our work.



1. Introduction 5

The various stages involved with the software development process for conventional computer

systems - code synthesis, compilation, deployment and debug - apply to embedded systems as

well. Embedded software is typically developed on workstations and ’cross compiled’ for embed-

ded platforms. Resulting software binaries are deployed within the system and debugged remotely

from the workstation side. Existing techniques supporting debugging and tracing in the embed-

ded domain are ill-equipped to meet demands imposed by recent advances in system design, most

notably the advent of multi-processor, system-on-chip(SoC) based devices. A primary objective of

the work presented in this dissertation is to use file abstractions to design a technique that supports

various tasks central to embedded software development including debugging and tracing, while

also addressing requirements unique to SoC based embedded systems.

1.2 Underlying Methodology

[CHG:model]A fundamental technique used in this dissertation is to extend the conventional

notion of a file from merely being a means to access data residing on a storage device (such as

a hard disk) to an entity that provides a standard, familiar interface with which to access and

control resources of various kinds. The model that we use to build file based abstractions comprises

of filesystems implemented by various building blocks within an embedded system, which are

exported and accessed externally to interact with the system. The focus of this dissertation is the

design of techniques that enable implementation of such filesystems within embedded systems,

and the illustration of their use for debugging, tracing, monitoring and configuration.

To illustrate use of file abstractions in the embedded domain, we describe how they can be used

to facilitate various software development tasks such as debugging, configuration and monitoring

for a network processor such as the Intel IXP2850 [67]. The core responsibility of such a device is to



1. Introduction 6

facilitate packet switching and content processing within networking devices such as routers.

The architecture of the IXP2850 broadly consists of a control and a data section, as shown in

Figure 1.1, implemented respectively using an Intel XScale processor and 16 multi-threaded ’mi-

croengines’. Packets entering the network processor through the ingress port, flow through the data

plane within the processor, where they are progressively processed by various microengines and di-

rected out to the appropriate egress port. The XScale processor enables control operations such as

router table updates and microengine control, through an interface exported over a separate control

plane.

ME ME ME ME ME ME

ME ME ME ME ME

ME ME ME ME ME

Intel XScale
support
     processor

CONTROL PLANE

DATA PLANE

packet ingress egress

Figure 1.1: IXP2850 Network Processor Architecture

Software debugging support for such a device allows external debugging agents to access var-

ious constituent processors (XScale processor and microengines) concurrently during execution.

Using filesystem abstractions, software debugging can be supported by exporting from within the

device a namespace with files to enable run control of each of the constituent processors. Listing

1.1 shows one such namespace wherein each processor has a separate directory with files to access



1. Introduction 7

processor memory, registers, check status and control execution.

Monitoring allows various aspects of the network processor execution to be observed during

its operation. It can be used to detect trends in device operation, observe its general well-being

and to keep track of relevant metrics. Examples of operational data that may be exposed through

the file interface to facilitate monitoring include counts of packets discarded based on security

(virus/spam) concerns, and ’data meters’ representing volume of data routed to various domains,

measured for purposes of billing. Configuration interfaces exposed through control files enable

control of various aspects of the device operation, including routing, load balancing, and control

of microengine operation. Listing 1.2 depicts a possible file based monitoring and configuration

interface for the network processor.

Listing 1.1: Filesystem Namespace for NP debugging

\NPfs

XScale\

r e g i s t e r s

memory

s t a t u s

c t l

microeng1\

r e g i s t e r s

. . . . . . .

microeng2\

. . . . . . .

microeng16\



1. Introduction 8

Listing 1.2: Filesystem namespace for monitoring & configuration

/NP

counters/

droppedPackets

meters/

10 1 1 x

12 1 x

conf ig/

r o u t e c t l

microengct l

The model used in our work implements filesystems within embedded systems using a des-

ignated processor (called ’support processor’) which are exported using available communication

links. Clients access the exported filesystem by mounting them within their local operating sys-

tem namespaces, after which the filesystem contents are largely indistinguishable from local files.

An advantage of this approach is that a single exported file interface can simultaneously support

several major software development tasks.

1.3 Motivations for using Filesystem Abstractions

Filesystem abstractions enable use of uniform file interfaces to interact with the heterogeneous

processing elements that coexist within embedded systems. The underlying filesystem deals with

the heterogeneity within its implementation, thereby saving the end user from having to be cog-

nizant of the differences in debug, configuration and other interfaces among processors. Apart



1. Introduction 9

from offering convenience, this ability provides an effective means by which to safeguard intellec-

tual property of various components within the system, as shown in Chapter 3. File abstractions

effectively allow separation of interface from the supporting implementation. Consequently, as

shown in the example in the previous section, the same model can be used to simultaneously sup-

port diverse set of software development operations. Filesystem representations make the task of

naming resources within the embedded system from remote clients (such as debuggers) as trivial

as resolving the path for the their respective files. Browsing resources in the embedded hierarchy

becomes equivalent to listing the directory contents in the filesystem namespace. File based inter-

faces offer familiarity to human users and a convenient backend over which to base existing tools

for debugging, programming, task automation, data analysis etc.

Embedded systems possess certain unique characteristics that make use of the filesystem ab-

stractions natural. The short time to market and cost factors motivate embedded system designers

to use third party components in building their systems [58]. With a large number of providers sup-

plying these components, the platforms and architectures used in the embedded domain are highly

fragmented, leading to a proliferation of standards. The industry has attempted to introduce har-

mony to the embedded domain through universal open standards relating to software debugging

[20], on-chip component interaction [86, 13], and communication protocols [65, 30] among other

aspects of system design. The presented model is a step in the same direction, as it uses standard,

generic file interfaces exported using open communication standards, thereby promoting interop-

erability between systems and tools interacting with them.

Filesystem abstractions presented in this dissertation is particularly applicable to embedded

systems that are hierarchical and/or distributed. As discussed in Chapter 3, hierarchy is evident

in SoC based embedded systems wherein IP cores in the form of basic building blocks constitute

SoC devices, that are in turn used to build circuit boards and ultimately entire systems. Distributed



1. Introduction 10

hierarchies also exist in sensor networks wherein individual sensor nodes are aggregated to consti-

tute clusters, many of which together make up a network. A key feature of the filesystem model is

that by virtue of its compositional nature, software development interfaces for constituent compo-

nents within a system can be naturally assembled to progressively create higher level interfaces as

the system is built up.

The huge volumes in which certain embedded devices (notably consumer electronics) are pro-

duced influences designers to keep design costs to a minimum. The primary means of economizing

cost is by limiting the resources used in the system. Thus processors, memories, peripherals, com-

munication resources are all at a premium in the embedded domain. With hardware resources on

a tight leash, it follows that software written for these systems need to be conservative in terms

of resources consumed. A topic that is addressed in detail in this dissertation is how distributed

filesystem implementations can be partitioned across different levels of the system hierarchy in

order to make them compatible with the available computational and memory resources.

Popular software packages and solutions have been ported to the embedded domain by se-

lectively limiting the offered functionality and thereby restricting the resources required in their

operation. This approach has been applied to software in a variety of fields, including operating

systems(ucLinux from Linux), software libraries (uclibC from libC) and networking stacks (uIP [42]

from IP). A similar approach is taken in realizing filesystem abstractions in our work, whereby the

implementation and operation of existing filesystems from the workstation domain is adapted to

suit embedded systems.

A limitation of the request-response based filesystem model is its inability to support push be-

havior; in such operations a server initiates communication with the client on its own accord, and

not as part of a response to an earlier client request. Push operations can be used in embedded sys-

tems to implement event notification in monitoring applications and during software debugging



1. Introduction 11

to implement breakpoints. In this dissertation we discuss a technique to support events within the

filesystem infrastructure without using push operations.

1.4 Alternate Approaches

We present an overview of other approaches in distributed systems that may be suitable for

supporting software development for multi-processor embedded systems. A popular one among

these is the use of object oriented representations of resources to build distributed systems. Indeed,

filesystem abstractions are a special case of object oriented representations, wherein a single object

type in the form of a file is used. An advantage with the use of objects is that they can be used to

represent a wide array of resources. Java Remote Method Invocation (RMI) and Corba [36] are two

popular middleware solutions using distributed objects. Both support the notion of remote objects

through use of references, which reside locally and enable methods to be invoked on the remote

node where the object resides. Java RMI extensively utilizes support for distributed objects in the

Java language, as reflected by the fact that they are largely indistinguishable from local objects

[124]. The presence of a uniform Java virtual machine enables code to be transferred and executed

within machines across the network, unmindful of platform differences. Corba in contrast is a

language independent specification for building distributed systems. Users building systems out

of Corba can leverage the vast array of services provided by the underlying middleware relating to

security, naming, resource discovery etc. and concentrate on building application logic. A feature

of object based distributed systems (in contrast to those based on filesystems) is that they provide

superior event support, based on both push and pull semantics. The use of both Java RMI and

Corba is best suited for service oriented scenarios, which equips them to handle errors and makes

them well suited to dynamic environments where resources continually enter and leave the system



1. Introduction 12

- a trait not relevant to the class of systems being targeted in this dissertation. Their sophisticated

functionality makes both Java RMI and Corba fairly heavyweight for the embedded domain, as

evidenced by the amount of data transferred in completing a single request [56], which was in

excess of 1KB for Corba and 7KB for Java RMI.

The World Wide Web uses a distributed document model to enable clients to access files on

servers remotely using the HTTP protocol. In applying this model to the presented work, embed-

ded system state can be accessed using various documents being served from within the system. A

drawback of the HTTP protocol is that it requires the use of TCP-IP whose resource requirements

cannot be met by low end embedded devices. The predominant usage mode of the web involves

clients retrieving data such as web pages from servers; and not as much as a writable medium. This

makes the model not directly suited for supporting operations such as debugging wherein data

flows both ways. The most important operation supported by HTTP is get which is analogous to

the read operation in filesystems in that it enables retrieval of file contents from the server. The

put and post operations do allow clients to upload data to the server; but these capabilities are

fairly basic as indicated by minimal support for synchronizing writes by multiple clients. A final

reason why the web based model is unsuitable is that (like the filesystem model) it does not natu-

rally support support push based operations that can be used by servers to notify clients of events

(such as breakpoint hits).

Web services provide another approach to building distributed systems that is based on lever-

aging existing technologies supporting the World Wide Web, most notably the HTTP protocol and

text based information exchange through XML. Use of text based data transfer through XML files

allow web services to easily deal with issues like processor endianness and achieve platform inde-

pendence. As with the distributed document model, use of HTTP imposes the requirement of us-

ing TCP-IP, which is not always feasible with embedded systems. XML based encodings are bulky,



1. Introduction 13

leading to increased data being communicated between client and server [56]. This is not desirable

in power starved embedded devices, where communication is energy consuming. Also parsing

XML documents is computationally more challenging that decoding ’linear’ packet formats. How-

ever, web service interfaces can be developed for embedded devices [88] by using proxies hosted

on workstations that act as service providers on behalf of the embedded system; proxies commu-

nicate with the embedded system using a compatible mechanism, which could possibly be based

on a filesystem interface.

There have been numerous efforts to create middleware for managing networks of distributed

devices. Jini [69] is a Java based runtime environment for network of components, devices and

services. It is particularly applicable to a autonomous, unfamiliar environments since it is well

equipped with discovery and resource registration features. It is also highly adaptable and hence

suited to dynamic environments under continuous change caused by entities joining and leaving its

space. It is service oriented as opposed to being device oriented and hence shows greater resiliency

under errors. However these features come at a price in terms of complexity. The CLDC machine,

which is the Java virtual machine configuration with J2ME for small devices requires 128k to 512k

memory for operation.

Universal Plug and Play(UPnP) [117] presents a similar functionality as Jini but in contrasting

ways. UPnP is primarily used as a means to setup proximity networks for devices in a home or

small office environment. UPnP uses a device centric approach since its interface allow direct access

to individual devices of the network. UPnP networks use messaging protocols for communication

between entities within and outside the network. Jini uses function calls to remote objects using

Java Remote Method Invocation (RMI) for enabling interactions between network entities.



1. Introduction 14

1.5 Contributions & Overview of Dissertation

[CHG:summarypub]The main contribution of this dissertation is the implementation of dis-

tributed filesystem abstractions compatible with resource constrained embedded architectures, and

their use in facilitating various software development tasks. We implemented building blocks nec-

essary to implement a two-level distributed filesystem hierarchy residing at the component and

the system levels of an embedded system. Use of these building blocks in assembling filesystems

to support concurrent, heterogeneous debugging [99] and tracing in multi-processor environments

has been demonstrated. We have also applied our filesystem technology [113, 100] to enable data

centric and event based applications in the sensor network domain, in addition to sensor appli-

cation configuration and binary deployment within sensor nodes. The third application that we

present is the use of file abstractions to import console, storage and software resources residing on

workstations within resouce impoverished embedded devices; interestingly in this application the

roles of clients and servers are reversed between the embedded and workstations sides as com-

pared to the previous two cases.

Chapter 2 describes our work relating to implementation of technological building blocks

needed to realize filesystem abstractions. Chapter 3 presents the core application of our work,

which uses our implemented filesystem technology to support debugging in multi-processor em-

bedded systems. Use of the approach in a contrasting embedded application domain in the form of

sensors networks is described in Chapter 4. Chapter 5 presents a technique for importing work-

station based resources into embedded devices using virtual filesystems. Finally we conclude with

a summary and ideas for future work.



1. Introduction 15

1.6 Changes

• Steve: justifying static nature of EFS namespaces [CHG:EFS] 2.4

• Steve: implications of using single threaded EFS implementation based on multiple stackless

pseudo threads [CHG:singlthrd] 2.4

• Motivation for clone filesystems [CHG:clonefs] 2.4

• Steve: recognizing the role of verification in SW development [CHG:verification] 3.8

• Steve: motivations and implications of using simulators to generate instruction traces [CHG:armul]

3.7

• Steve: elaborating benefits of sensor macro programming [CHG:sensormacro] 4.6

• Geoff: refine description of 9P [CHG:9p] 2.3

• Geoff: emphasise the core pieces in a 9P filesystem [CHG:9pfs] 2.4

• Geoff: describe use of the EFS block to create filesystems [CHG:efs-use] 2.4

• Amr: explain how use of file abstractions for hardware in this dissertation differs from that

in Unix [CHG:unix-compson] 2.1

• Amr : state early on what I mean by ‘our model’ [CHG:model] 1.2

• Amr: consequences of limitations in mount filesystem design [CHG:mfs] 2.4

• Amr: remove information about EFS and MFS design in the Embedded Debugging Chapter

repeated from the Technology chapter [CHG:embed-arch] 3.5

• Amr : summary of contributions in the introduction and a description how my publications

fit in with the dissertation [CHG:summarypub] 1.5



1. Introduction 16

• clarify the dual occurence of sensor directories within cluster and group directories as being

equivalent to hard links [CHG:sensor-links] 4.5



2

Underlying Technology

17



2. Underlying Technology 18

2.1 Introduction

In this chapter we discuss conceptual and implementation aspects of distributed and synthetic

filesystems, that form the core technology used in this disseration. Non-traditional use of these

filesystems as a standard means to access and control diverse set of resources is introduced. We

describe the technique used for realizing filesystem abstractions that is based on ideas espoused by

the Plan 9 operating system [97]. we present core technologies implemented as part of our work

to enable adoption of the Plan 9 model within the embedded domain. We also discuss alternative

options available for building filesystem abstractions and provide the rationale for our choice of

the Plan 9 model.

A filesystem provides a means by which to store and present data through a file based interface.

The presented data is consumed by filesystem clients through standard file operations. The entity

implementing the filesystem using a combination of software and hardware is referred to as the file-

server. In the simplest case, filesystems are implemented and accessed within the same computer

node, often through the operating system. In other cases however, the clients and servers are sepa-

rated (either physically or logically) and therefore cannot interact through the overlying operating

system . Distributed filesystems bridge this gap by enabling clients to access remote filesystems

as though they were implemented locally. While data associated with a filesystem typically re-

sides on a storage device such as hard disk or flash memory, synthetic filesystems deviate from this

norm by generating data to process file requests on the fly. This ability makes synthetic filesystems

well suited for implementing file abstractions for non standard data sources such as hardware.

They leverage the familiar, well understood notion of file interfaces to facilitate interaction with

resources of diverse kinds. Using a combination of the two described filesystem models, our work

uses synthetic filesystems residing within embedded systems that are exported over communica-

tion links for use by distributed clients. The filesystems expose suitable file based abstractions



2. Underlying Technology 19

for various in-system resources necessary to facilitate client debugging, tracing and monitoring of

software executing within the embedded system.

Implementations of synthetic, distributed filesystem models in our work draw from Plan 9,

whose two core features included uniform treatment of hardware, software and computational

resources as files and easy mechanisms to export (and correspondingly import) contents of the op-

erating system namespace. When combined, the two ideas provide a powerful framework with

which to build distributed systems. Filesystems abstracting various resources and exported over

communication links form the basic building blocks using which distributed systems are built in

the Plan 9 model. These ’building block’ filesystems within an embedded system are progressively

composed to create higher level filesystems at the system and workstation level. The hierarchy of

filesystems provide consistent, familiar file based interfaces with which to debug, trace and config-

ure software executing at various levels within an embedded device. The fundamental question we

address is as to how the workstation-centric idea of a distributed filesystem can be implemented

within resource constrained embedded devices and used to support various software development

operations.

[CHG:unix-compson]File abstractions have been used before to control and access hardware,

most notably in Unix [5, 48]. Unlike in Unix, which requires use of non-conventional ioctl file

operations to achieve device control in certain cases, files abstractions in our work provide a fully

sufficient means to interact with hardware. Filesystem models implemented in our work may

readily be exported over communication links, which allows clients to access and control hardware

remotely though file operations. Support for exporting filesystems to enable remote access is not

readily built into Unix; distributed filesystem tools such as NFS that do provide remote access

capability for Unix-based filesystems need to accomodate the specialities associated with device

files in order to support remote device access.



2. Underlying Technology 20

The organization of this chapter is as follows. we first present the various alternatives for im-

plementing filesystem abstractions and present the rationale for our choice of the Plan 9 model.

we then elaborate on the Plan 9 model and describe the necessary extensions to its existing imple-

mentations in order to make it suitable to the embedded domain. Finally, the implementations of

these extensions are described which serve as building blocks that enable applications described in

Chapter 3 and 4.

2.2 Alternatives for File System Implementation

The Plan 9 model is one of several options available for building filesystem abstractions. we

discuss the requirements imposed by our work on the adopted filesystem technology, using which

we present the rationale for the choice of the Plan 9 approach among various alternatives.

The requirements on the filesystem technology are four-fold. First, the technology needs to

support implementation of synthetic filesystems, which use non-standard data sources such as

in-system hardware for generating file data on the fly. The data generation process of associated

devices often has unique requirements that the filesystem has to account for. For instance, data

produced by sensors is typically valid only for a limited duration which makes it unsuitable for

being cached within the filesystem. As the second requirement, the filesystems should be capable of

being implemented in user space rather than within the kernel. User space code is easier to program

and debug, more portable across operating systems, and is less prone to affecting system stability

due to faulty implementation than erroneous kernel-resident code. Third, since the filesystems in

our work are implemented and accessed in a distributed manner, the underlying technology should

enable remote access by clients and other filesystems. Finally, the filesystems should be suitable for

being implemented in embedded devices with limited resources. Filesystem memory requirements



2. Underlying Technology 21

should be commensurate with the available memory resources, which in some devices is as little as

a few 10s of KB of flash(code memory) and less than 10KB of RAM(runtime memory).

A direct approach to implementing file abstractions for hardware is through dedicated oper-

ating system resident filesystems providing the abstraction. These filesystems can be mounted at

required locations within the operating system namespace and be used to control and access hard-

ware through conventional file operations. Many popular operating systems alleviate the difficulty

in developing filesystems by defining standard, generic interfaces that filesystems can plug them-

selves into. Examples include VFS [102] in Linux, SunOS VFS [74] and Installable File System [93]

in Microsoft Windows. While filesystems have to comply with these interface standards set by the

operating system, the implementation logic is largely the filesystems’ prerogative. Thus synthetic

filesystem behavior could be incorporated by completing various file operations through neces-

sary interactions with the hardware being abstracted. A more restrictive means of implementing

kernel-based file abstractions for hardware in Unix-like operating systems is through devfs [5],

which enables association of a single file in a global devfs directory (typically /dev) with a hard-

ware device. Handlers for the various file operations are defined in the hardware’s device driver

and registered with devfs.

As mentioned in the discussion on filesystem technology requirements, kernel based filesys-

tems are not well suited for our work. Since the interfaces between operating system and filesystem

interfaces not uniform, the resulting filesystem implementations are not readily portable across op-

erating systems. Kernel software development is a specialized domain where bugs can jeopardize

stability of the entire system and are hard to isolate and correct since conventional debugging tech-

niques such as source level debugging and output of diagnostic messages to console cannot readily

be applied. Also, popular operating systems such as Windows and the various variants of Unix do

not natively support exporting of their namespaces. Therefore filesystems would have to provide



2. Underlying Technology 22

alternate means to support remote namespace access.

Techniques exist to implement filesystems in user space and integrate them within the overly-

ing operating system namespace. The general idea of shifting functionality from within the kernel

to user space has been aggressively adopted by the GNU Hurd [64] and Exokernel [46] projects

among others to several core aspects of operating system operation including inter-process com-

munication, filesystems, signal handling and networking. Such systems have a minimal micro-

kernel at their core, while much of the operating system functionality is transferred out to user

space daemons.

Fuse [52] and Samba-VFS [103] enable building user space filesystems for use with ’regular’

operating systems. These tools use the VFS switch in the kernel to redirect relevant system calls to

their respective kernel modules, which in turn forward the requests to associated filesystem logic

implemented in user space. The filesystem logic provides implementations of callback functions for

the various file operations. With Fuse, a table listing these callback functions is registered using the

associated kernel module along with a path for the filesystem mount point in the global namespace.

Caching within the filesystem can be disabled during operation using the direct io mode, making

Fuse well suited for implementing file interfaces for hardware. The Fuse kernel module for a 2.4.21

Linux kernel executing on an x86 platform requires a little less than 25KB of code memory and 1100

bytes of data memory, thereby imposing acceptable memory demands for the embedded domain.

Samba is an open source implementation of the SMB-CIFS distributed filesystem paradigm devel-

oped by Microsoft. Samba-VFS is a capability built into Samba that allows userspace code handling

various file operations to be inserted into the filesystem and invoked each time an incoming request

is being processed. This provides a mechanism to implement synthetic filesystems in user space

that reside within CIFS based filesystems. These implicitly support the SMB network resource

sharing protocol and can thus be accessed remotely using SMB clients. Samba implementations



2. Underlying Technology 23

are fairly heavyweight partly because they are designed to operate in a dynamic environment in

conjunction with a resource location service location and require the use of TCP-IP networking.

The kernel module for CIFS under Linux using a 2.6.9 kernel has a text segment size of 164 KB and

data segment size of 4KB.

Filesystems such as Fuse that do not provide remote namespace access need to be exported

indirectly through distributed filesystem mechanisms such as NFS [105], AFS [92] and CIFS [35].

NFS uses the generic VFS layer to uniformly export a variety of filesystems over the network. While

NFS has been widely used to provide remote access to conventional files, it is not as well suited

for device access. The initial NFS implementation (NFSv3) was stateless and failed to implement

ioctl operations, which enable device specific control operations. While the latest version (NFSv4)

supports ioctls, the intricate caching mechanism central to NFS’s performance impedes its use in

implementation of synthetic filesystems. The caching, performance and consistency features built

into NFS leads to increased complexity in implementation as reflected in its memory requirements.

The NFS server kernel module for the 2.6.9 kernel on an x86 platform has a text segment size of 147

KB and a data segment size of about 50 KB. Apart from the NFS kernel module, memory is also

consumed by RPC modules required by NFS, such as sunrpc.

The synthetic filesystem infrastructure used in this dissertation is implemented in a distributed

manner using 9P based filesystems executing in userspace. 9P is well suited for use as the remote

resource access protocol in our work. The protocol’s ability to support synthetic filesystems with

diverse data sources is reflected by its use in Plan 9 to uniformly access a variety of distributed re-

sources including devices, services and file systems. 9P supports non-caching RPC style operation

which makes it well suited for hardware. The transport layer requirements from the protocol are

in-order, reliable message delivery. This makes 9P usable in systems incapable of implementing

TCP or UDP, which offer support for only basic communication infrastructure such as serial ports,



2. Underlying Technology 24

USB or low data-rate radio. The limited number of message types in 9P keeps the protocol simple.

The maximum length of messages is fixed at 8192, and can be reduced further by appropriate us-

age semantics such as restriction of data count in write and read operations. The simple protocol

design has allowed the implementation of 9P filesystems with code size of less than 15KB.



2. Underlying Technology 25

2.3 The Plan 9 Model

As described earlier, filesystems abstracting various resources and exported over communi-

cation links form the basic building blocks using which distributed systems are built in the Plan

9. Drawing from this idea, distributed filesystem abstractions provide the framework supporting

various embedded software development tasks in our work. Filesystems exported from various

entities within an embedded system are progressively composed to create higher level filesystems

at the system and workstation level. Using these filesystems, client applications on the workstation

are able to consistently use familiar file operations to debug, trace and configure software executing

on the embedded devices.

Two ideas central to the Plan 9 model are the uniform treatment of resources as files and easy

mechanisms to export filesystem contents over communication links. The non-typical use of file

abstractions in Plan 9 is clasically illustrated in its handling of TCP-IP network stacks [101]. The

interface to network protocols is encapsulated by the /net directory in the root file system, which

has a namespace as shown below:

/net

/tcp

clone

/1

ctl data status listen

/udp

clone

/1

ctl data status listen



2. Underlying Technology 26

Each major network protocol class has a corresponding subdirectory with multiple ’connection’ di-

rectories containing files for creating, accessing and managing connections using the protocol. To

create a TCP connection, IP address and port number of the remote socket is written to the ctl file

inside one of the connection directories. Once connected, the connection data file is written to and

read from for sending and receiving data on the socket. The state of the connection can be moni-

tored using the status file, while incoming connections may be accepted by reading the listen

file. File representation enables network stacks to be exported and used remotely on machines that

might not have them implemented locally due to security, computational or other reasons. The

idea has been used [98] to implement controlled access to networks using gateway nodes, which

export their /net file trees for use by machines within the network to access the external internet.

9P protocol

[CHG:9p]Clients access exported filesystems using the 9P protocol. The protocol consists of a

small set of request/response message pairs to support file system operations. The message pairs

fall into the basic categories of connection establishment, navigation over the file hierarchy and

file access. To start with, clients connect to filesystems using the attach message, which establishes

an integer file descriptor as a pointer to the root of the tree. The integer file descriptors used to

reference files (known as fid) are chosen by the client unlike in Unix wherein they are chosen by

the server. The fid can be navigated through the exported namespace to point to the node of in-

terest through a series of walk operations performed using 9P messages of the same name. Clone

messages enable new fids to be created that are made to point to existing fids, specified as part of

a clone operation. The file pointed to by fids may then be opened and read from, written to; each of

these operations is performed through associated 9P messages, a complete list of which has been

described by Presotto et al. in their network organization paper [101]. As mentioned earlier, the fid



2. Underlying Technology 27

pointing to the root is established by a client when it first establishes connection to a server through

an attach transaction.

9P allows multiple simultaneous outstanding requests and provide tags to allow the server and

client to correctly associate requests and responses; there is no requirement that a server respond

to requests in order. The simple protocol design is reflected in directories being treated as conven-

tional files that can be read to access contents, requiring no additional special messages. Similarly,

device control is enabled through textual commands written to ctl files, thereby avoiding the need

for device specific ioctls.

The server responds to all “walk” transactions relating to navigation with the qid value of the

file being navigated to, which provides a definitive means by which to uniquely identify the file.

Qid values are 8 bytes in length and consist of two parts - a 4 byte path field that serves as a unique

identifier for the file and another 4 byte version field that is modified each time a file is changed.

Two qid’s are the same if and only they refer to the same underlying object. Two files within an

exported namespace are the same if and only if they have the same qid. File attributes may be

retrieved by the client using stat operations. These return serialized encodings of the file attributes

including file owner/group information, creation/modification timestamps, file Qid, length and

other attributes.

2.4 Implementing 9P filesystems

9P filesystems which are the core of the Plan 9 model implement file abstractions for various in-

system resources and export the resulting namespace using 9P. While the Plan 9 operating system

provides native support for implementing and hosting 9P filesystems, unavailability of ports for

common embedded architectures and incompatibility of Plan 9 with support software (such as



2. Underlying Technology 28

device drivers) associated with hardware being abstracted making it unsuitable for being used

within embedded systems for supporting file abstractions. Hence we use standalone 9P filesystems

that concurrently execute at various levels of the embedded system hierarchy and in combination

support a distributed filesystem abstraction.

[CHG:9pfs]9P filesystem implementations consist of three parts corresponding to - 9P message

processing, namespace management, and filesystem specific operations . The three work in con-

junction to provide the filesystem functionality. The message processing component manages 9P

protocol related aspects, most significantly the marshalling/unmarshalling and input/output of

messages. The namespace management component handles client namespace navigation through

walk operations and also generic filesystem operations such as stat, clone and clunk - whose func-

tionality is not specific to any particular device being represented through the filesystem. The

filesystem specific component defines the layout of files and directories in the filesystem’s names-

pace and the behaviour of the filesystem in response to the file operations of read, write and open. In

implementing a 9P filesystem, a user is only responsible for implementing the filesystem specific

component, while the rest of the filesystem implementation stays the same.

is what gives a filesystem its character, and has its implementation change across filesystems,

while the rest of the filesystem implementation stays the same.

In the Plan 9 world, the layout of files and directories in a filesystem’s namespace is specified

in a compact and intuitive manner using directory tables. A directory table contains a series of

entries, each corresponding to one file or directory in the namespace and containing the file name,

a unique integer file identifier, parent identifier and file access permissions. Consider a ’test’ device

with a directory layout as shown below:

/testdev



2. Underlying Technology 29

a

/b

c

d

The layout may be captured using directory tables (implemented in C by an array of ’Dirtab’

structures) as shown below.

const Dirtab testtab[]={

/* name, unique-id ,parent-id, permission */

"topdir", Qtopdir , QNobody, DEFAULT_PERM,

"a", Qa, , Qtopdir, DEFAULT_PERM,

"b", Qb, , Qtopdir, DEFAULT_PERM | DIR_FLAG,

"c", Qc, , Qb, DEFAULT_PERM,

"d", Qd, , Qb, DEFAULT_PERM

};

The Dirtab structure is defined to reflect the format of directory table entries. Qtopdir, Qa, Qb and

Qc are unique integer constants used to generate the Qid path values for their respective files in the

exported filesystem.

In implementing a 9P filesystem, a user is only responsible for implementing the filesystem

specific component, which is done by presenting the namespace contents using directory tables

and by defining handlers for open, read and write operations performed against these files. The rest

of the filesystem implementation (9P message processing and namespace management) is drawn

from base software sources.

Existing implementations of standalone userspace 9P filesystems are available from Plan9ports



2. Underlying Technology 30

[91] and NPFS [95] projects which provide adaptations of Plan 9 related software for Unix-like

operating systems such as Linux, FreeBSD and Mac OS X. Using these directly within embedded

systems is infeasible because of the resource requirements they impose and due to their inability to

readily provide specific functionality required in the presented model. Consequently we use them

as a basis to implement three filesystem blocks each of which fulfills a different requirement within

the distributed filesystem model, as reflected in their roles and design emphases. The ’embedded

filesystem’ is used in embedded environments and is designed for judicious resource consumption.

The ’mount filesystem’ facilitates integration of embedded filesystems at the component level into

filesystems at the system level thereby providing the filesystem model with its compositional capa-

bility. The ’clone filesystem’ is designed to enable exporting of resources such as console IO, mass

storage, and TCP-IP sockets from within workstations by abstracting them using file representa-

tions. The exported resources are then remotely accessed by resource impoverished embedded

devices using file operations performed on files in the locally mounted clone filesystem.

Embedded Filesystem

At the core of the architecture is the embedded filesystem (EFS) that encapsulates a basic design

unit within an embedded system (such as a SoC device) using a file interface. Our implementation

of EFS is a stripped down version of the 9P fileserver from Plan9ports. The filesystem is exported

over available generic communication links, which in our work has included serial connections,

low power radio links and ethernet. t

Generating Filesystems Using EFS

[CHG:efs-use]The namespace exported by EFS filesystems consists of a collection of directories, one

for each sub component (interchangeably called device) within the entity implementing the EFS. As



2. Underlying Technology 31

an example, for a filesystem abstracting a circuit board, each on-board chip could be represented

with a separate directory. The listing below shows the namespace for an EFS filesystem within

our prototype presented in Chapter 3, that contains two major sub components in the form of

microcontroller devices from MSP and ARM families. Each device has its representative directory

with files to program, control and debug it.

/EFS

/mspdir

registers

memory

status

control

/armdir

registers

memory

status

control

Every EFS instance contains a base ’tree’ device which provides the directory framework onto

which various device directories are attached. In the above example for instance, the tree device

contains the mspdir and armdir directories onto which the devices attach their respective directories.

The directory layout of each device in the EFS is specified using a directory table (described

earlier in this section), implemented as an array of Dirtab structures. Along with the namespace,

each device specification also contains handlers defining behaviour corresponding to device ini-

tialization and device specifc file operations or open, read and write. The various devices with their



2. Underlying Technology 32

namespaces and file operation handlers lend each filesystem its character. To implement an EFS

based filesystem abstracting the test device presented in the last section 2.4, a directory table

representation of the device’s supported namespace is created, as illustrated using the testtab

array. A device record is defined which lists the device directory table along with functions handling

device specific file operation performed on the files, as shown below:

/* device record for ’test’ device */

Dev testdev = {

’T’,

&testinChan, /* channel to receive requests */

&testoutChan, /* channel to send requests */

testinit, /* device initialization routine */

testopen, /* handler for open */

testread, /* handler for read */

testwrite /* handler for write */

/* other routines - omitted */

}

The testdev device record is registered with the namespace management component of the

filesystem which then exports the device directory contents as part of the filesystem. Apart from file

operation handlers, the device record also specifies a pair of channels (testinChan and testoutChan )

over which respectively file requests for the device are received and responses sent out. Role of

channels in the EFS implementation is described in detail later.

In performing a read operation as shown :

read(buffer, ‘‘topdir/a’’, 5);



2. Underlying Technology 33

a client starts by issuing a pair of walk requests to navigate a fid pointing to the root of the mounted

EFS to first the topdir directory and then to file ’a’ in the test device namespace; the walk

operations are processed by the namespace management component of the EFS using the device’s

directory table to identify its namespace layout. Following this, the client issues a read request on

the walked fid , which is identified as targetting a file associated with the test device by the 9P

message processing component of the EFS, and ultimately handled by the read handler of the test

device.

[CHG:EFS]An underlying assumption behind use of EFS filesystems is that both the set of de-

vices being represented and files associated with each remains constant in the course of execution.

As described in the next subsection, the static nature of its namespace contributes to the simplicity

of the EFS design. Since the set of processor elements associated with each SoC device remains

constant over its lifetime, representing them using an EFS filesystem based on a fixed set of de-

vice directories is warranted. While it is possible to conceive of scenarios wherein it would useful

to create and destroy files within device directories in an EFS filesystem (to reflect process cre-

ation/deletion for instance), our EFS block does not support such functionality. The mount and

clone filesystem building blocks in contrast, respectively have the ability to dynamically generate

their namespaces and modify it at runtime.

EFS Implementation

In order to adapt the Plan9port fileserver design to the embedded domain, we limit the filesystem

functionality and move to a single threaded implementation using cooperatively scheduled rou-

tines that is based on the CSP model [33]. The resulting filesystem has been implemented with a

code size of less than 15KB.

The EFS implements a large subset of standard filesystem features, while excluding a few others



2. Underlying Technology 34

to limit complexity. The filesystem supports the core 9P file operations relevant to EFS functioning,

namely: attach, walk, clone, read, write, open and clunk. The non supported operations are create,

remove and wstat. The choice of operations to exclude is consistent with static namespace charac-

teristic of EFS wherein files cannot be added or deleted from the namespace.

The filesystem limits the number of files that may be opened concurrently to a maximum num-

ber that is set at compile time. While the limit varies from one application to another, the rule of

thumb is to ensure that it is larger than the number of distinct files in the exported namespace.

Since open file descriptors for various files in the namespace can be reused, maintaining multiple

open file descriptors to the same file is sometimes redundant. Thus limiting the number of open

file descriptors is not always overly restrictive for clients. As another means of reducing opera-

tion state, the filesystem only allows a single active client connection at a time. The next section

describes use of the overlying mount filesystem to deal with this restriction.

A standard procedure in server design is using multiple dynamically generated threads to con-

currently process incoming requests. Liberal use of multi-threading is infeasible in the embedded

domain because of the associated memory overhead. Our design of the EFS block - depicted in

Figure 2.1 - is based on the CSP model [33] and uses a fixed set of interleaving threads commu-

nicating over uni-directional, singly buffered channels. Channels provide a mechanism by which

threads can both communicate and synchronize in CSP based systems. The two operations that

threads can perform on a channel are chanrecv and chansend, to receive and send data on the chan-

nel respectively. Since the channels are singly buffered and blocking, they follow rendezvous based

semantics, which means they block until another thread is ready to perform the complementary op-

eration on the same channel. The code below shows an example of a thread denoted by variable ’t’

performing a receive operation on channel ’c’.

if (chanrecv(&t, &c) < 0)



2. Underlying Technology 35

threadReturn();

The chanrecv function call returns a negative value if there is (are) no compatriot thread waiting to

send on the same channel. In such a case the thread voluntarily yields using threadReturn and is

blocked until when the operation can go through.

Each thread in the EFS implementation is responsible for a different aspect of filesystem opera-

tion, namely:

• input/output (IO)

• buffer management

• filesystem management

• device management (one thread for each device)

Device Mgr

hardware
Filesystem

Mgr

Buffer Mgr

IO Mgr

Figure 2.1: EFS Design

When a file request comes in, it is accepted by the IO thread and copied into a message buffer

that is retrieved from the buffer management thread. The message buffer is passed on to the



2. Underlying Technology 36

filesystem management thread which deciphers the message to retrieve its type and associated

arguments. Request types corresponding to generic file operations such as open, clone, attach and

clunk are processed and responded to by the filesystem thread directly. Other device-specific re-

quests such as read and write are passed on to the appropriate device manager as determined by

the path/Qid of the file being targeted. This packet handoff occurs over the device’s input chan-

nel which is registered with the filesystem core at startup time. The structure of the filesystem

management thread’s main loop is shown in Listing 2.1.

Listing 2.1: Filesystem Management Thread Loop

for ( ; ; ) {

i f ( chanrecv(&inChan , & rx ) < 0 ) {

threadReturn ( ) ;

}

switch ( rx−>type ){

case Topen :

/∗

f i l e open l o g i c ( o m i t t e d )− g e n e r a t e s r e t u r n p a c k e t ’ tx ’

∗ /

i f ( chansend(&outChan , & tx ) < 0 )

threadReturn ( ) ;

break ;

case Tread :

devindex = lookupdev ( rx−>fd ) ; /∗ f i n d d e v i c e b e i n g t a r g e t t e d ∗ /

i f ( channbsend ( devtab [ devindex]−>chan , & rx ) ! = SUCCESS ) {

/∗ d e v i c e busy ; r e t u r n e r r o r ∗ /



2. Underlying Technology 37

tx−>type = Rerror ; tx−>ename = EBUSY ;

i f ( chansend(&outChan , & tx ) < 0 )

threadReturn ( ) ;

}

break ;

/∗ h a n d l e o t h e r o p e r a t i o n s − o m i t t e d ∗ /

}

}

The filesystem first obtains an incoming request from the IO thread through inChan. Each re-

quest type is then handled within a switch statement. The open operation is handled locally by the

filesystem manager and the response sent back to the IO thread for being returned to the client. The

handling of read is more involved and begins by identifying the targetted device using the lookupdev

function. The request is then sent to the appropriate device through its designated channel in a non-

blocking manner. Use of non-blocking send enables a busy error to be returned to the client in case

the device thread is busy processing an earlier request, so that the filesystem can continue serving

new requests. Use of blocking send would in contrast result in the filesystem manager blocking

until the targeted device’s thread is ready to accept the new request, thereby making the whole

filesystem unresponsive during the wait.

A device’s software specification consists of 4 components namely: its directory table, table of

function handlers for supported message types, a device thread and a pair of device channels, one

each for receiving incoming requests and sending out responses. The thread waits on its device in-

put channel to receive a request from the filesystem manager. The main loop of the device thread is

similar to that for the filesystem manager with the difference that only the device specific messages



2. Underlying Technology 38

types (commonly read and write) are handled. Upon receiving a request, the thread engages in a

series of interactions with its associated hardware to complete the request and passes the response

back to the IO thread through the output device channel.

Multithreading in the EFS design is implemented using the libthread module from Plan9ports in

a stack-less manner, along the lines of Protothreads [44] and Stackless Python. Threads are sched-

uled cooperatively, which means that shared data across threads does not have to be safeguarded

using mutual exclusion constructs. When a thread yields, only the yield point in the execution is

preserved and not the contents of the thread stack. The state that needs to be restored the next time

the thread is scheduled needs to be stored within static variables. [CHG:singlthrd]While this means

that only one ’instance’ of a function can run within any thread (thereby making it non reentrant),

the context associated with the thread is simply a memory address, which is 2 to 4 bytes long de-

pending on the architecture. In contrast, storing context for a user level thread using getcontext in

Linux takes up 348 bytes of memory, in addition to memory for storing contents of stack. By use of

cooperative scheduling, pseudo threads comprising the EFS implementation are assumed to yield

their execution responsibly when blocked on channel operations. Divergent behaviour on the part

of any of the threads could cause other threads to be starved of execution time and therefore lead

to the operation of entire filesystem to stop.

The CSP-based filesystem is designed in the form of a packet processing pipeline [75] consist-

ing of a series of concurrently executing threads. The thread in each stage partially processes the

request and hands it off to the appropriate next stage over a channel. Since blocking channels

are used, threads automatically yield if there are no requests waiting to be processed. The system

therefore automatically schedules itself based on the flow of requests through the pipeline. The

pipeline is nonlinear since it fans out from the file system management thread to multiple device



2. Underlying Technology 39

managers, and converges at the IO thread from where responses are sent out. The IO thread si-

multaneously listens on all device output channels using the alternative operation, which blocks the

thread until at least one of the channels has data available. When the operation returns, data is read

from one of the possibly many ’ready’ channels, the choice being made in a unspecified manner -

in our case at random. Performing an ’alternative’ operation first involves defining a table of the

Alt structure entries each of which lists a participating channel, the operation to be performed on

it (send or receive) and the variable where data is either sent from or stored into depending on the

operation. The alternative operation is then run using the alt construct, which is structured like a

switch statement with the various cases indicating completion of operations at corresponding in-

dices in the table. Code from the IO thread using the alternative operation is shown in Listing 2.2

for a case consisting of a single device within the filesystem named ’test’ apart from the standard

’tree’ device:

Listing 2.2: Use of Alt in IO Thread to receive outbound packets from multiple devices

s t a t i c Alt I O a l t [ ] = {{& treeOutChan , & tx , CHANRCV} ,

{&testOutChan , & tx , CHANRCV} ,

{ 0 , 0 , CHANEND}} ;

while ( 1 ) { /∗ f o r e v e r . . . . ∗ /

a l t ( I O a l t ) {

default :

/∗ c o d e f o r s e n d i n g tx out − o m i t t e d ∗ /

}

i f ( chansend ( & rtnbufferChan , & tx ) < 0 )

threadReturn ( ) ;

}



2. Underlying Technology 40

The alt statement returns when a response packet is obtained from either of the devices (and

stored in pointer location ’tx’) which is then sent out. The buffer is then returned to the buffer

management thread for reuse.

It may be recalled from the previous section 2.4 that integer identifiers for each entry in the

directory table are used to generate 4 byte Qid path values for its associated file in the exported

namespace. With multiple devices however, file entries across different directory tables could po-

tentially share identifier values, thereby violating the unique Qid requirement. To address this

issue, we divide the 32-bit path into two fields - a 3 bit device value and a 28 bit file identifier de-

rived from its entry in the directory table. As per 9P protocol specification, the remaining MSB bit

is used to specify whether the file is a directory . This technique for generating Qid values provides

a basis by which the device associated with any given file may be identified merely based on its

Qid. The Qid path format is laid out in the Figure 2.2 below:

3 bits

dir
bit

1 bit

device
   id

28 bits

unique id from directory table

Figure 2.2: Qid path format

Mount Filesystem

Various EFS instances within an embedded system may be composed within a mount file sys-

tem (MFS) that provides a single, uniform interface for the entire system. An MFS block is typically

implemented in an entity that is hierarchically above where the EFS blocks reside. For instance, in

an SoC based system, EFS units may be exported by each of the SoCs, which are integrated by an

MFS implemented at the board level. In board based designs, the MFS may be implemented at the



2. Underlying Technology 41

workstation level.

The MFS block is responsible for providing the filesystem model with its compositional fea-

tures. The key to this is its ability to mount lower level 9P based filesystems (both EFS and MFS)

and use them in its own operation. The capabilities provided by the MFS are two-fold. It facili-

tates implementation of 9P filesystems that can mount remote filesystems and incorporate them in

their own implementation. MFS also supports reexporting of various mounted sub filesystems all

aggregated under a single 9P filesystem namespace.

Re-exporting Imported Filesystems

The challenge in implementing a union of sub filesystems under MFS is to ensure unique Qid

values among files. It may be recalled from Section 2.3 that each file in an exported namespace has

an associated Qid value that serves as a unique identifier. Since files across various imported EFS

instances may share Qid values, they have to be made unique before being reexported as part of the

combined MFS namespace. This issue has been investigated by the Plan9 community, most notably

with regard to the implementation of exportfs [6]. The solution we use is to statically divide the MFS

Qid space among various filesystems being aggregated and to map their file Qid’s to within these

spaces before re-exporting them.

Import of remote filesystems in MFS is supported through a separate device known as mntdev.

Each instance of mntdev acts as a client to a single remote 9P filesystem. Unlike conventional

devices wherein the contents of the device directory is specified using directory tables, with the

mntdev device the information is retrieved from the external filesystem. All incoming requests are

processed by forwarding them to the remote filesystem and returning the response packet. For

walk operations the returned Qid value is altered to ensure uniqueness. This is done by setting 4

higher order bits of the Qid path value to an identifier that is unique to the mntdev instance. Along



2. Underlying Technology 42

with the device identifier bits, these ensure that Qid path for each exported file is unique. The 32-bit

Qid path value thus has the format shown in Figure 2.3.

unique id within device

4 bits3 bits

dir
bit

1 bit 24 bits

mntdev
   id

device
   id

Figure 2.3: Qid path with mntdev bits

[CHG:mfs] This format extends the one presented earlier in Figure 2.2 with an additional 4-bit

field that specifies the mntdev identifier. Use of this format imposes the restriction that a maxi-

mum of 16 EFS filesystems can be mounted together at one time, which is equivalent to making the

reasonable assumption that no more than 16 SoC devices are present within an embedded system,

whose filesystems need to be mounted together. The partitioning also restricts the number of files

that can be associated with each device in an imported EFS to 224, which is far more than the num-

ber that would typically be required. An alternate approach that does not require equal division of

the Qid space, maps mntdev Qid path values to files in imported filesystems on a need-be basis.

This requires the implementation to explicitly store the mapping between Qid’s in the imported

namespace to those in the MFS.

Addressing EFS limitations

Since the MFS executes in computationally capable entities higher up in the embedded hierarchy,

limitations in lower level EFS blocks can be tackled within it. We present two ideas in this regard

that are proposed as future work. To address the limitation of EFS supporting only one active

client, the MFS can multiplex a single connection [14] to each underlying EFS block among multiple

clients. The MFS can also throttle incoming requests directed at EFS blocks that can only handle a

limited number of concurrent requests. Protocol bridges can be incorporated within MFS to allow



2. Underlying Technology 43

indirect access of EFS using protocols other than 9P. Thus, by using these techniques end users are

saved from having to account for the various limitations implicit in EFS blocks by handling them

at the MFS level.

Clone Filesystem

[CHG:clonefs]A limitation of the two 9P filesystems (embedded and mount) described is that the

number and type of devices they represent and also the files associated with each device is hard

coded in their implementation. Clone filesystems relieve this limitation by supporting the addi-

tion and removal of device directories corresponding to the creation and destruction of resources

being abstracted as part of the filesystem. Clone filesystems thus provide an effective means of

implementing filesystem abstractions for transient entities associated with system execution.

An example of the use of clone filesystems is in the implementation of networking in Plan 9

through /net as described in Section 2.3. TCP connections (sockets) are represented by unique di-

rectories within the /net filesystem, which contain files to configure and use the connection. Clients

create and destroy connections by adding connection directories and removing, which abstract the

connection using file interfaces. After initialization, the TCP section of the filesystem contains a

single file named clone as shown below:

/net

/tcp

clone

A new connection is created by opening the ’clone’ file, which has the effect of creating a new

connection directory. The file descriptor returned from the open operation points to the ctl file in the

connection directory. When read, the ’ctl’ file returns the connection number which can then be



2. Underlying Technology 44

used to open other files for configuring and using the connection. Apart from networking, clone

filesystems are used in Plan 9 to implement a process filesystem [121] similar to /proc in Linux,

which provides a file based interface to monitor, control and debug processes executing within

the operating system. Process directories are continuously added and removed from the global

namespace to reflect process creation and termination.

In this dissertation, the work presented in Chapter 5 uses 9P based clone filesystems to export

workstation-based resources such as network stacks, peripherals etc. over communication links. 9P

client applications executing within embedded devices import these filesystems and thereby gain

indirect access to the exported resources. Thus the roles of clients and servers are reversed between

the workstation and embedded sides as compared to the ideas presented thus far.

Extending NPFS

The clone filesystems in our work are implemented using NPFS [95], which provides a frame-

work for building robust 9P filesystems in C for Unix-like operating systems. NPFS supports use

of multi-threading to serve multiple concurrent client requests and direct mounting of the imple-

mented filesystem within the host operating system. While 9P filesystems may be easily deployed

using the Plan9port suite of tools, the approach requires use of a custom development tool chain

consisting of a non-standard compiler, linker, debugger and thread library. NPFS in contrast, allows

filesystems to be developed using familiar GNU toolchains.

We implemented two extensions to NPFS in order to make it suitable for our work. First we

incorporated support for use of Dirtab representations to specify filesystem layouts. we then lever-

aged the Dirtab support to develop a framework for implementing clone filesystems within NPFS.

Conventionally the namespace for NPFS synthetic filesystems is derived at startup time with

help from the entity being abstracted. As an example consider the ’mboxfs’ filesystem available



2. Underlying Technology 45

within the NPFS sources that provides access to e-mail messages on a mail server through a file

interface. The filesystem namespace is generated based on the messages retrieved from the server

as shown in the code listing 2.3

Listing 2.3: Filesystem Namespace Generation

n = m a i l s e s s i o n g e t m e s s a g e s l i s t ( f ld−>fo lder−>f l d s e s s i o n , & m s g l i s t ) ;

for ( i = 0 ; we < carray count ( msg l i s t−>msg tab ) ; i ++) {

msg = c a r r a y g e t ( msg l i s t−>msg tab , i ) ;

s p r i n t f ( buf , ”%d” , msg−>idx ) ;

nf = n p f i l e a l l o c ( dir , strdup ( buf ) , 0 5 0 0 |Dmdir , ( ( u64 )msg−>idx )<<32,

&message ops , m) ;

a d d f i l e ( dir , nf ) ;

}

The gist of the logic is to first download the list of messages from the server and for each mes-

sage create a directory (using npfile alloc) with the name given by the message index.

Use of this approach in our work is often infeasible as there may be no well-defined entity that

is being abstracted with which to generate meaningful namespace information. Directory tables

in contrast allow implementation of filesystems based on arbitrarily defined namespaces. Code

generating the namespace information using directory tables is implemented in libraries and is

reused with different filesystems. Associated file information such as access permissions is stored

centrally within the directory table, making it easy to change the filesystem namespace contents.



2. Underlying Technology 46

Handling /textitwalk with Directory Tables

Implementation of the handler for ’walk’ in Dirtab based filesystems is described, as this is where

file descriptors get mapped to files based on path names and hence deals most closely with direc-

tory tables. The functionality of the walk operation may be stated as follows: given a file descriptor

pointing to a directory and a name, to remap the file descriptor to a child file/directory with the

given name. Using Dirtab representations, this is achieved by retrieving successive directory chil-

dren and checking to see if their name matches with what is being looked for. The code in listing 2.4

illustrates this idea, wherein variable ’f’ (of type Fid ) is the file descriptor pointing to a directory

and variable ’name’ contains the name of the child being searched for.

Listing 2.4: Handling ’walk’ with directory tables

o f f s e t = 0 ; /∗ s t a r t a t t h e t o p o f t h e t a b l e ∗ /

while ( ! found ) {

dt = findNextDirChild (& o f f s e t , f−>qid . path ) ;

i f ( dt = = NULL) /∗ no c h i l d found ∗ /

break ;

i f ( strcmp ( name , dt−>name ) = = 0 ) {

/∗

modi fy ’ f ’ t o p o i n t t o c h i l d ’ d t ’ e n t r y − d e t a i l s o m i t t e d

∗ /

found = 1 ;

}

}



2. Underlying Technology 47

The helper function findNextDirChild retrieves the first entry within the filesystem Dirtab table be-

yond the given offset with a matching parent. This function is repeatedly invoked to retrieve suc-

cessive directory entries until a matching one is found or no more entries are left.

Supporting clone filesystems using NPFS

Dirtab descriptions provide a convenient means by which to implement clone filesystems using

NPFS. The namespace exported by every clone filesystem has a static part that remains unchanged

during the course of filesystem execution and a dynamic part to which ’clone directories’ get added

each time a clone operation is performed. In the /net filesystem described earlier, the ’clone’ file is

the solitary member of the static part, while clone directories representing connections get progres-

sively added to the dynamic part through clone operations.

Dirtab structures are suitable for implementing clone filesystems because in the course of op-

eration their filesystem namespace always changes (grows or shrinks) by a fixed set of files each

time. Accordingly, in our approach we maintain two Dirtab directory tables, one for the static sec-

tion of the filesystem and another for the clone directory. Each time a clone operation is performed,

a copy of the clone directory table is ’fused’ with the static table at the appropriate location. This

process is illustrated in Figure 2.4 for the /net filesystem. The center figure shows the namespace

after two clone operations, as consisting of two copies of the clone directory table fused to the static

table at directories named ’/1’ and ’/2’. Deletion of a clone directory leads to its corresponding

copy of clone table being ’unfused’ from the static table, as shown in the figure on the right. While

our implementation of clone filesystems does assume availability of dynamic memory, since these

filesystems are intended to run on workstations the assumption is warranted.

Multiple clone filesystems can be easily supported using this approach by maintaining one

directory table for each clone type. Since static and clone directory tables are isomorphic, nesting



2. Underlying Technology 48

Initial Namespace
/1

After 2 clone operations After releasing /1

static table

clone

/2

static table

clone

clone table

ctl

listen

status

data

clone table

ctl

listen

status

data

/2

clone table

ctl

listen

status

data

static table

clone

Figure 2.4: Clone operation example

clone filesystems within one another is also possible by fusing clone directory tables to one another.

An issue that needs to be addressed with this approach is that since directory tables are stateless,

multiple instances of clone directory tables within a namespace cannot be readily differentiated. So

we represent every clone instance in the filesystem by a value pair, consisting of the associated clone

directory table as well as a clone handle in the form of a memory pointer. With the /net filesystem

for example, the handle for each clone instance can be a pointer to a connection structure that stores

socket number of the connection, IP address of the node connected to, the state of the connection

etc.

NPFS filesystems supporting clone operations maintain a list of transfer points, which indicate

locations in the filesystem where directory tables are fused together. The terminology signifies

them as being the only locations in the namespace where file descriptors can ’transfer’ from one

filesystem directory table to another during walk operations. A transfer point can be defined using

three values, namely:

• Qid of the parent directory containing the particular clone directories



2. Underlying Technology 49

• name of the cloned directory

• directory table corresponding to the clone directory along with the clone handle

The filesystem is able to associate every file descriptor with its cooresponding clone instance

by encoding the relevant directory table and clone handle information within the file descriptor’s

Qid path bits. A similar approach is used to encode device and mount identifiers in the Mount File

System as described in the previous section.

The ’walk’ operation handler implementation is modified for clone filesystems as their direc-

tory contents are derived from both the respective filesystem directory table and the global list

of transfer points. The implementation of findNextDirChild presented earlier is modified from the

static filesystem case to reflect this. Where earlier the function returned a NULL value when no

Dirtab entry was found with a matching parent Qid, now the function continues searching though

the transfer point list based on the same criterion.



2. Underlying Technology 50

2.5 Host Access of 9P filesystems

Embedded software development tools for debugging, programming and trace analysis exe-

cuting on workstations interact with remote embedded devices using files in the exported EFS and

MFS namespaces. This section presents a technique implemented as part of our work that en-

ables the exported 9P filesystems to be incorporated within the host operating system namespace

under Linux. Software development tools can then access the exported filesystems through con-

ventional file operations, without having to deal with any 9P-protocol related issues themselves.

A related project, v9fs [90] implements in-kernel support for importing filesystems based on the

9P2000 protocol, which is a newer version of 9P. Our work targets importing of 9P filesystems, and

contrastingly uses userspace software to do so.

The underlying idea behind our technique is to use Fuse [52] as a bridge between Linux and

remote 9P filesystems. As described in Section 2.2, Fuse enables filesystems to be implemented in

userspace and have their contents included in the overlying operating system namespace. When an

operation is performed against a file in the bridged namespace, the Fuse kernel module forwards

the operation to our userspace filesystem responsible for bridging 9P and Fuse, henceforth referred

to as ’9pbridge’. 9pbridge in turn resolves the issued operation into equivalent 9P requests that

are sent to the targeted 9P filesystem. Once these requests have been completed, 9pbridge extracts

the return value and passes it back to the kernel. The operation is depicted in Figure 2.5, which is

based on an illustration from the Fuse documentation.

We present a brief comparison between 9P filesystems and Fuse, focussing on aspects relevant

to implementing bridges between them. Both 9P filesystems and Fuse allow clients to create file

handles using which various file operations may be performed. 9pbridge associates a unique file

handle on the Fuse side for every file (indirectly) opened on the 9P filesystem by clients. In 9P



2. Underlying Technology 51

ls /mnt/EFS

VFS

9p filesystem

kernel

userspace

connection

Fuse kernel
implementation

9Pbridge

Figure 2.5: Request Processing

filesystems, handles are refered to using integer fid values that are picked by the client each time a

new handle is created using a clone operation. Fuse constrastly allows clients to use integer fid’s but

these are concealed by the kernel module from the userspace filesystem, which instead maintains

file handles using the fuse file info structure that is passed to the filesystem on every operation

against the file. The handle contains a generic 64-bit value (named fh) to identify the open file

instance, which we use to store its 9P side fid value. Like in 9P, file offsets are not stored within file

handles in Fuse, but rather explicitly specified within every operation. This means the offset can be

’passed on’ from a Fuse operation to its corresponding 9P operation. In the implementation of read

within 9pbridge shown in Listing 2.5, the 9P fid is retrieved from within the fuse file info structure

(fi->fh) and the read offset passed on directly from the Fuse to 9P call.

Listing 2.5: Fuse to 9P conversion of read operations

i n t 9 pbridge read ( const char ∗ path , char ∗ buf , s i z e t s ize , o f f t o f f s e t ,

s t r u c t f u s e f i l e i n f o ∗ f i )

{

i f ( f i−>fh )

{



2. Underlying Technology 52

return s tyx read ( f i−>fh , o f f s e t , s ize , buf ) ;

}

e lse

return −ENOENT;

}

Fuse treats directories and files differently unlike 9P, which allows directories to be read like

conventional files to yield a series of stat structures listing directory contents. In Fuse, the names

of constituent files within a directory are first obtained using the readdir operation, after which the

files’ attributes are obtained using the getattr operation.

Since Fuse is designed to be implemented locally, some aspects of its operation are inefficient

when used in a distributed environment such as ours. We introduce optimizations in 9pbridge

to address this issue. An open operation in Fuse reduces to three distinct 9P operations as listed

below:

• clone of the Fid pointing to root to create a new Fid

• series of walk operations of the new Fid along the path of the file being opened

• open of new Fid

Since each of these operations is performed in a distributed manner, the resulting latency of the

entire Fuse open operation can be considerable. To deal with this issue, we introduce an optimiza-

tion whereby each file on the 9P filesystem is opened only once, which happens the first time it is

opened through Fuse. The obtained file handle is reused to service all subsequent open requests

issued on the same file.



2. Underlying Technology 53

A second optimization relates to client retrieval of file attributes, performed in Fuse using the

getattr operation often in conjunction with open. This operation in Fuse results in a 9P stat opera-

tion being issued to the remote 9P server, which replies with a serialized encoding of a stat structure

containing the file’s attributes. Since the structure is 116 bytes in size, the operation is fairly commu-

nication intensive leading to a pronounced latency in low bandwidth links, while also consuming

valuable power during communication. Reading directory contents leads to multiple stat opera-

tions being performed compounding the problem even further. we address this issue by caching

stat entries for files and directories within 9pbridge. As with open, the stat operations are issued a

single time to the remote 9P server and the returned structure is cached and reused from there on.

This optimization is valid in our work as the only attribute of interest within the stat structure is

whether the entity is a file or directory, which does not change with time. If stat attributes of interest

get invalidated over time (such as modification timestamps), then more sophisticated mechanisms

need to implemented to keep the cached copy in 9pbridge coherent.

2.6 Summary

This chapter presented the technology used in our work to build and utilize file abstractions for

embedded systems. These abstractions are realized using a distributed, hierarchical organization of

filesystems at the chip, system and workstation levels, as implemented using ’embedded’, ’mount’

and ’clone’ filesystem building blocks. Each of these blocks fulfill a different requirement within the

distributed filesystem model, as reflected in their roles and design emphases. On the workstation

side, we provide a mechanism for mounting the exported filesystems within the local operating

system namespace, thereby enabling the contained files to be accessed like any other ’conventional’

file. The non-traditional use of filesystems as a standard means to access and control resources



2. Underlying Technology 54

is based on ideas espoused by the Plan 9 operating system. The Plan 9 model presents several

advantages as compared to other popular distributed filesystem solutions such as NFS, including

simplicity, less resource overhead, ability to be exported over a variety of communication links,

and suitability for use with hardware. Chapters 3 and 4 present use of this technology to facilitate

software development in two contrasting embedded application domains.



3

Application to Embedded Software

Development

55



3. Application to Embedded Software Development 56

3.1 Introduction

In this chapter we describe use of the virtual filesystem technology to support debugging and

tracing of software executing within multi-processor embedded systems. These tasks, which form

an integral part of the software development process in general, are particularly challenging to

support with embedded systems due to the resource constrained, heterogenous nature of their de-

sign and the concurrent nature of their operation. The factors in combination contribute to limited

internal visibility thereby impeding debugging, and impose unique requirements on the various

software development tasks involved, including debugging and tracing. Our approach is able to

support these tasks in a resource conscious manner, and in contrast to traditional approaches is

able to naturally accomodate the associated requirements unique to embedded systems. We focus

on systems based on multi-processor system-on-chip (SoC) devices, which have come to be used

as the principal building blocks in embedded design [21] [18].

A fundamental assumption behind the work presented in this chapter is that a scalable solution

for programming and debugging systems built from SoCs can draw from distributed program-

ming principles. The presented approach uses portable software modules at SoC level in the form

of chip-level file systems as distributed building blocks. These are composed to create higher level

file systems that provide a portable, high level interface to debug, trace and monitor software exe-

cuting within SoC based embedded systems. We demonstrate the ability of the model to support

requirements unique to SoC based systems that traditional methods are ill equipped to deal with.

The organization of this chapter is as follows. We first discuss requirements on the part of on-

chip structures for supporting SoC software development tasks such as debugging and tracing.

This is followed by a description of JTAG, which forms the primary basis of current on-chip de-

bug support infrastructure, along with an account of its shortcomings when used with SoC based



3. Application to Embedded Software Development 57

systems. Then We introduce the use of filesystem abstractions to support standard software de-

velopment tasks and present an architecture for implementing the idea within SoC based systems.

Finally we illustrate use of the model to achieve concurrent debugging and tracing in a heteroge-

neous multi-processor environment using working prototypes.

3.2 Requirements for SoC software development

A system-on-chip is an integrated circuit (IC) that has several major components within a com-

puting system such as processors, memories, peripherals and busses integrated into a single com-

posite device. SoCs offer several advantages such as a high level of integration (resulting in mini-

mal size), power efficiency and intellectual property (IP) reuse. Designing on-chip support for SoC

software development presents some distinctive challenges. SoCs offer reduced internal visibility,

as compared to system-on-board based design paradigms where the major components exist within

distinct chips. In such older design techniques, access to signals and bus traffic was easily avail-

able through IO pins on chip packaging, external interconnects on circuit boards etc. With SoCs

however, visibility is limited as these signals are buried within the chip along with their respec-

tive cores. Thus, basic on-chip support for software development entails providing mechanisms to

probe and monitor the internal logic within an SoC.

The system design process using SoCs typically involves two parties: the chip provider who

implements the SoC and the system designer who incorporates it within an embedded system

[68]. Chip providers need to ensure that this separation does not affect the design process by

providing system designers with effective mechanisms to program, debug and integrate their SoCs

with systems in which they are being deployed.

Additionally, SoC programming and debug mechanisms must satisfy requirements imposed



3. Application to Embedded Software Development 58

by cores residing within the SoC. Concurrent access of the different on-chip processor cores is a

requirement to support simultaneous debugging. The cores often have associated proprietary in-

formation that the mechanisms must conceal. Abstract interfaces are used to conceal the internal

details by providing higher levels of interaction, at the cost of more complexity. Thus chip providers

need to be equipped with methodologies to address these issues and make suitable tradeoffs, pos-

sibly by choosing the level of abstraction at which to present chip interfaces.

Aside from debuggin and programming of individual cores, on-chip structures should support

development tasks for the system at large. An example of this is the cross trigger functionality [3],

which enables events in one core set off actions (such as stopping execution) in another. System

level monitoring [55] allow execution of a system to be observed without halting it. On chip de-

bug support also enables resources to be shared among different cores during debugging. This is

particularly useful in supporting multi-core tracing, by allowing trace buffers and trace ports to be

shared between processor cores for storing and streaming out trace data respectively.

3.3 Present Practice

The prime motivation of our work comes from limitations of JTAG [107] (formally IEEE 1149.1

standard) that largely forms the basis of existing techniques to program and debug SoC based

embedded systems. A brief overview of JTAG is presented in the following paragraphs followed

by a discussion of its limitations when used with SoC based systems.

Overview of JTAG

JTAG was originally developed for chip testing, but has come to be used for other purposes such

as programming and debugging. Its compelling advantage is being able to function with as few as



3. Application to Embedded Software Development 59

4 pins on the chip packaging, corresponding to the TDI (test data in), TDO(test data out), TCK (test

clock) and TMS (test state machine control) signals. The typical layout of a chip supporting JTAG

is shown in the Figure 3.1.

Figure 3.1: Typical on-chip JTAG architecture (courtesy: Sanyo Semiconductors)

Devices supporting JTAG have one or more chains of single bit boundary scan (BS) cells that

run typically around the periphery of the chip. The chains start and end with external pins named

TDI and TDO respectively. Each of these chains can be thought of as a data register (DR) whose size

in bits is equal to the length of the chain. In addition, JTAG implementations include an instruction

register (IR) which is connected to TDI and TDO in parallel with the data registers. To load data

into a register, the required one is selected using a series of chip-specific operations involving TMS

following which data is shifted in through TDI.

The basic operation sequence involved with JTAG entails loading the IR with an instruction

opcode, DR with an instruction operand followed by an invocation of the instruction. The result

of the operation is shifted out through TDO. The instruction set supported varies across devices



3. Application to Embedded Software Development 60

and is sometimes proprietary information. Using this mechanism, processor chips and cores allow

examination of processor state, injection and execution of instructions and control of processor

execution through start, stop, break and single step operations. The procedure is closely tied to

the chip involved in terms of the on-chip core layout, length of scan chains etc. and is in general

non-portable.

Limitations of JTAG

JTAG based techniques require significant information about hardware internals to be divulged.

Descriptions of scan chains may have to be made available (eg. through BSDL files) for use by

programming and debugging tools. This is undesirable in a SoC scenario, where chips may contain

cores that have associated proprietary knowledge that chip providers must safeguard.

Processor chips and cores from different organizations often provide incompatible custom de-

bug interfaces based on JTAG. For instance, the MSP and ARM based microcontrollers used to build

prototypes presented later in this chapter provide JTAG interfaces, but whose usages are entirely

different. These differences limit the interoperability of tools among processors. Presence of cores

within an SoC that provide forms of debug support other than JTAG (such as Motorola’s BDM)

leads to a proliferation of debug interfaces exposed from within the chip.

JTAG requires physical access to a dedicated hardware port. The port along with the JTAG scan

chains are shared resources among the various on chip cores. This makes concurrent access and

debug of multiple processor cores in an SoC using JTAG non trivial. JTAG also suffers from being

a bit serial protocol which compromises the speed at which data can be transferred into and out

of the chip. Hence, often a higher speed link is used to support operations such as tracing which

require greater throughput.



3. Application to Embedded Software Development 61

Traditional software development processes based on JTAG are ill-equipped to handle the par-

titioning of the SoC design task into creation of programmable platforms by chip provider’s team

of hardware-centric engineers and use of these platforms by system designer’s team of application

and software-centric designers. As an example depicting this partitioning, consider the MIPS based

Broadcom universal optical disc (UOD) system-on-chip that is used by LG Electronics in a model

of its DVD players [32]. The chip provider (Broadcom) needs to provide functionality in its SoC de-

vice (UOD chip) to enable the system designer (LG Electronics) to program and debug the device,

while safeguarding proprietary details of the cores (MIPS processor) within the SoC. To do so, the

chip provider needs to be able to choose the levels of abstraction at which to present interfaces for

their platforms in order to manage complexity, to conceal internal proprietary details etc., while still

providing the required programming/debug functionality. JTAG-based approaches are incapable

of exposing higher level interfaces that chip providers may want to expose. This is partly because

JTAG was designed in times when integrated circuits consisted only of a few thousand transistors,

which meant on-chip debug support had to be extremely frugal in terms of the hardware resources

consumed. In contrast, integrated circuits today have millions of transistors which makes accomo-

dating on-chip logic to support debugging more feasible. The emerging trend is to move away from

testing interfaces more towards dedicated system debug interfaces [62], such as those proposed by

the Nexus standard [20]. This dissertation represents a step in the same direction.



3. Application to Embedded Software Development 62

3.4 Methodology

This section introduces the representation and use of file abstractions for SoCs. We present how

the abstraction may be extended to support requirements specific to SoCs.

Filesystem Representations for System on Chip (SoC)

Consider a heterogeneous chip-level processing environment shown in Figure 3.2 with two con-

ventional processors and a custom DSP. To manage a chip-level file system for such an SoC, our

DSPProcessor 2

Processor 1

   Interface
Existing Debug

Adaptor

Interconnect

Processor
Support

Figure 3.2: Model for chip-level filesystems

model introduces a support processor within the system design, that executes portable software

modules to implement the file system. This file system is exported off chip over generic commu-

nication links and can be used directly by an end application (such as a debugger) or combined

with file systems from other chips to create higher level file systems. Hardware adaptors can po-

tentially be used to integrate processors with existing debug interfaces (processor 1 in figure) with

the support processor.



3. Application to Embedded Software Development 63

The contents of the filesystem exported depends on the operations being supported by it. De-

bugging code on a processor requires mechanisms to access and modify registers and memory, to

start and stop the processor, and to enable and disable breakpoints (watchpoints). A file system

that supports debugging would enable these “run control” capabilities through conventional file

operations on files in its exported namespace. An example chip level file system to support on chip

debugging is shown below:

/System/

processor1/

control

registers

memory

status

processor2/

...

DSP/

...

Each processor core is represented as part of the file system namespace and its corresponding

directory contains files to access registers and memory, monitor status and control execution of

the processor. With such a file system in place, basic run control (such as a register read) can be

achieved through file operations (reading the registers file), which are reduced by the filesystem

implementation into the required low level operations on the core.

Use of intermediary hardware to bridge software tools with core debug interfaces is common.

For instance, ARM architectures use a dedicated hardware unit called Multi-ICE, while Motorola

MCUs use BDM pods to achieve this objective. While these units exist external to the chip, in

our model an on-chip support processor core fulfills an analogous role. With increasing transistor



3. Application to Embedded Software Development 64

densities, dedicating a fraction of the on-chip logic to support debugging is feasible [116].

Addressing SoC requirements

Filesystem abstractions provide internal visibility within SoCs by exposing processor state through

files. Unlike with traditional JTAG based methods, in this model interaction with the SoC takes

place over generic communication links. Use of high speed links such as USB can potentially yield

much higher throughputs. While the actual value of throughput with JTAG depends on device

characteristics such as scanchain lengths, the typical number is less than 10 Mbits/sec [9]. In con-

trast, USB 2.0 can support data transfer speeds of upto 480 Mbits/sec. While the overhead imposed

by use of file abstractions would the limit the actual bandwidth that can be realized, generic com-

munication links enable use of faster pipes for getting data into and out of an SoC.

The file model allows the chip designer to present interfaces for supporting SoC software de-

velopment at varying levels of abstraction. This capability also allows for the concealment of pro-

prietary details among on-chip core debug interfaces and to partition functionality across a sys-

tem to manage complexity [99]. In SoCs containing cores with proprietary debug interfaces, the

filesystem enables abstract namespaces allowing macro debug operations to be exposed without

revealing how they are implemented. The knowledge of implementing the high level operations

using the respective core debug interfaces rests within the filesystem. If conversely, the chip de-

signer’s objective was to limit the design complexity of the on-chip debug support structures, then

the filesystem could expose an interface at a lower level of abstraction. In doing so functionality

relating to use of core debug interfaces is transferred to external applications thereby reducing the

filesystem complexity.

The filesystem model allows heterogeneity in debug interfaces among processor cores to be hid-

den behind filesystem abstractions. The interfaces across cores differ from one another a variety of



3. Application to Embedded Software Development 65

ways, ranging from signals in the physical interface to supported debug commands. By abstracting

these heterogeneous interfaces using filesystems, uniform file operations may be used to interact

with the processor cores. As with Nexus [20], standardizing the interaction between on-chip debug

support and tools promotes interoperability between them. While Nexus implements this support

fully in hardware, our work uses a hardware-software combination which makes it more easily

extensible.

Distributed filesystem abstractions are able to naturally capture and utilize the hierarchical

structure that is implicit in SoC based embedded systems. In such systems multiple IP cores are

integrated into systems on chip, that are in turn used to build circuit boards, which are ultimately

used to build systems. Analogously, filesystems exported by systems on chip serve as basic build-

ing blocks, and are progressively composed to create higher level filesystems at the board and sys-

tem level as these entities is built up. The resulting hierarchy of filesystems provide mechanisms

for debugging, tracing and monitoring the system at various levels in its hierarchy.

Composition of filesystems is performed using a hybrid of two broad approaches shown in Fig-

ure 3.3. The first is to organize the composed filesystem as simply a union of chip level filesystem

namespaces as illustrated on the left in Figure 3.3. In this case the board level filesystem’s pri-

mary purpose is to aggregate the different chip level filesystems (/SOC1 and /SOC2) under one

namespace and demultiplex incoming requests to the right one.

Alternatively the composed filesystem can be markedly different in functionality and names-

pace contents from the sub filesystems that it is built with. Using this approach, a functional file

interface can be built at the board level using chip level filesystems that are primarily structural.

Consider the example of a network router that is built using multiple SoC devices (such as net-

work processors). Each of these SoC devices export filesystems that expose registers, memory and

other hardware structures within internal processors as files. Using these chip level filesystems,



3. Application to Embedded Software Development 66

/SoC1
  /proc1

/proc2
/SoC2

/proc1
/proc2

/BoardFS

/proc1
   register
   memory
/proc2

/proc1
   register
   memory
/proc2

/proc1
   register
   memory
/proc2

/proc1
   register
   memory
/proc2

board support
  processor

system on chip

chip filesystem

board filesystem

routerctl
counters
status

Figure 3.3: Strategies for composing filesystems

the router can implement a board level filesystem (such as BoardFS as shown on the right in Fig-

ure 3.3), which allows device level tasks - such as controlling router operation, managing routing

information and accessing operational state - to be performed through the file interface.

A feature that distinguishes our model from Nexus is that ours combines the flexibility of a soft-

ware based filesystem with performance and reusability of hardware components for interfacing

with standard core interfaces. Industry standard interfaces defined for debugging [51] and tracing

[62] ease integration of multi-core systems built using compliant cores, often with the use of hard-

ware wrappers. By supporting these standards within the filesystem, possibly using hardware

adaptors, a wide range of cores may be accomodated. Adaptors can also help offload implemen-

tation of debug operations from the support processor, by implementing them in hardware and

thereby fulfilling a role analogous to debug coprocessors. Algorithms implemented in software

on the filesystem can build on debug features provided by core interfaces hardware to create more

complex features. An example of this is the use of instruction level single stepping feature provided

by the cores to implement source level single stepping.



3. Application to Embedded Software Development 67

3.5 Implementation

This section discusses the implementation aspects of using hierarchical virtual filesystems to

support software debugging and tracing in an SoC based embedded system. The architecture that

we present uses filesystem building blocks presented in Chapter 2 to implement a hierarchical

filesystem model that respects the relevant constraints and needs of the embedded domain, while

enabling software debugging and tracing through a file based interface. we outline what these

constraints and needs are and how our architecture is influenced by them.

Design objectives

In the workstation world, a distributed 9P filesystem is implemented by deploying ’standard’

fileservers - either using operating system services or with standalone user level implementations

- across the network constituting the distributed system. In the embedded domain however, this

technique cannot be directly applied because of the resource constrained nature of the devices.

Our primary design objective is adapt the distributed filesystem model for the embedded domain

which implies recognizing and respecting the differences in computational capabilities of devices

down the hierarchy of an embedded system. Correspondingly the various filesystems that execute

at different hierarchy levels differ in sophistication.

The filesystem model in its basic form uses a request-response mechanism, wherein a client in-

vokes a file operation (request) which is processed by a (possibly remote) filesystem, and the result

of the operation sent back to the client as the response. The interactions of tools such as debuggers

and trace port analyzers with an embedded device do not necessarily follow this paradigm. As an

example a read on an events file to detect breakpoint or watchpoint hits may take an arbitrary time

to complete depending on when the event of interest occurs. The filesystem cannot always afford



3. Application to Embedded Software Development 68

to block while waiting for these events to occur and this might lead to starvation of other incoming

requests. The architecture needs to provide an acceptable means for handling such operations.

Another design objective is to use hardware to support filesystem implementation within the

support processor. Use of hardware such as DMA can reduce the computational burden on the

support processor while implementing the filesystem. Debug functionality implemented in soft-

ware within the filesystem can be offloaded to hardware, as is often done with coprocessors. Using

hardware adaptors , the support processor can expose standard interfaces [51, 62] to cores thereby

facilitating their integration with the on-chip filesystem infrastructure.

An essential requirement on the workstation side is for tools such as debuggers and trace port

analyzers to be able to use filesystem abstractions to interact with the corresponding embedded

systems with ’acceptable’ porting effort. While it is hard to generalize as to what constitutes being

acceptable, the objective to is to avoid introducing low-level, filesystem related functionality within

these tools, with the intention of making use of the filesystem approach minimally intrusive.

Architecture Layout

[CHG:embed-arch]The distributed filesystem architecture used to support embedded software

development - shown in Figure 3.4 - uses a hierarchy of filesystems at chip and system levels that

work together to support software development tasks for the system at large. The filesystems are

based on the building blocks presented in the Core Technologies chapter 2 and vary in capabilities

according to the level in the hierarchy they execute in.

At the core of the architecture is the embedded filesystem (EFS) that encapsulates an SoC de-

vice using a file interface. EFS is the filesystem in closest proximity to the hardware and exports

a namespace that potentially supports debugging, tracing, configuration and monitoring of the



3. Application to Embedded Software Development 69

Embedded Filesystem
(EFS)

Embedded Filesystem
(EFS)

Host File System

Host Application
or

Host side

Embedded Side

HW HW HW

Figure 3.4: Architecture

processors within the SoC. The EFS is implemented in a designated processor core within the SoC

known as the support processor, that may in addition be used for supporting the device’s core

functionality. In non SoC based systems, the EFS can be implemented within an equivalent basic

design unit such as a circuit board.

Our implementation of the embedded filesystem is based on the EFS building block presented

in Chapter 2. Each resource (cores) being abstracted has a corresponding directory within the EFS

namespace. Processor resources provide files enabling workstations based tools to control their

execution and to expose their internal state. Operations performed against these files are translated

by the EFS into requisite operations on the debug interface corresponding to the targetted processor.

Multiple EFS instances at the SoC level are composed at the system level using mount filesystem

blocks (MFS) presented in Chapter 2. In an SoC based system, EFS units may be exported by each

of the SoCs, which are integrated by an MFS block implemented at the board level. The EFS and



3. Application to Embedded Software Development 70

MSF blocks in conjunction are naturally able to capture the hierarchical structure implicit in several

embedded systems by representing them using a hierachical filesystem abstraction.

In our work, the EFS and MFS filesystems are mounted within the operating system namespace

on the host side using the 9P to Fuse bridge described in Chapter 2. This enables debug and trace

tools to control and access internal state of embedded devices through common file operations per-

formed against the files in the global namespace. While existing implementations of the these tools

would have to be modified to reflect this change, 9P protocol and transport layer specific details

would not have to be introduced as they would be localized within the bridge. The modifications

and additions are therefore clean and minimal.

Discussion

The implementation of debug and trace support using virtual filesystems exploits the thin

server-rich client scenario found in systems targetted by our work. Servers execute on embedded

adest-devices with constrained computational, memory and communication resources. Clients in

the form of debugging, trace and programming tools execute on workstations which have more

abundant resources. In recognition of this difference, server complexity is reduced by transferring

resource intensive aspects of various operations to the client side.

An application of this strategy is in providing event monitoring capability through the filesys-

tem. As described earlier, supporting event monitoring by having a read request block until the

event occurs is acceptable only if other requests can continue to be processed in the meantime.

This would however require use of either multi-threading to process each request individually or

explicit storing and subsequent processing of the request, both of which consume memory . Our so-

lution supports event monitoring through a two stage process, whereby clients first register for an

event and then periodically poll an event file to check for its occurrence. This technique - based on



3. Application to Embedded Software Development 71

pull semantics - relieves the embedded server side of event notification responsibilities and instead

transfers the responsibility of discovering about the event to the client side. The approach is used

to support breakpoint functionality during software debugging as illustrated using a prototype

presented in Section 3.6.

A key advantage of the filesystem approach is that each processor may independantly choose

a desired level of abstraction corresponding to the file interface it implements. As described in the

Application section ??, chip providers can use this ability to choose the appropriate level of EFS

abstraction in order to design for simplicity, for providing uniform debug interfaces among het-

erogeneous processors and to conceal processor debug interface usage information from external

tools.

The 9P protocol used for providing RPC functionality within the filesystem framework is well

suited for implementing the EFS. The maximum length of 9P messages is fixed at 8192, and can be

reduced further by appropriate usage semantics such as restricting data count of write and read

operations. The protocol supports multiple outstanding messages by its use of messages tags that

enable requests to be matched to their corresponding responses. This allows multiple cores to be

simultaneously debugged through the filesystem. Since the 9P protocol is transport independent,

filesystems can be exported over a variety of physical links available to the SoC it resides in, in-

cluding ethernet, USB or even on-chip JTAG scan chains used in conjunction with a higher level

framing protocol like HDLC.

In any particular implementation, it is not necessary to include all the pieces in the system

architecture. In simple systems requiring just a single EFS for instance, a useful improvization is

to leave out the MFS block implementing filesystem abstractions at the system level. Instead, the

EFS can be directly mounted on the host side and used by application software to interact with the

embedded side.



3. Application to Embedded Software Development 72

3.6 Application to Debugging

In the next two sections, we use our filesystem infrastructure to perform embedded software

debugging and tracing. We present prototypical applications that capture the salient features of the

model and enable debug and trace operations through file interfaces. Debugging code on a pro-

cessor requires mechanisms to access and modify registers and memory, to start and stop the pro-

cessor, and to enable and disable breakpoints (watchpoints). Using a prototype, we illustrate use

of the filesystem model to enable concurrent debugging in a heterogeneous multi-processor envi-

ronment. Apart from demonstrating support for the mentioned “run control” capabilities through

conventional file operations, objectives behind implementing the prototype are to illustrate other

benefits associated with using the filesystem approach, namely:

• providing internal visibility through file interfaces

• creation of a logical interface that is independent of hardware layout

• presenting interfaces at different levels of abstraction to conceal proprietary debug interfaces

and manage complexity across the system

• managing heterogeneity among on chip processor cores by means of uniform file interfaces

• use of a compositional file based interface to access various levels of the system hierarchy

Prototype Setup

Our prototype, shown in Figure 3.5, represents a heterogeneous, multi-processor embedded system

for which a filesystem abstraction is implemented locally and exported over a communication link.

The objective of the exercise is to use the filesystem abstraction to enable concurrent debugging

of software executing on the various processing elements within the system. The system platform



3. Application to Embedded Software Development 73

consists of two dissimilar processors in the form of microcontrollers from Texas Instruments and

Philips belonging respectively to the MSP430 and LPC product families; these devices are concur-

rently debugged on a workstation using the exported filesystem interface. The microcontrollers are

based on processors with different architectures and debug interfaces. The LPC device is based on

a 32-bit ARM core and offers an ARM-specific EmbeddedICE debug interface, while the MSP430

is based on a custom RISC architecture with a proprietary JTAG based debug interface. While the

prototype is not a true system on chip environment, in being a heterogeneous, multi-processor

environment it possesses the salient features of SoCs targetted in our work.

An embedded filesystem (EFS) encapsulating the two processors implements a filesystem ab-

straction for the prototype. The filesystem is implemented using a 32-bit soft processor from Altera

named Nios residing within an FPGA. The EFS is exported using the 9P protocol over a serial

connection, though our other prototypes have used radio and USB for exporting 9P based filesys-

tems. On the host side debuggers for the two microcontrollers use the filesystem interface to debug

software on the respective parts.

Filesystem Implementation

The filesystem implementation is based on the general technique for building EFS filesystems out-

lined in Section ?? of Chapter 2. The namespace exported by EFS to the host side is listed below:



3. Application to Embedded Software Development 74

MSP430

JTAG

LPC2214

ICE

    bridge

Fuse

gdb proxy
home/fuse−EFS/mspdir

file
  operations

home/fuse−EFS/armdir

MSP430−GDB ARM−GDB
socket communication

9P−to−Fuse
u
n
i
L

x

kernelspace

userspace

uart FPGA

9P over serial

4
[TDI, TDO, TMS, TCK]

Embedded Side

Host Side

fs−core

/root
mspthrd

/armdir
armthrd

iothread
EFS

support processor

/mspdir

Figure 3.5: Prototype for Debugging

/EFS

/mspdir

registers

memory

status

control

/armdir

registers

memory

status

control



3. Application to Embedded Software Development 75

The filesystem captures the multiple heterogeneous debug interfaces among the two processes

using identical file abstractions. The EFS namespace also illustrates use of file representations to

compose individual device interfaces to create higher level ones at the system level. This is triv-

ially done by organizing device directories for each processor as subdirectories within a common

system level debug directory. The resulting system interface represented by the larger directory is

isomorphic to the individual devices’ interfaces represented by the two subdirectories. This iso-

morphism allows similar tools and techniques to be used to interact with various levels within the

system hierarchy.

The EFS namespace is built by specifying directory layouts for each of the two devices using

Dirtab structures as shown below:

const Dirtab armtab[]={

{".", Qtop, Qtop, PDIR | P_READ},

{"registers", Qregisters, Qtop, P_RDWR},

{"memory", Qmemory, Qtop, P_RDWR},

{"status", Qstatus, Qtop, P_RDWR},

{"control", Qcontrol, Qtop, P_RDWR}

};

const Dirtab msptab[]={

{".", Qtop, Qtop, PDIR | P_READ},

{"registers", Qregisters, Qtop, P_RDWR},

{"memory", Qmemory, Qtop, P_RDWR},

{"status", Qstatus, Qtop, P_READ},

{"control", Qcontrol, Qtop, P_WRITE}



3. Application to Embedded Software Development 76

};

Each line in the table defines a Dirtab element and represents one file/directory in the device di-

rectory. The entries list file name, unique file identifier, parent directory identifier and Unix style

permissions which also specify whether the entry is a directory. Qtop, Qregisters etc. are unique

integral identifiers for the various files in the table.

Our EFS implementation provides handlers defining the filesystem behaviour when supported

file operations are performed against files in each device directory. The core filesystem handles the

generic operations of attach, clone, clunk, and open, while device specific handlers are defined for

read and write operations on MSP430 and LPC devices. Stackless pseudo threads are responsible

for various aspects of the EFS implementation as given by I/O, buffer management, core filesystem

operation and for serving device specific requests relating to the two devices within the system. The

approximate size of machine code in the filesystem binary corresponding to these threads is listed

below:

Thread Code Segment Size(bytes)

Input/Output 1500

Buffer Mgmt 300

Core Filesystem Impl. 21000

LPC device 29000

MSP device 41000

The predominant contributors to the filesystem code size are the device threads. The rest of

the implementation including core filesystem functionality, I/O and buffer management takes up

about 25KB of code space, which is less than one third of the total size. This implies that by simpli-

fying device thread logic it is possible to significantly reduce the filesystem size, thereby enabling



3. Application to Embedded Software Development 77

its implementation in devices with less memory.

On the workstation side the EFS is mounted within Linux by use of the 9P-to-Fuse bridge

described in detail in Section 2.5 of Chapter 2. The bridge allows the remote EFS filesystem to

be mounted locally within the Linux namespace using Fuse by forwarding all file operations on

mounted filesystem as 9P requests to the EFS. As described earlier, techniques exist [90] [103] to

similarly mount 9P filesystems within other popular operating systems such as FreeBSD and Win-

dows. In our prototype, the mounted EFS namespace on the workstation side is used by debugger

proxies to indirectly enable MSP and ARM debuggers to access their respective processors during

software debugging. Proxies based on the filesystem model offer advantages over those imple-

mented in traditional ways in terms of portability, reusability, support for multi-processor scenarios

and concealment of embedded system design details as elaborated upon in the next section.

Debugger Hardware Access

In the embedded domain it is standard practice for debuggers to access embedded processors in-

directly through debugging proxies. This allows the debugger implementation to be kept indepen-

dent of the mechanism for accessing hardware. Debuggers interact with their respective proxies

using a messaging protocol such as GDB’s Remote Serial Protocol [?] or ARM’s proprietary RDI

protocol which capture the various debugger-processor interactions. Debuggers issue standard de-

bugging requests which are then completed on their behalf by the proxies using debug interfaces

available for accessing processor hardware.

The proxy model has two significant drawbacks when used with JTAG based processor debug

interfaces. First proxies need to be aware of the usage of the available JTAG interfaces to perform

various debug operations. To conceal implementation details, processor designers necessarily have

to distribute debugger proxies as binaries and maintain confidentiality of the original source code



3. Application to Embedded Software Development 78

or run the risk of disclosing details of the processor’s internal architecture. Another drawback is

that since different devices (processors) typically provide dissimilar JTAG interfaces - in structure

and or usage - it follows that a different proxy need to be used for each device, which makes the

approach unwieldy for heterogeneous multi-processor systems.

In our prototype, a single proxy enables GDB based debuggers for both the LPC and MSP ar-

chitectures to concurrently interact with their respective devices on the embedded side. Since the

filesystem namespaces for both devices are similar in form and function, the same proxy implemen-

tation can be used to access either of them by simply changing the part of the filesystem namespace

against which it operates. Consider the retrieval of register values from the target side, an opera-

tion requested by either of the debuggers and supported by the proxy. The proxy implements this

functionality by means of a generic register_read function (partly shown in Listing 3.1 below)

which when invoked with the prefix path to a device directory, retrieves register values from the

appropriate device. The prefix variable specifies the device directory path while registerindex speci-

fies the index of the register being read, which in turn in used as the offset of the read operation.

Listing 3.1: Implementing register read within debugger proxy

s p r i n t f ( r e g i s t e r f i l e p a t h , ‘ ‘ % s/ r e g i s t e r s ’ ’ , p r e f i x ) ;

r e g i s t e r s f d = open ( r e g i s t e r f i l e p a t h , O READ ) ;

l s e e k ( r e g i s t e r s f d , r e g i s t e r i n d e x , SEEK SET ) ;

r e t v a l = read ( r e g i s t e r s f i d , r e g i s t e r s v a l , 8 ) ;

Use of a shared proxy allows hetergeneous multi processor systems to be debugged using a

single communication link/port, unlike in traditional approaches where potentially multiple de-

bugging ports (JTAG and BDM) may be required. Both the EFS filesystem and the 9P protocol



3. Application to Embedded Software Development 79

support multiple outstanding requests to be issued from the client side, which allows the debug-

gers to make requests concurrently without getting in each other’s way.

Implementation of the proxy using the EFS interface is straightforward because of the natural

mapping between request types in the GDB Remote Serial Protocol (RSP) and capabilities available

through the EFS . Also, RSP uses the request-response mode of operation as does the filesystem.

The proxy communicates with the LPC and MSP gdb debuggers through network sockets on which

RSP messages and responses are exchanged. RSP messages supported in our filesystem proxy can

be divided into four categories, namely: read/write of registers, read/write of memory controling

and checking execution. They together provide debuggers with the necessary capabilities to debug

software remotely executing on an embedded system.

Handling of register read requests was described earlier. The register file in each device direc-

tory when read at the offset corresponding to the index of the desired register returns the register

contents in hexadecimal as a series of characters numbering twice the length of the register in bytes

(since a byte takes 2 hex characters to be represented). Since the data is returned as text no byte

order issues need to be addressed. Conversely, during register writes, the value being written is

converted to a string and written to the register file at the appropriate offset, as shown in Listing 3.2

below:

Listing 3.2: Implementing register write within debugger proxy

i n t w r i t e r e g i s t e r s t o t a r g e t ( uint32 wri teval , i n t r e g i s t e r i n d e x ) {

s p r i n t f ( r e g i s t e r f i l e p a t h , ‘ ‘ % s/ r e g i s t e r s ’ ’ , p r e f i x ) ;

r e g i s t e r s f d = open ( r e g i s t e r f i l e p a t h , O WRITE ) ;

l s e e k ( r e g i s t e r s f d , r e g i s t e r i n d e x , SEEK SET ) ;

temp [ 0 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF0000000 ) > > 28) ;

temp [ 1 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF000000 ) > > 24) ;



3. Application to Embedded Software Development 80

temp [ 2 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF00000 ) > > 20) ;

temp [ 3 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF0000 ) > > 16) ;

temp [ 4 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF000 ) > > 12) ;

temp [ 5 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF00 ) > > 8) ;

temp [ 6 ] = n i b b l e t o c h a r ( ( wr i teva l & 0 xF0 ) > > 4) ;

temp [ 7 ] = n i b b l e t o c h a r ( wr i teva l & 0 xF ) ;

wri te ( r e g i s t e r s f d , temp , 8 ) ;

}

Reads and writes to memory are handled similarly to the registers case. Proxies perform mem-

ory operations by reading or writing data to the memory file, using the offset to specify the memory

address for the operation. With the EFS being implemented in a resource constrained processor, the

filesystem write/read buffers are much smaller than the memories associated with each of the mi-

crocontrollers. The proxy explicitly ensures that the size of data being written/read is smaller than

the EFS buffer sizes and chops up large sized operations into a series of smaller ones. While mem-

ories inside these microcontroller devices often have requirements on the alignment of addresses

based on the size of data being written/read, the issued is handled locally by the EFS, thereby

saving the proxy from having to deal with it.

Control operations supported by the proxy enable debuggers to start and continue execution,

single step, and set/clear breakpoints. The operations are performed by writing control commands

in the form of strings to the control file. For sake of simplicity, the commands supported by our EFS

are a single character in length, listed as ’c’, ’s’, ’b’, ’r’ refering respectively to the four operations

mentioned above. Implementation of single stepping is shown in Listing 3.3.

Listing 3.3: Implementing single step within debugger proxy



3. Application to Embedded Software Development 81

s p r i n t f ( c o n t r o l f i l e p a t h , ‘ ‘ % s/ c o n t r o l ’ ’ , p r e f i x ) ;

c o n t r o l f d = open ( c o n t r o l f i l e p a t h , O WRITE ) ;

r e t v a l = wri te ( contro l fd , ‘ ‘ s ’ ’ , 1 ) ;

i f ( r e t v a l < 1 )

return −1 ; /∗ u n a b l e t o s i n g l e s t e p ∗ /

while ( ! ( i s h a l t e d ( ) ) )

usleep ( 1 0 0 ) ;

}

The device status execution is determined by reading the respective status files, which returns

one of two single character status strings, namely : h or r indicating ’halted or ’running’ states.

Breakpoints use the previously described stategy of implementing event notification through syn-

chronous means. After setting breakpoints by writing the [b]reak command to the control file along

with an associated address, debuggers check for breakpoint hits by repeatedly reading the status

file until the ’halted’ state is indicated.

Partitioning Functionality

Unlike with JTAG based debugger proxies, the implementation of filesystems based proxies does

not reveal information about hardware internals of the devices being debugged. The proxies can

thus be distributed freely without fear of compromising proprietary architecture information. This

property of the proxy is derived from the presence of a ’rich’ EFS which exposes a high level func-

tional namespace tailored to readily enable macro debug operations such as register access and

control of execution. The ’intelligence’ behind these operations is concealed within the EFS, which



3. Application to Embedded Software Development 82

has the result of increasing the complexity of the filesystem implementation as evidenced by the

size of device-specific part of the filysystem binaries. Given the resource constained nature of em-

bedded systems imposing this complexity may not be always acceptable. In order to manage com-

plexity while implementing distributed filesystem abstractions, our model allows functionality to

be partitioned among various levels of the system hierarchy. We illustrate use of this ’split filesys-

tem’ approach in the prototype to partition debug functionality between the host and embedded

sides.

Being able to partition functionality is useful for reasons other than managing complexity as

well. In SoCs containing cores with proprietary debug interfaces, the split file system approach can

conceal details regarding use of these interfaces within the EFS implementation. It is possible to

support time critical operations such as flash programming by implementing them within the EFS

to meet latency requirements, as opposed to controlling them from the host side. Conversely, com-

plexity of some operations may make them too heavyweight for being fully implemented within

the EFS, thereby requiring them to be implemented on the host side. The ’split filesystem’ approach

offers the flexibility to expose interfaces at different levels of abstraction in order to address these

issues.

As part of our prototype, we present three implementations of the MSP section of EFS, each

representing a different partitioning of functionality between the host and embedded sides. These

partitionings are based on software libraries available for debugging MSP430 devices using JTAG.

The libraries may essentially be divided into two sets of routines. A set of high level routines

(henceforth known as JEL for JTAG Emulation Library) is responsible for high level debug opera-

tions. JEL is built on top of a set of core functions (known as HIL for Hardware Interface Library)

which provide the basic infrastructure for reading and writing JTAG registers and signals. The

organization of these routines is illustrated in Figure 3.6.



3. Application to Embedded Software Development 83

Initialize Run

Host Application

TMS R/W

TDI R/W

H
I
L

J
E
L

Memory
R/W

Register
R/W

TCK R/W
jtagDR
R/W

jtagIR
R/W

JTAG Port

MSP430 microcontroller

Figure 3.6: SW Routines for JTAG Emulation

Conventional debugging approaches used in practice implement both the JEL and HIL on the

host-side with the HIL routines accessing the JTAG pins on the remote embedded device through a

simple connector such as a parallel cable. This rigid partitioning necessarily confines all the debug

functionality to the host which can be extremely limiting. Using the three implementations of the

prototype we describe three contrasting partitionings of JEL and HIL between the EFS and host

application, thereby demonstrating the superior flexibility offered by our approach.

EFS-centric partitioning: This type of partitioning is the basis of the filesystem implementa-

tion presented earlier in this section and implements both the JEL and HIL functionality within the

EFS. The embedded side exports a rich file interface with files to directly control execution, access



3. Application to Embedded Software Development 84

registers/memory and check execution status. Such a partitioning conceals from the host details

regarding the use of the in-system debug interfaces (JTAG in this case) by encapsulating the infor-

mation within the EFS. Also, each high level operation (such as register read) involves a small file

operations (reading the registers file) on the EFS. This results in minimal communication between

the host application (such as debugger proxy) and the EFS thereby delivering good performance.

However, the partitioning imposes considerable demands on the support processor, since the EFS

contains a majority of the MSP device debug functionality. Using such a partitioning, size of MSP

device logic with the EFS executable was about 41 KB, which (as shown shortly) is considerably

bigger than the size for other cases.

Host-centric partitioning: A contrasting approach is to implement a lightweight EFS based on

just the HIL that provides access to processor JTAG signals (TDI, TMS, TCK & TDO) and registers

(JTAGDR & JTAGIR) through its namespace. The heavyweight JEL routines, implemented on the

host side, access the MSP device JTAG interface through the EFS. The advantage of this approach

is the limited complexity of the resulting EFS implementation. The size of the MSP part of EFS

executable for this partitioning was less than 7KB, which is significantly less than the previous

case. The disadvantage is that each high level operation (such as register read) involves numerous

file operations on the EFS which compromises performance. Such a partitioning is best suited when

dealing with lightweight embedded systems with limited computational and memory resources.

Hybrid Solutions: The two types of partitionings described represent the extremes where the

debug functionality resides predominantly on either the embedded or the host sides. They reflect

the tradeoff that exists between limiting EFS complexity and deriving acceptable performance. For

most applications the optimal partitioning is a hybrid that lies somewhere between these extremes,

that takes into account the requirements of the particular design. Using the hybrid model, select

operations (such as flash programming) can be pushed down to the EFS to meet their specific needs



3. Application to Embedded Software Development 85

(such as timing requirements). An optimal set of operations would provide the greatest improve-

ment in performance while imposing acceptable memory and computational requirements. The

selection process can draw from the design of instruction sets for lightweight virtual machines

[109] [79] and is in general guided based on frequency of use, latency for communication with host

and availability of computational resources on the embedded side.

Optimizations

Splitting functionality between the host application and the EFS provides opportunities for opti-

mizations, one of which we implemented on top of the host-centric partitioning model. It may be

recalled that in this partitioning the EFS exports a basic filesystem that provides access to JTAG sig-

nals and registers through its namespace. The most common operation performed on host involves

writing values to the two JTAG registers, namely JTAG Data Register (JTAGDR) and Instruction

Register (JTAGIR) through the EFS. Each time a value is written to one of these registers by shifting

it in through the scan chain, a value is simultaneously shifted out, which can be thought of as the

return value of the operation. However the value that is shifted out is rarely used. A check of the

JEL reveals that the value shifted out is used about 15% of the times, which means in most cases it

can be discarded.

Based on the relative infrequency with which the shifted out value is used, we designed an op-

timization whereby individual writes from the host side to these registers are buffered up by the

GDB proxy until an operation required the shifted out value. Then all the buffered write opera-

tions are sent together as one request to the EFS which unrolls it and executes the writes serially.

The values being shifted out on all except the last write operation are repeatedly overwritten by

subsequent writes. Once the writes complete, the value shifted out in the last write is read back

through the EFS. Implementation of the optimization resulted in a five fold improvement in per-

formance for memory read and write operations as compared host-centric partitioning approach.



3. Application to Embedded Software Development 86

The namespace exported by the EFS when using this partitioning changes as follows:

/EFS

/mspdir

cmd

jtagDR

jtagIR

/armdir

......

Write operations are buffered by the proxy and ultimately written to the cmd file. The jtagDR

and jtagIR files may then be read to retrieve values shifted out in the last write operation to the

respective registers in the sequence.

Performance

We compared the performance of the prototype using EFS-centric partitioning with the standard

approach used for MSP430 debugging based on host resident software communicating with the de-

vice JTAG interface through a parallel connection. The table below shows the latencies for memory

access, single stepping and the observed rate of data writes to flash for the two cases.

Our Prototype Std. Approach

Memory Access 1 millisec. 7 millisec.

Single Step 750 millisec. 770 millisec.

Load code to flash 1330 bits/sec 4110 bits/sec

Our approach performs better during memory access and single stepping than the standard

approach. For writing to flash it is slower by about a factor of 3. we suspect that the cause for this

inferior performance is the algorithm that GDB uses when writing an executable to flash, whereby



3. Application to Embedded Software Development 87

it chops up the entire code into parts and loads these one after the other resulting in increased file

operations. This can be remedied by implementing loading strategies with better loading strategies.

3.7 Application to Tracing

A second application of the filesystem infrastructure in the context of embedded software de-

velopment is to support in-system tracing. Tracing is the process of generating traces of relevant

runtime characteristics of a system over a period of execution. Traces provide a means to analyze

system execution in a minimally intrusive manner. Tracing is especially important in the embedded

domain where use of conventional debugging techniques (such as breakpoints) may be unsuitable

as systems operate with realtime constraints and in environs where operation of surrounding enti-

ties cannot be finely controlled [23].

Many popular embedded architectures including those from Motorola [8] and ARM [2] pro-

vide support for tracing executed instructions and memory data accesses (respectively known as

instruction and data traces). Triggers define the circumstances when tracing is enabled; they are

specified typically based on memory access within address ranges, execution of specific opcodes

and processor exceptions. In addition to triggers, trace infrastructure in processors often includes

filters that enable the user to specify the data that needs to be collected after triggering. Configu-

ration of trace triggers and filters is typically done through JTAG based mechanisms. Traced data

is either streamed ’live’ off chip through trace ports or stored locally in trace buffers and retrieved

later. When trace data is stored locally, the same physical connection used to configure the trace is

reused to retrieve trace data as well, while with streamed traces a separate higher bandwidth link

is used.

The problem with this approach is that it scales poorly for heterogeneous, multi-processor SoC



3. Application to Embedded Software Development 88

devices. The trace trigger, filter and buffer in combination are often implemented within a dedi-

cated trace module. In a multi-processor scenario each processor requires a unique trace module

with its own interface and trace buffer. Further, as with debug interfaces considerable differences

exist with respect to mechanisms and protocols for controlling and accessing the trace data gen-

erated among heterogeneous cores, thereby limiting the portability of trace tools. The goal of this

work is to implement a system-wide trace interface that allows configuration and access of multi-

ple, heterogeneous processor traces through uniform file operations, while sharing the trace buffer

and interface among them.

While our implementation focusses on instruction level tracing, other forms of tracing are ac-

tively used in the embedded domain as well. Instruction level traces have the disadvantage of

being potentially too low level, thereby rendering considerable amount of data which makes it

hard to identify high level events within them and to correlate across traces from multiple sources.

An alternative is to use traces of system level events such as context switches, bus operations etc.,

which present data associated with system operation at a higher level of granularity. These traces

are particularly useful in multi-processor environments [122] for resolving concurrency related is-

sues such as lock contention, for verifying operational correctness and for performance tuning.

A technique used to generate system level event traces is through instrumentation of application

level (userspace) or operating system software [119]. Software based trace generation may impose

unacceptable delays for realtime systems, in which case a ’hybrid’ scheme [55] using hardware for

supporting tracing and monitoring may be adopted. The presented model for instruction level trac-

ing can be applied to system level event tracing as well, wherein a common file based interface is

used to configure and access multiple trace resources which generate event data collected in shared

memory buffers.



3. Application to Embedded Software Development 89

It is our objective to demonstrate how the filesystem model can support tracing within a multi-

processor SoC environment. we focus on supporting two core tasks, namely: trace configuration

and access of generated trace data generated, both enabled through the filesystem framework. we

show how the embedded filesystem implementation can be designed to support trace streams from

multiple processor sources while sharing resources such as trace buffers, configuration interfaces

and data ports among them. We shall also illustrate how the model enables system level debug

features to be built using those provided by the individual processor cores. The ideas are presented

using a prototype consisting of a multi-processor system from within which multiple trace streams

are exported and configured through a unified file interface.

Prototype

The trace prototype models a dual processor SoC within which a filesystem abstraction is imple-

mented and exported as shown in Figure 3.7. Each of the processors in the system are of the 32-bit

ARM7 core family and are implemented using the Armulator instruction set simulator [4]. Choice

of simulated processors was based on the complexity of support hardware required for using trace

on real ARM cores. Two instances of the simulator execute as separate processes, representing

the cores within an actual system. The embedded filesystem implementation executes as a third

process and would be implemented within a support processor in a ’real’ implementation as is

customary in our model.

[CHG:armul]The ARM simulator was modified to generate a trace stream by outputting ad-

dress of instructions as they are executed. A combination of the use of simulator based trace sources

and our concious decision to keep the prototype simple implied that certain intricacies associated

with conventional trace solutions are not addressed as part of our work. In order to limit the

amount of generated trace data, conventional trace solutions include only indirect branches and



3. Application to Embedded Software Development 90

filesystem
   logic

trace buffer

trace logic

filesystem exported

core1

support processor

pipe pipe

trace configuration

core2

Figure 3.7: Prototype for Tracing

indirect calls in the outputted trace rather than the full address of every executed instruction, with

linear execution being assumed otherwise. While our prototype currently traces out every exe-

cuted instruction, the filesystem architecture can be extended to output only the required instruc-

tions during tracing by implementing the necessary functionality within the support processor

trace logic. Certain trace solutions enable timing characterstics to be deduced using trace output.

ARM ETM offers this capability by using a realtime pipeline status port (PIPESTAT) in addition

to a higher latency trace data port. By corelating the two, trace analyzers are able to deduce the

exact timing information associated with code execution. Use of the instrumented Armulator tool

implies that cycle accurate pipeline information is unavailable to our filesystem block. Therefore

no timing information is presented as part of our trace.

The transfer of trace data between the filesystem and each instance of the simulator occurs over

a pipe. In real systems, dedicated point-to-point signals are used to provide trace blocks with access

to processor execution information. The filesystem implementation in our prototype is based on



3. Application to Embedded Software Development 91

our EFS block, and in addition contains trace logic that maintains configurable triggers and a trace

buffer to store the incoming trace data. The trace logic and filesystem core are implemented as

separate threads within the filesystem process that access a shared trace buffer implemented as a

large array. Upon receiving trace data from any of the in-system processors through their respective

pipes (monitored through select operations), if the data conforms to any of the active triggers

then the trace logic adds it to the trace buffer along with the associated metadata. In this work, the

metadata consists of two pieces of information that includes: whether the data is a continuation

of an earlier sequence of instructions or start of a new instruction sequence, and the identifier

corresponding to the core to which the trace data belongs. Trace data is accessed by reading files

in the exported namespace, in which event it is retrieved from the trace buffer by the filesystem

core and returned to the user. Thus, a typical producer-consumer situation exists between the trace

logic and the filesystem core.

In an actual SoC, the filesystem would be implemented within a support processor inside the

SoC. Triggers are implemented using dedicated hardware blocks such as Coresight Embedded

Cross Trigger [3], which apart from providing single processor triggers can also facilitate system

level tracing through support for cross triggering. The support processor can memory map trace

logic hardware registers within its address space, which would then allow triggers to be defined

by setting these registers appropriately.

The filesystem configures the trace logic block by having the support processor memory map

trace logic hardware registers within its address space; triggers are defined by setting these registers

appropriately. Trace buffers can be implemented using memory blocks within the SoC, which is

mutually accessed by both the support processor and trace logic.

The EFS consists of a single instance of a device named tracedev that is responsible for imple-

menting file abstractions for the trace interface. The namespace supported by the tracedev device is



3. Application to Embedded Software Development 92

listed below:

/traceFS

ctl

tracedata

The ctl file is used to control execution of processors within the system as well as to configure

the trace triggers. Triggers are defined based on address ranges which when executed from within

cause collection of trace data. The ranges are specified by writing the ’trigger’ command to the ctl

file along with a processor number and an address range as shown below:

echo ’trigger 1 8100 810c’ > ctl

This triggers tracing for processor 1 whenever it executes an instruction from within memory loca-

tion address 0x8100 and 0x810c. Multiple such triggers may be defined for each of the processors

within the system.

An advantage of the file based approach is that the filesystem may be used to implement sys-

tem level debugging operations in multi-core SoCs on top of features provided by individual cores.

An example of this as described earlier is cross triggering [3], which initiates tracing of data from

multiple on-chip processors when a designated processor triggers. Our prototype supports cross

triggers, which can be set by writing the ’crosstrigger’ command to the ctl file along with the pro-

cessor number and an address range. When any of the cross triggers fires it initiates tracing among

all processors within the system.

Trace data may be retrieved through the file interface by reading the tracedata file. The data

is formatted in the form of a series of trace packets each corresponding to a single instruction

executed by one of the processors. In the event of multiple processors generating traces, the data



3. Application to Embedded Software Development 93

read out may be multiplexed with packets from different processors. The trace packet has a highly

simplified format shown in Figure 3.8.

ADDRESS
811

TIDMID

Figure 3.8: Trace Packet Format

Packets have a fixed length of 10 bytes, which makes packet processing easier [62]. Variable

length trace formats such as those used with Nexus [20], while being more complicated, provide

better compression. The Trace source IDentification (TID) field identifies the processor that gen-

erated the trace packet within the multi processor system. The Message IDentification (MID) field

identifies the packet as being either a continuation of an earlier sequence of instructions (denoted

by ’C’) or start of a new instruction sequence (denoted by ’N’). As code is executed, once a trigger

fires it generates an ’N’ type packet denoting start of a new sequence followed by a series of ’C’

packets corresponding to the stretch of execution where the trigger condition holds. The ADDRESS

field indicates memory address from which the instruction was executed in that cycle. Tracing

stops when execution moves onto a section of code that is not being traced and the whole process

repeats itself for another period of code tracing. Listing below shows traces being configured and

read for the two processors in the prototype using the filesystem interface. Trace data read off the

tracedata file shows traces for processor ’1’ over two periods multiplexed with processor ’2’ trace

data. The : and , punctuations have been added for readability.

> echo ’trigger 1 8100 810c’ > ctl

> echo ’trigger 1 8208 821c’ > ctl

> echo ’trigger 2 8100 810c’ > ctl

> echo ’go’ > ctl



3. Application to Embedded Software Development 94

> cat tracedata

N1:00008100,C1:00008104,C1:00008108,N2:00008100,C2:00008104,C1:0000810c

C2:00008108,N1:00008208,C1:0000820c,C1:00008210,C1:00008214

Discussion

The prototype illustrates three aspects relevant to using filesystem interfaces for tracing. First, it

shows how multiple trace modules may be configured and accessed using a common file based

interface that is exported over a single, generic communication link. The prototype also uses a

shared trace buffer to store trace data from multiple sources. Apart from sharing the interface and

storage buffer, our model offers the opportunity to share other resources such as trace compression

blocks across processor trace modules which makes it particularly scalable to multiprocessor SoC

devices. The second aspect illustrated by the prototype is the use of high level file operations for

trace configuration and access which makes the filesystem based approach suitable for heteroge-

neous processor cases, since the differences in mechanisms for controlling and accessing the trace

are concealed behing the filesystem implementation. Finally, the crosstrigger feature provides an ex-

ample of the use of on-chip filesystem to implement system level debug features on top of features

provided by individual cores.

Support hardware facilitates the implementation of an embedded filesystem that supports trac-

ing. Use of DMA-like components would enable the support processor to simply setup streaming

of trace data from internal trace buffers out through available communication peripherals when the

data is read externally. To enable compression of traces before they are streamed out, the support

processor may be supplemented with hardware based trace compression blocks [89]; these may

acheive compression through standard approaches such as differential compression [47] [104], or

through architecture based approaches such as value prediction [87]. To facilitate integration of the



3. Application to Embedded Software Development 95

filesystem trace logic with on-chip processor trace modules, standard interfaces for tracing [62] [20]

could be supported. In this regard, McDonald-Maiser et al. [62] propose a trace infrastructure that

includes a standardized trace interface (including signals and messaging protocol for trace data)

between processor cores and the rest of the debug support; this allows arbitrary on-chip intercon-

nects to be integrated with the trace infrastructure through use of suitable wrappers.



3. Application to Embedded Software Development 96

3.8 Related Projects

Various projects have tried to adapt JTAG for use in an SoC environment. The most basic chal-

lenge is to make an SoC with multiple cores - each with its own JTAG infrastructure - operate

as a compliant JTAG chip, which implies among other things using no additional JTAG signals.

Oakland[49] implemented compliant means to access debug registers within various cores of an

SoC by introducing an additional chip-level instruction register R0, that was a part of the scan

chain. By loading specific access codes to IR0 external tools could explicitly control the chip JTAG

behavior without the need for additional external signals. Vermuelen et al.[26] proposed a com-

pliant core access technique of their own that additionally permitted concurrent debugging. Their

approach is based on a two level JTAG module setup, one at the chip level that is daisy chained

to those at the core level. JTAG compliance is achieved by handling bypass operation as a special

case. While these approaches succeed in making JTAG better suited for the SoC domain, they suf-

fer from the basic deficiencies associated with JTAG of not being scalable or portable and exposing

proprietary knowledge about core debug interfaces[54].

The Nexus initiative[20] addresses the issue of portability in JTAG. It defines a uniform debug

interface that compliant tools and processors adhere to, so that they can be guaranteed to work

together. The physical debug port of the processors is standardized as are the interactions that take

place over it. A drawback of Nexus is that since the set of interactions are fixed in hardware, it

cannot be easily customized or extended to support other software development operations than

the ones implicitly supported. Our model in contrast uses a software based filesystem whose func-

tionality can be reconfigured, extended and customized more easily. This flexibility of a software

based filesystem can be combined with the performance and reusability of hardware based debug

adaptors to facilitate integration with existing debug and trace interfaces. Also, just as with JTAG,

Nexus uses a dedicated debug port to which physical access has to be provided externally. In



3. Application to Embedded Software Development 97

our model, debugging is enabled through interfaces exported over generic communication links as

available within the system.

While Nexus standardizes interactions between tools and debuggers, another line of work has

looked at introducing uniformity in the interfaces exposed by the cores to the rest of the SoC, in

order to promote core reuse. The IEEE P1500 standard[51] defines a methodology for equipping

cores with necessary hardware so that SoCs using them can be tested in a JTAG compliant manner.

Hokpins and McDonald-Muier[62] propose core interfaces that standardize configuration and ac-

cess of trace data in multi-core environments. Significantly, their work is not scan-chain based and

aims to decouple the SoC debug support infrastructure from the debug interfaces provided by the

individual cores. The VSIA alliance[86] addresses the larger issue of defining standards for various

aspects of system chip development including testing, verification, bus protocols, analog-mixed

design etc.

An alternative option while debugging system on chips is to use simulation. The key advan-

tage of using simulation is that systems can be debugged and tested for functionality, performance

and power without having access to hardware. Simulation also allows obscure internal state to be

accessed far more easily than in real systems. System on chip simulations are based on simulation

models [16, 4] of constituent processor cores along with those for memories, buses and peripher-

als. These models are integrated and executed in system simulation environments [34, 115] while

examining operational characteristics. The utility of simulation though, is limited to cases where

operational conditions are reproducible at the time of running the simulation.

[CHG:verification]As Dijkstra pointed out[40], software testing and debugging can help weed

out bugs existing in programs, but can never be used to prove their absence. The need for software

debugging can be obviated by use of verification techniques to write provably correct software.

However generating models that accurately model complex software systems is hard. Further,



3. Application to Embedded Software Development 98

with the shortening times to market associated with embedded products today accomodating the

additional verification step in the software development process might not be feasible or cost ef-

fective. While formal methods are an effective means of reasoning about system operation at the

algorithmic level, use of debugging techniques in conjunction is required to enable correct imple-

mentation of these algorithms.

Commercials vendors in both hardware and software domain offer tools to support system on

chip software development. ARM, a leading processor IP provider, offers processors with in-core

support for runtime debugging through a JTAG based interface known as EmbeddedICE. Select

cores provide a trace interface called ETM, that streams trace data using a dedicated trace port

while being configured through EmbeddedICE. ARM’s Coresight technology[3] provides system

level debug features such as cross-triggering and sharing of trace port across multiple cores by

leveraging debug support on individual cores. ARM’s flagship debugger named RealView sup-

ports debug of systems with multiple heterogeneous core combinations such as an ARM based

RISC core and a DSP cores. Software executing on the different processors can be simultaneously

debugged allowing for synchronized start/stop and single step operations. The debugger can use

chip cross trigger capabilities to enable breakpoint events in one core to cause multiple cores to

break execution. Technologies like Coresight form ideal building blocks for implementing ideas

presented in this chapter.

3.9 Summary

This chapter described use of the virtual filesystem technology to support debugging and trac-

ing of software executing within multi-processor embedded systems. we present a technique for

implementation of filesystem abstractions within SoC based embedded systems using building



3. Application to Embedded Software Development 99

blocks described in Chapter 2. These abstractions capture debug interfaces of the various (poten-

tially) heterogeneous processors within the system using uniform file namespaces. Motivations for

use of our approach are presented vis-a-vis limitations of existing techniques, such as the debug

interface being closely tied to hardware characteristics of the device. Advantages are illustrated by

means of prototypes for debugging and tracing that capture the salient aspects of using filesystems

to support software development for SoC based systems . The debugging prototype consists of

two hetergeneous processors in the form of ARM and MSP430 microcontrollers for whom a filesys-

tem interface is implemented locally and exported over a communication link; software on these

devices is concurrently debugged on a workstation using the exported filesystem interface. Apart

from demonstrating support for basic “run control” capabilities through conventional file opera-

tions, the prototype illustrates other benefits of this model including the ability to partition debug

functionality at different levels of the system hierarchy, being able to support debug interfaces at

different levels of abstraction and the management of heterogeneity among various on chip pro-

cessor cores. The prototype for tracing demonstrates use of our filesystem model to implement

a system-wide trace interface that allows configuration and access of multiple processor traces

through uniform file operations. Since the on-chip resources for implementing tracing, such as the

trace buffer and trace interface are shared among the processors, the approach naturally scales to

support multi-processor systems.



4

Application to Sensor Networks

100



4. Application to Sensor Networks 101

In this chapter we describe use of our virtual filesystem framework for use and deployment

of sensor networks. Sensor networks are distributed collections of heterogeneous, resource con-

strained sensor nodes used for monitoring and environmental data collection over large geograph-

ical areas. Availability of lightweight abstractions for sensor networks allows applications to be

developed unmindful of low level sensor issues. we present a distributed virtual filesystem based

abstraction that provides a common, scalable and high level interface for enabling various sensor

related operations.

4.1 Introduction

Inexpensive low-power processors and wireless transceivers have made creation of widespread

networks of sensor nodes possible. These networks have been used for data acquisition and mon-

itoring purposes in diverse application domains including ecology, security and structural engi-

neering as a cost-effective means of observing large areas[22, 76, 12]. Our objective is to design a

distributed filesystem architecture for sensor networks that caters to requirements associated with

the network use and deployment while being compatible with the structural characteristics of the

devices within the network. Using the filesystem framework, we focus on facilitating two appli-

cation scenarios in which sensor networks are commonly used, namely - sensing and recording

information relating to ambient conditions and event detection and notification for monitoring

purposes. In recognition of the unequal computational capabilities of devices within the network,

the filesystems distributed across the network vary in sophistication as do the protocols used to

interact among them.

In addition to its use during network operation, the virtual filesystem infrastructure can be



4. Application to Sensor Networks 102

reused during configuration and deployment phases. Heterogeneity among sensors within a net-

work requires software to be manually configured to suit sensor architectures before compilation,

and resulting binaries to be deployed using programming mechanisms appropriate to the various

sensors again chosen manually. Using our approach in contrast, virtual filesystems implemented

within the network enable extraction of sensor architecture information using file operations. Simi-

larly sensors can be programmed by ’copying’ binaries to their file abstractions, thereby saving the

end user from having to keep track of intricacies and variations in programming techniques.

On the workstation side, we provide mechanisms to mount sensor filesystems within names-

paces of popular desktop operating systems such as Linux and Windows. This opens up opportuni-

ties to use conventional tools and techniques such as GUIs, spreadsheets, and project configuration

tools such as ’make’ with sensor networks without having to implement overlying middleware

between the tools and the network. Researchers using sensor networks who have limited exper-

tise in computer science would especially benefit from being able to access the network through

conventional tools described above.

The chapter is organized as follows. we start by discussing the significant structural and func-

tional aspects of sensor networks that influence our work. we then introduce the idea of using file

representations with sensor networks and describe how the abstraction facilitates network usage

and deployment in our model. Our implementation for realizing distributed filesystem abstraction

within sensor network architectures is then presented. This is followed by an overview of related

sensor middleware techniques that share similar objectives to our work. we conclude by presenting

a basic evaluation of the implementation.



4. Application to Sensor Networks 103

4.2 Sensor Networks Background

The large numbers in which sensor nodes within networks are deployed requires the cost of

individual sensor nodes to be economized. Sensor node cost is controlled by optimizing the set of

included resources, and even the resources that are present are minimalistic. Typical sensor plat-

forms from popular vendors such as Crossbow[126] and Moteiv(telos), for instance, use processors

operating at clocks speeds less than 20MHz with a few 10s of KB of available RAM. In addition to

the processor, a sensor node contains a set of sensors (probably as a sensor array) as required by

the application, signal processing hardware and a wireless transceiver with limited range.

Our work is based on the cluster based model[59] where the entire sensor network is divided

into distinct clusters of sensor nodes. Each cluster is managed by a cluster head node, which has

superior computational and networking resources as compared to lightweight sensors constituting

the cluster. A cluster head class device from Crossbow known as Stargate, used with the sensor

nodes described earlier is based on a 400 MHz Intel XScale processor that has 64MB of RAM at its

disposal. Cluster based sensor networks use software at the sensor and cluster head levels which

work in conjunction with data analysis, network monitoring and configuration tools at the worksta-

tion level to provide network functionality. Software at each level has to respect the computational

and memory constraints relevant to the entity it is executing on.

Two scenarios in which sensor networks are commonly used are for passively recording infor-

mation relating to ambient conditions relating to soil, atmosphere etc., and for actively monitoring

wide areas for surveillance, operational correctness, and disaster detection purposes, sometimes

deployed in conjunction with a respond system. These usages may respectively be categorized as

relating to data-centric and event based applications. Data-centric applications use the network

as a data source from which sensor readings are retrieved either individually or aggregately by



4. Application to Sensor Networks 104

workstation based applications. In event based applications, monitoring tools executing on work-

stations define events of interest within the network based on sensor readings, and get notified

as and when the events occur. An example of such an application is the use of widely deployed

temperature sensors to detect forest fires[24].

Sensor networks posses certain defining architectural and usage characteristics that make them

different from conventional distributed computational systems. The networks typically comprise a

diverse set of hardware and software elements. Hardware relating to sensing , communication and

supporting processor types range from commercial-off-the-shelf (COTS) components to highly-

specialized, one-of-a-kind parts. Software elements draw from numerous disciplines, including

embedded systems, artificial intelligence and various natural sciences reflecting diverse application

domains that these networks are used in. To cater to the large number of scientists and researchers

using sensor networks whose expertise is not computer science, familiar interfaces such as those

based on databases[128] and spreadsheets[125] have been proposed and implemented for using

the network.

The resource constrained nature of sensor nodes introduces idiosyncrasies unique to their op-

eration, in the form of short duty cycles to conserve power, unreliable communication links and

operational limitations. Use of abstractions such as those presented as part this work saves user

level applications from consciously having to deal with these low level sensor issues. Since the sen-

sor nodes are spread over large geographical areas, issues synonymous with distributed systems

such as naming and discovery have to be addressed, in a resource constrained environment lacking

standard capabilities such as TCP-IP based end to end networking.

The predominant practice used in deploying sensor networks is to first program sensors and

then release them into their field of operation. With increased programming and access speeds,

low power consumption and high reliability, flash memory based microcontrollers have come to



4. Application to Sensor Networks 105

be used extensively with popular sensor platforms from Crossbow(mica), Moteiv(telos) and In-

tel(mote). Programming these sensor nodes involves writing to the on-chip flash memory of the

microcontrollers through either hardware based (JTAG), or software based mechanisms. Telos sen-

sors for instance, are based on the MSP430 device from Texas Instruments, which ships with a boot

strap loader software[7] that can be communicated with over serial or USB links to program flash

as shown in Figure 4.1. The programming process is thus dependent on the hardware associated

with the sensor node, communication link and memory write mechanism being used.

CPU

Boot Strap
    Loader

F
L
A
S
H

MSP430

bus
USB

Sensor Node

serial
electro
     nics

sensors

Figure 4.1: Flash Programming through Bootloader

Network programming saves the need of having to program each sensor individually by en-

abling them to be concurrently programmed over radio. The XNP[66] and its related Deluge[63]

project support network programming of TinyOS based sensor nodes. The basic principle involved

is similar to that used in flash programming over serial or USB links, with the difference that a ra-

dio link is used to to communicate with the resident flash loader. Network programming has the

advantage of supporting heterogeneous sensor nodes since a common radio communication based

protocol is used with all of them. Its limitation is that at least a part of all nodes to be programmed

need to within radio range of the programming source. Our work uses network programming as

an enabling technology on top of which richer functionality is built.



4. Application to Sensor Networks 106

The deployment techniques widely used today are adequate to program local sets of sensors.

More complex networks are built on a larger scale[70] and consist of heterogeneous sensors grouped

into clusters distributed over wide areas, where manual configuration and deployment would be

impractical[37]. In such scenarios remote deployment of applications on sensors is a necessity,

complete knowledge of sensor architectures may not be known apriori, and different deployment

techniques might be required among the sensors. Our objective is to support these non-trivial

sensor deployment requirements through the virtual filesystem framework by leveraging existing

deployment techniques.

4.3 Filesystem Representations for Sensor Networks

Consider the sample network depicted in Figure 4.2, used for soil monitoring. Sensors spread

over a vast geographic area help monitor characteristics like moisture content, chemical concentra-

tion (contamination) etc. The network consists of two clusters, each managed by a cluster head.

The cluster head communicates with sensors using short range, low power radio often based on

the 802.15.4[65] standard, and with an upstream network using a sophisticated communication

mechanism such as ethernet.

Such a network may be abstracted using a virtual file system with a namespace as shown in

Figure 4.3. This filesystem is implemented in a piecewise manner with each cluster contributing a

section that is exported over communication infrastructure available to the respective cluster head.

The various pieces are assembled on remote workstations which then gets a composite file based

interface to access the entire network.



4. Application to Sensor Networks 107

Figure 4.2: Cluster Based Sensor Net.

Each cluster is represented by a top level ’cluster directory’ containing subdirectories for its con-

stituent sensors. These ’sensor directories’ contain files for accessing sensor readings, verifying sta-

tus of node operation, and configuration and delivery of sensor events, as given by the reading, event

and status files in the example. Once this basic namespace is in place, data centric operations can

be implemented on workstations solely using file operations. This idea is illustrated in the script

shown below that logs readings from all sensor nodes that are ’ON’, by iterating through each sen-

sor directory.

foreach sensor (s*)

if ((cat $d/status | grep "ON" | wc -w) <> 0)

cat $sensor/reading >> log

endif

end

The resulting code is elegant and intuitive since it uses the familiar file metaphor while leaving



4. Application to Sensor Networks 108

/s11
reading ctl /s13

ctlreading

/network

/cluster0

/s00

ctlreading

platform

/cluster1

/chemical
. . . . . . . .

/moisture

/s03/s00

ctlreading

avgMoisture

event

/s03
reading ctl

event
event

Figure 4.3: Filesystem Namespace

out low level sensor-specific details. Furthermore, the script operates on files without any realiza-

tion that their data is generated on the fly.

Filesystems are hierarchical and hence share a structural correspondence with sensor networks,

which makes the use of their representation natural. File abstractions exported by the various clus-

ters within a network are integrated in the creation of abstractions encapsulating the entire network

by mounting individual cluster filesystems under common directories. Use of file abstractions re-

duces the task of locating and naming a sensor device to finding the path for its corresponding

file in the namespace. Sensor 1’s value from cluster 0 in the example, for instance, is read from

/network/cluster0/s1/reading . The uniform file interface abstracts heterogeneity among

sensors within the network. The networking and protocol details relevant to access of sensors from

remote workstations is localized within the filesystem implementation and concealed from the user.

Since the entire filesystem is implemented in a distributed manner using software at the worksta-

tion, cluster head and sensor levels, the complexity at each layer can be managed by redistributing

it among higher layers in the filesystem hierarchy. This idea is embodied in the implementation of

event support within the filesystem infrastructure as explained later. Individual sensors provide



4. Application to Sensor Networks 109

basic single event support based on sensor reading thresholds, which is built upon at the clus-

ter head level in allowing multiple clients to each define distinct events that all are concurrently

supported.

In our work network file representations are implementated using a two level filesystem hier-

archy executing within the network at the cluster head and sensor levels respectively. Filesystems

within the sensors nodes (henceforth called sensor filesystems) provide access to the minimal data

and event resources available within the node, which is built upon by the overlying filesystem

within the cluster head (henceforth called cluster filesystem) to provide robust file abstractions for

the entire cluster. The various cluster filesystems are exported over communication links available

to the cluster head, and mounted remotely by workstations into respective their operating system

namespaces using techniques presented in Section 2.5 in Chapter 2.



4. Application to Sensor Networks 110

4.4 Usage

Features provided by the two filesystems in combination may broadly be classified into four

categories, namely: sensor data access, event configuration and notification, application configu-

ration support and application binary deployment within the network. This section describes the

usage aspects of these features.

Data Centric Applications

The data centric functionality supported by the cluster filesystem is encapsulated by three dis-

tinct sections of its exported namespace - shown in Figure 4.4 for a cluster consisting of 2 each of

temperature(s0, s2) and photo (s1, s3) sensor nodes. The first section, as described earlier is through

individual sensor directories, one of which exists for each sensor node within the cluster. These sen-

sor directories contain files to control sensor operation, access sensor readings, and to define and

retrieve events within the sensor.

An alternate means to expose sensor nodes is through logical interfaces, that emphasize prop-

erties associated with the nodes such as associated sensor type. A data-centric application might

not be concerned about which sensor node within a cluster the readings are being retrieved from as

long as its sensor is of a certain type. Similarly, applications might want to retrieve readings from

all nodes with sensors of a certain type. In such cases providing ready means by which to locate

and target nodes with required type of sensors would be handy. Filesystem namespaces can fulfill

this requirement by supporting group directories which associate sensor nodes based on custom

criteria. The example shows one such grouping based on sensor type yielding group directories

/temp and /photo. The groupings can be based on dynamically changing properties, in which case

sensor nodes potentially change group membership in the course of operation. Maintaining sensor



4. Application to Sensor Networks 111

node groups based on remaining battery power allows incoming requests to be easily targeted to-

wards ones with maximum battery life. Sensor network based applications for observing wildlife

migration [85] can benefit from location based grouping of GPS sensors mounted on the animals.

Often in sensor networks, data of interest is not individual sensor readings, but a collective

value derived across all sensors in the cluster, often called aggregate property. In recognition of

this, sensor abstractions commonly provide support for aggregate properties in some form. Projects

based on database [127, 84] abstractions, for instance, have enabled application of common ag-

gregation functions available in query languages such as MIN, MAX, AVERAGEand SUMto sensor

data. Aggregation files implementated within the cluster filesystem in our model serve the same

purpose. Read operations performed against these files results in a corresponding aggregation

function being applied to sensor readings from all nodes within the cluster. While fulfilling these

requests, cluster filesystem may retrieve sensor readings from the nodes each time the aggregate

value is produced, or use local caches that are updated periodically.

Event Based Applications

In addition to providing access to sensor network data, the cluster filesystem enables users to

register, manage and get notified of events generated within sensor networks using a file based

interface. Data retrieval operations of the sort supported in our work fit into a conventional re-

quest response model. Event based operations in contrast, typically involve an initial configura-

tion phase wherein a client (an application on the workstation) defines network events of interest

with a ’registration’ entity (cluster filesystem in this case), and from there on gets notified asyn-

chronously whenever the events occur. This interaction does not comply with the request response

mode of operation and cannot naturally be supported using filesystem abstractions. Therefore, as

with our handling of breakpoints in the embedded debugging application presented in Section 3.6



4. Application to Sensor Networks 112

/s3

ctlreading
status

/s1
.........

/s2
.........

/s1
.........

/s2
reading

status
ctl

/clusterFS

/s0

ctlreading
status

/temp

/s0

ctlreading
status

/s3
.........

avgTemp

/photo

avgPhoto

directories

grouping directories

aggregate files

sensor

Figure 4.4: Data-centric Section of Cluster Filesystem Namespace

of Chapter 3, event notification is implemented in a synchronous manner, by having the client read

a designated file on the server to learn about event occurrence.

The cluster filesystem namespace contains event files that allow workstation-based applications

to configure and get notified about events within the cluster. In our implementation, a designated

file type named (named event) exists (created during discovery) within each of those sensor di-

rectories whose corresponding sensor node contains event resources of either the temperature or

photo type. Values written to these files are used to configure threshold values for corresponding

event resources on the sensor node. When readings higher than the threshold are detected during

sensor node’s periodic sampling of its sensor, the node issues an event notification message that is

received by the cluster filesystem, which makes note of the event occurrence. Workstation-based

applications receive these notifications by reading the sensor node’s event file. The read operation



4. Application to Sensor Networks 113

blocks until when a suitable event occurs.

Sensor Application Configuration & Deployment

While the previous two scenarios represent filesystem usage during network operation, file

abstractions can help during the sensor application configuration and deploy phases as well. They

do so by enabling the three operations at the core of building and deploying software, namely:

configuration, compilation and installation as is done conventionally using configure, make and make

install. The objective is not necessarily to apply these tools directly, but instead to draw associated

principles.

An issue to be addressed in using this approach for sensor networks is that the software config-

uration and installation operations target a distributed network of remote sensor nodes rather than

the very workstation (henceforth called host) on which they are being run as is conventionally the

case. The underlying principle behind our work is that a filesystem abstraction specially tailored

to support configuration and deployment can bridge the gap between the host and the network

sides. It is worth noting that the software build operation remains unchanged from present prac-

tice whereby the host generates binaries for sensor architectures by using standard cross compiling

techniques.

Software Configuration

The inevitable differences in system configuration relating to architecture, hardware, operating

systems and compilation tools have motivated the development of techniques to make software

sources usable across a wide configuration spectrum. A popular technique among these involves

use of the configure tool, which draws necessary system information and uses it to fine tune software



4. Application to Sensor Networks 114

sources so as to suit the system configuration.

Applying a similar technique, our work uses the filesystem to configure sensor software to

match a network’s characteristics. Sensor software compilation phase is preceded by a configura-

tion process which retrieves necessary sensor information through the filesystem to fine tune the

software sources and guide compilation. This can help automate configuration of software sources

for different sensor architectures thereby making them usable with a variety of networks.

In our implementation, cluster filesystems provide a file by the name of platformtype which when

read returns the sensor platform type as either tmote, mica or telos. Given that sensor application

Makefiles are often written to accept sensor architecture as a build target, this information can be

obtained from the network automatically as shown below, instead of being set manually apriori.

>cat /sensornet/cluster0/platformtype

tmote

>make ‘cat /sensornet/cluster0/platformtype’ -C /sensorapps/RedBlink

Software Deployment

The approach used for deploying software on sensor nodes draws from the recursive technique

often used with ’make’ for building software with multiple subsystems. The top level Makefile in

these packages has little idea on how to build the subsystems. When make is invoked at the top

level, the task of building the subsystems is delegated through repeated re-invocations of itself on

Makefiles within the subsystems’ directories. This approach to application building has the advan-

tage of separating and confining the subsystem build logic to within their respective directories.



4. Application to Sensor Networks 115

Analogously in the filesystem model, subsystems within a sensor network in the form of clus-

ters export filesystems with mechanisms to program the constituent sensors. Hence the more com-

plicated task of remotely programming a large network is reduced to one of programming numer-

ous localized clusters using the filesystem abstractions they export, which is more tenable. The

cluster head responsible for programming the various sensors under its purview is aware of the

programming technique(s) supported by the sensors and applies them accordingly. The user level

interface provided to deploy sensor applications consists of generic file operations which allows

the technique to be naturally integrated with the application build phase.

Control files (named ctl) within sensor directories identically support the program command

which may be used to deploy binaries into sensor nodes. A binary may be deployed into a sensor

node from a remote workstation by writing the command along with a repository number (ex-

plained below) into the control file within the appropriate sensor directory, as shown below:

echo ’program 3’ > /sensornet/cluster0/sensor0/ctl

Doing so invokes the appropriate mechanism to program the sensor with image stored in reposi-

tory 3, thus providing polymorphic behavior.

Cluster file systems contain cluster wide ’repository files’ which are repositories of sensor binary

images on the cluster head. These repositories act as local caches within the cluster head into which

binaries may be copied from the deployment node and disemminated across various sensor nodes

within the cluster. Since these repositories are represented as files, sensor binaries can be directly

copied into them from the deployment node as shown below:

cat /sensorapps/app1/main.ihex > /sensornet/cluster0/image3

Logical sensor groupings supported by cluster filesystems play a useful role during network



4. Application to Sensor Networks 116

programming. Within a sensor network, application binaries vary depending on sensor architec-

ture, functionality etc. When the filesystem provides sensor groupings along the same criteria, it

provides a simple means by which to decide on the binary appropriate for each sensor. This can po-

tentially reduce the complexity necessary in scripts used for deploying software across a network.

We illustrate the concepts involved in sensor software deployment using a prototype, shown

in Figure 4.5 and consisting of two clusters for which applications are configured, compiled and

deployed from a remote deployment node in the form of a workstation. The two clusters use

dissimilar programming mechanisms that are respectively based on radio and USB links. The role

of cluster head is performed by a workstation located in close proximity to the clusters. Sensor

nodes in each cluster are partitioned to execute two applications, namely RedBlink or BlueBlink

wherein they toggle LED’s of the respective colors; each cluster thereby has multiple (two) binaries

executing within itself.

cluster programmed over
                             USB

network

usb connection

cluster programmed over
                             radio

cluster head cluster head

deployment node

= sensor

= radio link

base station

Figure 4.5: Prototype

Each of the clusters exports a filesystem over TCP-IP which is mounted by the remote deploy-

ment workstation. The filesystem namespace is shown below:



4. Application to Sensor Networks 117

\cluster0

\s0 \s1 \s2

\RedBlink

\s0 \s2

\BlueBlink

\s1

platformtype

image0

image1

We present a deployment script that programs the multiple binaries (RedBlink and BlueBlink)

within cluster nodes using heterogeneous links (USB and radio), all using common file opera-

tions. The RedSensors and BlueSensors directories group sensors based on the executing application,

thereby providing an easy basis by which to decide on the binary appropriate for each sensor. Use

of loops enables operations to be repeated over multiple clusters and sensors, which makes it fea-

sible for large scale networks to be programmed with this technique. Note that the intricacies and

differences in programming sensor nodes has been completely concealed behind the generic file

interface.

# for each cluster

for(c in /sensornet/cluster*) {

cd $c

# transfer both Red & Blue sensor binaries to the repositories in cluster

cat /sensorapps/RedBlink/main.ihex > image1

cat /sensorapps/BlueBlink/main.ihex > image2

# first program red sensors



4. Application to Sensor Networks 118

for (s in $c/RedSensors/s*){

cd $s

# program binary in image 1 into red sensors

echo ’program 1’ > ctl

}

# then program blue sensors

for (s in $c/BlueSensors/s*){

cd $s

# program binary in image 2 into blue sensors

echo ’program 2’ > ctl

}

}



4. Application to Sensor Networks 119

4.5 Distributed Filesystem Implementation

In this section, we present an implementation that realizes a virtual filesystem framework for

supporting data-centric and event based applications along with sensor software configuration

and deployment. The objective is to demonstrate the implementation of a hierarchical, distributed

filesystem spanning the sensor and cluster head levels that is compatible with computational ca-

pabilities of these devices. We illustrate the ability of the virtual filesystem to support optimization

features such as logical groupings and aggregate functions, and to partition complexity in imple-

menting data and event related functionality across constituent filesystem hierarchies.

Sensor Filesystem

Using the filesytem model, the primary means by which sensor nodes interact with the outside

world is through the lightweight filesystem abstractions they implement. At any point of time, sen-

sor nodes may operate in one of two modes - namely application mode and configuration mode.

In each of the two modes, sensor nodes export a lightweight sensor filesystem that serves requests

from the overlying cluster filesystem to access sensor resources. On starting up, sensors operate

in configuration mode, thereby allowing users to configure applications by pulling necessary ar-

chitecture information through the sensor filesystem. Once applications have been configured and

compiled, binaries are loaded and invoked on the sensors through the cluster filesystem. In the

process of executing the binaries, sensors transition to application mode. During subsequent soft-

ware builds, the sensors are brought back to the configuration mode through the cluster filesystem

and the configuration/compilation/deployment process repeats itself. The transition of the sensor

nodes across the two modes is shown in Figure 4.6.

The sensor filesystem units are designed to be compatible with the resource constrained nature



4. Application to Sensor Networks 120

configuration
mode

configuration 
       query

appplication 
      mode

image

binary image
upload

reset
  invocation

Figure 4.6: Sensor State Transition

of sensor nodes, which we ensure by making a series of concessions in terms of their functionality.

Minimal session state is maintained by each sensor filesystem in its interactions with the overlying

cluster filesystem. Each incoming request is self contained in terms of its associated parameters

and is processed in isolation.

The namespace exposed by sensor filesystems consists of a collection of resources each speci-

fied by an integer identifier (known as resource identifier) - string names are avoided for sake of

simplicity. The application mode filesystem exported from a sensor node exposes data and event

resources for each of its on-board sensor types. Our implementation work used sensors nodes with

two sensor types for temperature and/or light (photo) sensing. In combination, this gives 4 distinct

resource types with resource identifiers as shown in the table below:

Resource Type Resource Identifier

Temperature Sensor Data 1

Temperature Sensor Event 2

Photo Sensor Data 3

Photo Sensor Event 4

The configuration mode filesystems in contrast universally have two fixed resources in their



4. Application to Sensor Networks 121

namespace, namely sensorarch and sensorapp. These two files allow users to extract architectural

information from within the sensor through its filesystem interface during the configuration phase.

The resource namespace is flat (non nested), which obviates having to interpret complex paths

through an explicit navigation operation. Since the overlying cluster filesystem accesses sensor

node resources using their resource identifiers, client file descriptors are done away with. This

approach does impose the limitation that only one resource of each kind can be present within

each sensor node, which is a compromise we make for sake of simplicity.

The only two operations supported by the sensor filesystem are read and write. Appropriate

semantics define the behavior when the two operations are performed on various resources in the

namespace. In our implementation, reading data resources returns the current value from the cor-

responding sensor. Values written to event resources define upper bounds, beyond which when

sensor readings are detected, notifications are sent to the overlying cluster filesystem. Resource

identifier ’0’, known as the discovery resource, is reserved specially for filesystem namespace dis-

covery. This resource when read at increasing offsets returns information about various resources

available on the sensor node, and hence helps the cluster filesystem during the sensor discovery

process as elaborated upon later. In the configuration filesystem, the sensorarch file when read re-

turns the architecture of the sensor node as one of a few standard values (tmote, telos, mica, etc.);

sensorfunc returns a scenario specific application name which in the case of the prototype was either

1 or 2, corresponding to RedBlink or BlueBlink.

Cluster head devices access resource namespaces exported from associated sensor nodes using

an RPC based protocol designed as part of our work. Low bandwidth of the radio based commu-

nication link between the cluster head and sensors, as well as the resource constrained nature of

sensors motivate us to keep the protocol design simple. The sensor filesystem accepts input mes-

sages of type Iread and Iwrite, corresponding to the read and write operations issued by the cluster



4. Application to Sensor Networks 122

head. The filesystem respectively responds with output messages of type Oread and Owrite which

contain either return data or a success flag. Apart from these, the sensor filesystem uses output

messages of two other types, namely: an asynchronous Oevent message to notify the cluster head

of events, and Oerror in case of error during completion of read or write operations. Input message

are uniformly 5 bytes long, and consists of a series of single byte fields as shown in Figure 4.7

type[1]tag[1] rid[1] arg[1] offset[1]

Figure 4.7: Sensor filesystem protocol packet format

The tag field serves as a message identifier which can be used by the sensor filesystem to distin-

guish between duplicate incoming messages, and to match requests and responses on the cluster

head side. The type and rid fields respectively specify the message type as being either read or write

and the resource that is being targeted. Finally arg and offset specify a 1-byte argument and an offset

for relevant operations. Output messages have an identical format, only without the offset field.

The protocol requires reliable, non-duplicate message delivery between the cluster head and sensor

devices. This requirement may be fulfilled over lossy radio links by use of a low overhead tech-

nique such as the alternate bit protocol [27], which however restricts the effective communication

throughput that may be achieved.

Our implementation of the sensor filesystem uses the TinyOS programming model [114]. The

filesystem has been deployed on Moteiv sensor nodes from Crossbow, which is based on the TI

MSP430 microcontroller operating at 8 MHz and consisting of 10 KB of RAM. The TinyOS model

(described in the Related Work section 4.6), uses a set of software ’driver’ components for on-board

hardware peripherals that are wired with components defining application logic to implement sen-

sor applications. This wiring (known as configuration) for the sensor filesystem is shown below:



4. Application to Sensor Networks 123

configuration SensorFS {}

implementation {

components Main, SensorFSM, GenericComm as Comm, PhotoTemp as Sensors, TimerC;

Main.StdControl -> SensorFSM;

SensorFSM.CommControl -> Comm;

SensorFSM.ReceiveMsg -> Comm.ReceiveMsg[AM_INMSG];

SensorFSM.SendMsg -> Comm.SendMsg[AM_OUTMSG];

SensorFSM.EventTimer -> TimerC.Timer[unique("Timer")];

SensorFSM.SensorControl -> Sensors.TempStdControl;

SensorFSM.SensorControl -> Sensors.PhotoStdControl;

SensorFSM.PhotoADC -> Sensors.PhotoADC;

SensorFSM.TempADC -> Sensors.TempADC;

}

The filesystem core (as specified in the components statement) is implemented in the SensorFSM

software component, which uses a set of hardware peripherals relating to radio communication

(Comm), temperature and light sensing (PhotoTemp ) and timing (TimerC ). Each of these compo-

nents has associated ’uses’ and ’provides’ interfaces that are connected according to the wiring

shown in the listing. For instance, the PhotoTemp component provides the ’PhotoADC’ interface

for sensing and retrieving light sensor readings as digital data. This interface is used by SensorFSM

to obtain sensor values as and when required. The ’Comm’ component allows access to an on-board

wireless transceiver based on the IEEE 802.15.4 standard [65] and provides physical layer (PHY),

media access (MAC) and checksum capabilities.

The configuration filesystem is additonally equipped with relevant Deluge [63] components to



4. Application to Sensor Networks 124

support network reprogramming and the dual mode of operation. Deluge is component available

with TinyOS that allows a limited number of images to be loaded, stored and invoked within a

sensor node through commands issued over wireless; in our work the commands are issued by

the overlying cluster filesystem. Sensor nodes store binaries corresponding to the configuration

and application filesystem within Deluge images slots on the sensor nodes. Switching execution

between these binaries (modes) is achieved by the cluster filesystem issuing necessary Deluge com-

mands to the sensor nodes.

Cluster Filesystem

The cluster filesystem uses underlying sensor filesystems to build file abstractions for using and de-

ploying clusters. Cluster head devices have more abundant computational, memory and communi-

cation resources than the individual sensor nodes. This relative abindance of resources enables the

cluster filesystems to be designed with emphasis on providing rich functionality, in contrast to sen-

sor filesystems wherein design focus is on compatibility with sensor nodes’ resource constrained

nature.

The role of the cluster filesystem is analogous to that of the Embedded Filesystem block pre-

sented in the Technology chapter, which is to implement and export 9P based synthetic filesystem

abstraction for hardware in the form of a cluster of sensor nodes. Our discussion of the cluster

filesystem design concentrates on aspects that are germane to sensor networks and bypasses the

conventional issues in 9P fileserver design, already described in Chapter 2. Ideas are presented

using cluster filesystem implementations from our work. The implementations are written in Java,

since the software available for remotely interacting with TinyOS based sensor nodes from the clus-

ter head is Java based. We use existing filesystem implementations in Java from the JStyx project

[71] as a basis, on top of which cluster filesystem functionality is built.



4. Application to Sensor Networks 125

The cluster filesystem namespace can be hardcoded in its implementation, or generated at run-

time. We incorporated a simple sensor resource discovery process within the cluster filesystem

whose namespace is generated at startup time. The discovery technique is inspired by the enu-

meration process used in USB, whereby whenever a device is attached to a host USB port, the host

iteratively retrieves information about the various configurations supported by the device (denot-

ing capabilities), and correspondingly updates its local USB device database . Similarly, when dis-

covering the set of resources exported by a particular sensor node , the cluster filesystem reads the

corresponding sensor filesystem’s discovery resource as identified by resource id ’0’, at increasing

offsets (starting from 1) to iteratively retrieve information about all resources exported from each

sensor node. The cluster filesystem supports files of two types namely EventFile and DataFile, corre-

sponding to event and data resource types within sensor filesystems. Each time a record of a sensor

resource is read back, a new file of the appropriate type is created within the cluster filesystem. The

Java code implementing discovery within the cluster filesystem is shown below:

/* create new directory for sensor node with name ’sNN’ */

sensor_dir = new StyxDirectory("s" + String.valueOf(sensorno));

while (true) {

outpacket.set_offset(ridindex); /* incremented by 1 each time */

outpacket.set_type(Iread); /* define operation to be ’read’ */

outpacket.set_rid(DISC_RID); /* target the discovery resource */

mote[sensorno].sendrecv(outpacket, returnpacket);

if (returnpacket.get_arg() == NO_RSP) /* no more resources? */

break;

else {

if (isEventResource(returnpacket.get_arg()))



4. Application to Sensor Networks 126

discoveredFile = new EventFile(returnpacket.get_arg(),sensorno);

else

discoveredFile = new DataFile(returnpacket.get_arg(), sensorno);

}

sensor_dir.addChild(discoveredFile);

}

In this code segment, the sensor node being targeted is identified by a unique network number as

given by variable sensorno . At the start of the discovery process for each sensor node, a sensor

directory is first created by instantiating a new object of type StyxDirectory . Read requests

are sent to the sensor filesystem targetting the discovery resource at offsets starting with 1 and

incrementing each time. Each response packet contains information about the resource within the

sensor filesystem namespace corresponding to the read offset, based on which an appropriate file

(Eventfile or DataFile) is created in the cluster filesystem. Once the discovery process completes,

the sensor directory associated directory will have files mirroring data and event resources on the

sensor node, as well as ’static’ files such as ctl that are present for every node. The discovery process

is engaged in for each sensor node within the cluster, at the end of which sensor node directories

for the entire cluster are in place.

[CHG:sensor-links] The cluster filesystem implementation supports sensor groupings and ag-

gregation files by maintaining sensor node collections created during the initial discovery pro-

cess. Corresponding to the two sensor types in our implementation, the filesystem maintains two

groups, as represented by the temp and photo directories in Figure 4.4. These group directories in

turn contain sensor directories for those nodes with sensors that match the group’s type. Every

time a resource type is detected of a certain type within a sensor node, the nodes’ sensor directory

is added to the appropriate group directory. Each sensor directory is thus ’visible’ in two places -



4. Application to Sensor Networks 127

in the top level cluster filesystem directory and the group directories, representing hard links. Ag-

gregate files are implemented using the polymorphism feature in Java. An abstract AggrFile class

exists that has associated with it a set of sensor files whose data is being aggregated. For each spe-

cific aggregate operation (such as MAX, AVG etc), a class is derived from AggrFile, that implements

read semantics appropriate to the operator. As part of our work, we have implemented classes

corresponding to average and maximum operator file types.

Polymorphism is also used to support multiple programming mechanisms using identical com-

mand interfaces with control files. A base CtlFile class exists using which subclasses named USBCtl-

File and RadioCtlFile are defined, corresponding to programming mechanisms based on radio and

USB links respectively. These subclasses override the default handling of the program command

with the required set of operations necessary to program a sensor node using their corresponding

programming mechanism. Depending on the mechanism supported by a particular sensor node, a

control file of the appropriate subclass type is defined within the node sensor directory.

Splitting filesystem functionality between the cluster head and sensor node levels enables us to

provide event support that is superior to that provided implicitly by the sensor nodes. Specifically,

the technique allows us to support blocking semantics on read operations against event files and

multi client event support. The sensor filesystem is ill-equipped to maintain the state associated

with blocked read requests, as this can progressively consume considerable runtime memory on

sensor nodes. Read operations on event files are thus not passed on to the sensor filesystem, but

instead made to block within the cluster filesystem, and processed once an appropriate event no-

tification is received from the sensor node. Also, each event resource within a sensor node can

support only a single event at a time. The cluster filesystem mitigates this limitation by reusing

that one available event to serve multiple client event requests each with possibly different con-

figurations. The cluster filesystem does this by registering on the sensor node an event that is the



4. Application to Sensor Networks 128

composition of all events requested by various clients. Each time the sensor node issues an event

notification, the cluster filesystem examines the occurred event to determine which of the client

event configurations it satisfies and processes blocked read requests corresponding to those. Since

in our implementation, an event configuration is defined by the sensor reading threshold, compos-

ing multiple events reduces to identifying the least among these and using it to set the threshold

on the sensor node.



4. Application to Sensor Networks 129

4.6 Related Work

In this section we present work relating to three central topics in sensor network application

design, namely: programming paradigms, sensor network middleware and sensor binary deploy-

ment techniques. Our work uses available programming paradigms to implement filesystem ab-

stractions that offer middleware services such as sensor data access and event configuration/noti-

fication, while also supporting application deployment on sensors within the network,

A basic task in implementing a sensor network is to program individual sensors with the de-

sired functionality . TinyOS [114] is an event driven operating system that provides a popular

programming paradigm for low end sensors. The tool includes software component ’drivers’ sup-

porting common hardware resources on sensor platforms such as timers, sensors, radios etc. Sen-

sor applications are created by ’wiring’ together these hardware drivers to software modules im-

plementing application functionality. The applications are then compiled and programmed among

various sensor nodes within a network. TinyOS is an enabling technology in our work, using which

filesystems are implemented within sensor nodes. The Emstar [19] project provides software envi-

ronments for Linux-based higher end sensor platforms such as cluster-head devices. The presence

of a richer set of resources within these devices enables Emstar to offer more sophisticated features

than TinyOS for user applications such as inbuilt neighbor discovery and support for hosting web

servers to disseminate sensor data.

A contrasting approach used with large scale sensor networks is macro programming which en-

ables software design from a network wide perspective. [CHG:sensormacro]Using this approach a

user specifies the high level network functionality through global behaviour descriptions. The re-

ponsibility of realizing these descriptions in terms of applications executing among the various sen-

sor nodes distributed across the network rests with the macro programming environment. Details



4. Application to Sensor Networks 130

regarding distributed code generation/instantiation, sensor node coordination and remote data ac-

cess are hidden from the user. Programming of sensor network applications has been attempted

using functional [94] and object oriented programming paradigms [112]. Functional languages are

able to treat sensor readings as data streams and perform functional ’macro’ operations such as map

and fold to operate on entire datasets of sensor data. As part of more language independent work,

Kairos [57] enables programming of entire networks using global behavioral descriptions, while

the PIECES framework [82] provides programmers with a network state abstraction with can be

used to observe and interact with the network.

Various middleware tools provide data centric capabilities to aggregate, query and filter gener-

ated sensor data. TinyDB [84] provides a traditional query based interface for TinyOS applications.

SQL-like queries issued on a workstation are processed within the network consisting of sensors

executing TinyOS based software components that support TinyDB. Cougar [127] and SINA [106]

respectively provide distributed database and object models for interacting with sensor networks.

They are specially tailored toward long running queries, which they achieve by tuning the sensor

sampling and data reporting rates according to remaining battery life. TinyLIME [38], which has

its roots in Linda [53], provides data sharing among the entities of a sensor networks by use of a

shared tuple space that may be read from and written to.

Event support in middleware is provided by Impala that offers an event based programming

model which supports a fixed set of events relating to on-board timer, sensor data and radio com-

munication. DSWare [80] provides fault tolerant event support services in the presence of node

and link failures by using sensor groups to incorporate redundancy. Events are specified using a

sophisticated description mechanism and notified along with an associated confidence value that

is representative of the certainty of the event’s occurrence. Cortex [29] and Mires [108] middle-

ware solutions provide event notification functionality using publish/subscribe semantics thereby



4. Application to Sensor Networks 131

enabling multiple clients to be supported.

Projects such as Agilla [50] and Smart Messages [72] have tried to use code movement based

techniques to implement middleware, while MiLAN [60] uses network reconfiguration for meet-

ing performance and QoS requirements. The Sentire [31] project shares objectives with our work

in terms of providing a framework on which to build sensor network middleware. Other com-

mon programming models that could support the sensor applications include technologies for dis-

tributed systems such as CORBA and SOAP [36, 15] which have the significant disadvantage of

being relatively heavy weight.

The ability of the presented file model to draw architecture information from within the network

to configure sensor applications has not been previously investigated to our knowledge. The very

need for configuring software though, arises due to differences in platform architectures, which

can be avoided by using virtual machines which offer a ’write once run anywhere’ model. Virtual

machine implementations for sensors have been proposed with Maté [79] and MagnetOS [81] to ad-

dress sensor programming and code distribution. However functionality of these virtual machines

in resource constrained sensor devices is severely limited which has affected their acceptance.

A difference between a majority of the projects described and our work is that, while they rely

on rich API’s and programming models creating a high entry barrier for application developers

and users, we provide a simple, familiar file interface with which to interact with networks. File

abstraction provides a reduced, core set of capabilities meant for use either directly in applications,

or to implement richer middleware tools as required. Limiting the number of features supported

allows the abstractions to be implemented in severely resource constrained sensor nodes. Further,

the application software implementation is decoupled from sensor access mechanisms, thereby

making the software interoperable with other means of access. The presented approach reuses

existing, popular technologies to implement various pieces of the virtual filesystem infrastructure,



4. Application to Sensor Networks 132

including TinyOS for implementing filesystems at the sensor level and Fuse [52] for importing

filesystem at the workstation level. The implementation would continually from improvements as

these class of tools are developed over time.



4. Application to Sensor Networks 133

4.7 Evaluation

We present a basic evaluation of our implementation of the virtual filesystem model for sensor

networks. We address the feasibility of the approach in terms of memory requirements on sensor

nodes. Using empirical means we ascertain the intrusiveness of the approach within existing sensor

applications. Finally, we measure and account for the latency of read requests made from clients to

the cluster filesystem.

Memory, processor and radio resources consumed by the sensor filesystem supporting data and

event based operations are shared within a sensor node with the core network application being

executed in the node. Among these, processor and radio resources are only used when serving a

request, so their utilization is dependent on rate at which requests are received. A constant price is

paid with regard to code and data memories however, as they are shared by the filesystem and net-

work application throughout the course of the node’s execution. This makes it imperative that the

filesystem consume memory judiciously. The binary segment sizes for a minimal sensor application

using the sensor filesystem providing data/event support and compiled for 16-bit MSP430 based

Tmote sensor nodes are: a little over 20KB for code segment (residing in flash) and 700 bytes for

BSS+Data segments (residing in RAM). The filesystem supporting configuration and deployment

was larger due to the use of Deluge; its code segment was 31KB in size and BSS+DATA segments

1450 bytes. These sizes are acceptable considering that the Tmote device has 48 KB of flash memory

and 10KB of RAM, which is typical of TinyOS compatible sensor mote devices.

Each time a request is served by the sensor filesystem, the processor within the sensor node

has to spend clock cycles processing it. Since the request processing time could potentially have

been spent working on a network application related task, the filesystem operation is intrusive to

some degree. To estimate the worst case intrusiveness of the filesystem in our prototype, we ran a



4. Application to Sensor Networks 134

computationally intensive task on the sensor node in conjunction with a sensor filesystem, which

was repeatedly targeted with read requests. The difference in execution times of the computational

task with and without the sensor node concurrently serving read requests gives an indication of

the level of intrusiveness of the filesystem. The computational task chosen was the continuous

incrementing of a counter from 0 to a large value (0x11fffe), implemented as a TinyOS process that

adds one to the counter each time and re-schedules itself, as shown in Listing 4.1 below.

Listing 4.1: Script for programming heterogenous multi-cluster sensor nodes

task void c o u n t e r i n c r ( ) {

i f ( counter < 0 x 1 1 f f f e ) {

counter ++;

post c o u n t e r i n c r ( ) ;

}

e lse

count over = 1 ;

}

At the same time that this sensor application is executing, a client application continually makes

read requests to the sensor filesystem, indirectly through its overlying cluster filesystem. Since each

request is made immediately after the previous one finishes (and the sensor filesystem processes

only one request at a time) this is close to the maximum achievable rate at which requests can

be made to the sensor filesystem by clients using the communication infrastructure on hand. The

execution time of the computation task without the filesystem running concurrently was 96953

milliseconds; the task execution time while concurrently serving read requests was 105204 mil-

liseconds, thereby indicating an overhead of 8251 milliseconds. This shows that the maximum



4. Application to Sensor Networks 135

overhead that may be incurred by network applications while concurrently serving sensor filesys-

tems = (8251/96953)*100, or 8.51%. This overhead is directly proportional to the rate at which

requests are presented to the sensor filesystem, which in turn is bound by the communication pro-

tocol and link utilized.

Latency of read requests issued by a client and targeting sensor files through the cluster filesys-

tem was 78 milliseconds. This latency (Tlat) consists of three distinct parts, namely:

• communication delay between client and cluster head (Tcl<−>CH )

• communication delay between cluster head and sensor node (TCH<−>SN )

• request processing time on the sensor node (Treq)

Through measurements, Tlat was determined to be =

Tcl<−>CH + TCH<−>SN + Treq = 78.3 milliseconds

Treq was measured as the difference between latency of read requests and round trip communi-

cation time from client to sensor nodes, and was observed to be less than the smallest measurable

time interval in our setup, which was 1 millisecond.

Tcl<−>CH , which is the round trip communication delay from client to cluster head was mea-

sured to be = 2.1 milliseconds.

TCH<−>SN , which is the communication delay between cluster head and sensor node = Tlat -

Tcl<−>CH = 78.3 - 2.1 = 76.2 milliseconds

The results show that the delay in communication between the cluster head and sensor nodes

accounts for about 97% of the latency in completion of a read operation. Since this is the round trip

delay, it represents the time for transmitting both the request and response packets to the sensor



4. Application to Sensor Networks 136

nodes, equal to 10 bytes of data + 10 bytes of header. The effective bandwidth of the sensor ra-

dio communication involved = 160 bits/76.2 milliseconds = 2.12 Kbps. Given that the radio used

in the Tmote sensor node is rated to support a maximum transfer rate of 250 Kbps, the effective

bandwidth observed reflects the sub-optimal use of the communication infrastructure due to com-

munication protocol, among other less significant reasons.

4.8 Summary

This chapter described application of distributed virtual filesystem based abstractions to enable

usage and deployment of sensor networks. We present a technique for implementing filesystems

of varying capability at the sensor and cluster head levels, which work in conjunction to support

file abstractions for the entire network. An implementation of a lightweight filesystem for sensor

nodes is described, that is designed to support the generation and operation of overlying filesys-

tems in cluster head devices, while using the limited resources available. We illustrate use of file

abstractions in two common sensor network usage scenarios, namely to enable data-centric and

event based sensor application classes. Data-centric applications are enabled by allowing individ-

ual sensor readings to be directly accessed by readings files in the exported namespace and through

more sophisticated features such as sensor grouping directories and aggregate function files. Event

support is provided by enabling both event registration and discovery through file operations;

clients discover about events by performing blocking read operations on event files which com-

plete when the event occurs. Implementation of this blocking functionality provides an example

of how filesystem logic may be split between the cluster head and sensor nodes in implementing



4. Application to Sensor Networks 137

complex features. In addition to its use during network operation, use of virtual filesystem infras-

tructure during sensor configuration and deployment phases is also described. During the con-

figuration phase, sensor node architectural information drawn from within the network through

the file interface can be used to guide the sensor software configuration and compilation process;

resulting binaries may then be deployed within sensor nodes by ’copying’ them to appropriate files

in the sensor network filesystem namespace. These ideas are illustrated using a prototype involv-

ing a heterogeneous, multi cluster sensor network for which software is configured and deployed

automatically from the host side using shell scripts.



5

Enabling Proxy Based Resource Access for

Embedded Devices

138



5. Enabling Proxy Based Resource Access for Embedded Devices 139

The third and final application presents use of virtual filesystems to provide computationally

impoverished devices such as sensors and actuators the ability to access significant software and

hardware resources such as mass storage, network access, and console for input/output by im-

porting them over generic communication links. In contrast to previous applications, the roles of

clients and servers are reversed between the embedded and workstations sides. In addition to pro-

viding access to significant resources, the model allows incorporation of richer functionality and

logic within software executing on embedded devices, which often makes the code more portable.

The contribution of our work is to use the core filesystem technology to provide a framework for

lightweight devices (called clients from here on) to import and use resources from a remote work-

station. We also describe possible extensions to the basic usage model including its adoption in a

system on chip scenario. These ideas are illustrated using an example application.

5.1 Introduction

The embedded market today is replete with devices that may be categorized as high end mi-

crocontrollers, which find utility in fields as diverse as automotives, electronics, machinery and

sensor/actuator networks. These devices (such as MSP430 series from TI [11], LPC series from

Philips [1]) are typically based on processor cores capable of operating at a few 10s of Mhz, contain

a few tens of kB of ROM (code memory) and less than 10 kB of RAM (runtime memory). With lim-

ited resources at their disposal, it is often infeasible for these devices to use conventional software

solutions such as TCP-IP stacks, which have code footprints of about 200KB. As a result, projects

have attempted to adapt software tools such as network stacks [43] and filesystems [39] for use in

the lightweight embedded device domain. While resulting solutions provide acceptable but often

limited functionality, using more than one such tool in conjunction is cumbersome. Aside from



5. Enabling Proxy Based Resource Access for Embedded Devices 140

software tools, providing embedded devices with access to hardware resources (such as a console)

directly is infeasible for a number of reasons including the manner in which devices are deployed

(out in the field), the numbers and cost involved, and architectural limitations.

In this methodology devices get access to resources resident on remote workstations by im-

porting them over generic communication links. Since the communication and support software

infrastructure is reused, the method imposes a nearly constant price for access to an indefinite

number of resources. The latency involved in accessing the resources depends on the communi-

cation link and the frequency and extent of the resources might have to be tailored accordingly.

The methodology can be used only until the development phase of a product when features such

as console output and logging to mass storage might be useful for debugging, or retained during

deployment as shown with the example in Section 5.3.

As is the case throughout this dissertation, a key concept that is exploited is that anything can

be a file – a file system is simply a way to organize a name space as a hierarchical set of objects that

respond to well understood commands (open , read , write , etc.). Requisite resources on a capable

’host’ device (such as a workstation) are bundled within 9P filesystem abstractions and exported

over available communication links for resource contrained embedded devices to mount and use.

Since the requirements imposed by 9P protocol are fairly basic, most connection types commonly

associated with embedded devices such as serial links, USB and low power radio (zigbee) may be

used.

A significant advantage to this approach is that cost of importing resources is independent of

the number and type of resources being imported, since the cost of importing a filesystem is largely

independent of the size and content of its namespace. Also important for power starved embedded

devices, the model follows a request response mechanism which means the client and host interact

only at the client’s behest thereby precluding unnecessary communication.



5. Enabling Proxy Based Resource Access for Embedded Devices 141

5.2 Methodology Adoption

In this section we discuss the two steps involved in adopting the presented methodology within

a system, namely exporting resources from a host entity and accessing them from within embedded

devices.

Resource Export

The utility of the presented approach is hinged upon being able to encapsulate resources re-

quired within embedded devices using filesystems on the host side. To this end we describe how

hosts may export hardware resources such as console, peripherals etc., software resources such as

network stacks, and custom resources based on application specific needs.

Given that the standard 9P protocol is used for messaging, it follows that embedded devices

can readily interface with the filesystems exported out of Plan 9, or its closely related Inferno [41]

operating system, which can be run in ’hosted’ mode under Linux or Windows. Use of either Plan9

or Inferno puts at the user’s disposal a variety of resources useful to embedded devices exported

through file servers. These are mentioned below along with the directory path they are exported

from in Plan 9:

• console device providing IO terminal and clock (/dev/cons)

• serial and parallel port for communication (/dev/eia0, /dev/lpt)

• network protocols (/net/tcp, /net/udp)

• mass storage (any part of the file tree can be exported)

However, dedicating a node to run these operating systems is often not possible. In that case

standalone 9P filesystems can be created using the NPFS framework [95] and exported off the host



5. Enabling Proxy Based Resource Access for Embedded Devices 142

node. An advantage in using NPFS based filesystems is that they carry minimal software depen-

dencies, which makes the filesystems highly portable across various Unix-like operating systems.

We have used NPFS to create reusable filesystems for exporting console IO, TCP-IP and mass stor-

age resources, thereby allowing each of them to be exported to the client sides. These filesystems

also serve as references to help users build custom variants to suit their specific needs.

Clone filesystems described earlier in Section 2.4 are particularly useful for encapsulating and

exporting logical resources such as TCP-IP sockets . Instances of such resources are created on

the fly by clients, utilized for a period of time and subsequently released. Using clone filesystems

new resource instances are created by reading the clone file in the filesystem namespace, which has

the dual effect of creating a new instance of the resource (such as a socket) and adding a resource

directory to the filesystem namespace containing files to use the newly created resource. Use of

clone filesystems to support TCP-IP networking was described in Section 2.4.

Applications may in general, use NPFS to develop custom filesystems (clone or otherwise)

to support requirements specific to their application. The ability to package any necessary data

through the file system and present it to the embedded side provides system designers with a

powerful tool. Implementing a file system with NPFS leaves the user responsible for just defining

the file layout of the filesystem using a table and for providing callbacks that define the filesystem

behavior when data is read and written.

Embedded Resource Access

Embedded devices can mount and access resource filesystems using a library we implemented

as part of this work, whose functions mirror Unix file operations. The library defines ’standard’

file operations such as open, read and write, apart from 9P specific ones such as attach,clone and walk,

with each function name given by prefixing ’9P ’ to the operation name. The first operation a client



5. Enabling Proxy Based Resource Access for Embedded Devices 143

performs in interacting with a remote file system is to mount it using the 9P attach function also

has the result of associating the file system root with a client specified integer valued file descriptor.

In the Plan 9 world, (integer) values for identifying file descriptors are specified by the client side,

unlike in Unix where the values are returned by the server during an open operation. The root file

descriptor is duplicated to another client specified integer file descriptor (and thereby preserved)

using the 9P clone operation; the duplicated file descriptor is made to point to the required file

through a series of single step 9P walk operations. Hence a typical Unix operation such as:

fd = open("/tcp/ctl", OREAD)

would translate to a sequence of steps:

9P_clone(rootfid, newfid)

9P_walk(newfid, "tcp")

9P_walk(newfid, "ctl")

The usage of 9P read and 9P write is conventional whereby data can be read from or written to a

file descriptor, with the return value of the function call being the number of bytes read or written.

In its simplest form the library is single threaded, which means file operations block until they

return from the remote fileserver. While this solution may be adequete in basic embedded sys-

tems, blocking while operations complete would not be acceptable in more sophisticated systems,

which have multiple functionalities implemented in software operating concurrently. Therefore

lightweight stackless concurrency mechanisms are used within embedded clients, based on the

libthread module also used to implement EFS(presented in Chapter 2), so that the embedded sys-

tem continues to function while waiting for file operations to complete in the background.

Embedded clients accessing remote filesystems use threads corresponding to: message trans-

mission, message reception and system applications (as many as required). The transmission



5. Enabling Proxy Based Resource Access for Embedded Devices 144

thread receives 9P messages from application threads and sends them out over available com-

munication links. Receiver thread waits for application threads to request incoming 9P messages,

upon on which it listens on the communication link for the next incoming message, which is then

returned to the client. The threads communicate using CSP-based blocking channels [33]. Perform-

ing a file operation involves separate send and receive stages. The client application thread first

generates a 9P message based on the operation needed to be performed and sends it to the trans-

mitter thread over sndChan. It then sends a message request to the receiver thread on rcvReqChan,

and then waits on rcvChan for the receiver thread to send it the response message. This allows

the rest of the embedded system to continue execution while the application thread waits for the

response for a file operation.

The size of the core library was a little less than 10 KB when compiled for a 16 bit RISC (TI

MSP430) processor. This excluded the communication code that is responsible for data transfer to

and from the communication link being used, which is highly dependent on the peripheral and re-

liability mechanisms being used. When using serial communication with a plain UART this would

amount to less than 1 KB, while using a radio connection with basic acknowledgment/retransmis-

sion mechanism would push the code size up by another 10 KB or so.

In capable embedded devices, more sophisticated mechanisms can be used to access the host

filesystem. In systems running operating systems that support threads, libraries can use separate,

preemptively scheduled threads for completing each request from client applications thereby mak-

ing the entire system more error tolerant. In an embedded environment with multiple processing

elements (cores), a point-point or broadcast network may be shared among the various processors

to access a single resource server through their respective libraries. If the devices run Linux, then

kernel modules such as v9fs [61] may be used to mount host filesystems within their local Linux

namespace, thus doing away with the library.



5. Enabling Proxy Based Resource Access for Embedded Devices 145

Figure 5.1: Resources exported to Goofy

5.3 An Illustrative Example

This section presents an example that reinforces the basic utility of idea presented in this chapter

to concurrently import multiple useful resources into a resource impoverished embedded environ-

ment.

The basis of the example is an instructional embedded platform developed in the computer

science department using the Goofy Giggles toy (shown in Figure 5.1) that has in its core a TI

MSP430 microcontroller (MCU). The MCU can operate at upto 8 MHz, has on chip flash memory

of 32 KB and RAM of 5 KB. Using the various peripherals available on the MCU, the platform has

been equipped with motors for the wheels, sensor, and a low data rate 802.15.4 radio.

The objective is to equip the platform (henceforth called Goofy) with resources that are hard

to come by in an embedded environment by importing them from the workstation. Using these

resources Goofy is programmed to accept commands off the keyboard and act accordingly, a task

commonly assigned to radio equipped mobile robots [120]. Use of console I/O allow users to

enters commands at the workstation keyboard to navigate Goofy, which periodically logs values

from its on board sensor. This focus in this prototype is on importing two resources as illustrated

in Figure 5.1 and listed below:



5. Enabling Proxy Based Resource Access for Embedded Devices 146

• console I/O

• mass storage

The platform represents a concurrent embedded system as the tasks associated with running

the motor, sensing and communication need to run simultaneously over time. As described earlier,

use of a lightweight concurrency model based on cooperative, stack-less threads allows each of

these tasks to access their respective resources through blocking file operations without freezing

the entire system.

The communication link for talking to host based file servers used a low powered radio network

based on IEEE 802.15.4 standard [65]. The radios involved supported basic checksum capability

on top of which acknowledgment and retransmission features were built in software using the

alternating bit protocol [27]. This satisfies the 9P protocol’s two transport requirements of reliable

delivery and preservation of byte order.

The filesystem on the host side was developed using NPFS and exported a namespace as shown

below:

\GGfs

console

log

computeclone

The console file is used by Goofy to display its status on the host’s standard out and accept com-

mands from the keyboard. Single character motor commands such as: ’f’ for faster, ’s’ for slower,

’r’ for turn right and ’l’ for turn left could be defined to enable remote control of Goofy. The log file

can be written to by Goofy to record its operation state (such as speed).



5. Enabling Proxy Based Resource Access for Embedded Devices 147

The code size for the prototype was less than 15KB in size, while the data and bss sections

combined were less than 1400 bytes. Goofy was able to perform up to 25 file requests per second.

As expected, up to 95% of the latency for a file operation was spent in waiting for the response

message. This suggests that implementing more aggressive data transfer mechanisms than the

alternating bit protocol would result in increased throughput by keeping more packets in flight.

5.4 Discussion

The lightweight proxy approach offers utility beyond simply being able to access remote re-

sources from microcontrollers. We briefly discuss other benefits and extensions of the work pre-

sented in this chapter.

Writing Richer code for small devices

Software written for small devices is to varying degrees limited in functionality, interactivity

and expressiveness. This is because the price to be paid for accessing resources providing interac-

tivity (such as the console for IO) and functionality (computation, mass storage for logging,) are

prohibitively high. The proxy approach alleviates the situation by imposing a constant price for

access to an indefinite number of resources. More functional, expressive code can then be written

by leveraging the imported resources. This is reflected in the main loop for the Goofy application

shown below, where reading input from the keyboard and displaying status are naturally incorpo-

rated into the application.

9P_read(consolefd, data, 1)

/* react to command - ommited */



5. Enabling Proxy Based Resource Access for Embedded Devices 148

9P_write(consolefd, GG_status, 1)

9P_write(consolefd, &motor_speed, 2)

Moving to a SoC scenario

System on chips devices often have multiple processor cores with a robust 32 bit RISC processor

executing general purpose operating systems, along with specialized cores such as DSP’s running

application specific algorithms. This model can be applied to such an environment whereby the

general purpose core exports software resources such as network stacks as filesystems for other on

chip processing elements to use. Such an idea can also be applied to circuit boards built around a

central processor and consisting of lightweight processing elements such as microcontrollers. Since

in these cases, the host and client entities are in the same clock domain, synchronous protocols such

as HDLC [10] can be used to provide reliable transfer of 9P messages.

5.5 Related Work

Several projects have investigated the converse of this idea, which is to export abstractions

out of an embedded system and use that to interact with it. The closest of these is the ’Styx on a

Brick’ project [83] which exported the various resources of a Lego Mindstorms robot (motor, sensor)

within a filesystem that could be accessed remotely. The emWare emNet [45] and OMG Smart

Transducers (ST) [96] systems both provide extremely lightweight protocols that enable hosts to

access resources on embedded devices using CORBA and RPC based mechanisms respectively.

An alternative to using this approach is to implement lightweight version of software tools

tailored for embedded devices. uIP [43] is a lightweight TCP-IP stack, which as implemented on

the TI MSP430 required 4.2k program memory, and 700 bytes of RAM, but allowed only one TCP



5. Enabling Proxy Based Resource Access for Embedded Devices 149

session at a time and did not provide assembly of fragmented IP frames. ELF [39] is a lightweight

log-structured file system developed for flash memories that is highly tailored towards sensor mote

operations.

Access to data networks through proxies is well established practice. With the advent of dis-

tributed and network computing, projects have attempted to transparently provide remote access

to peripherals such as console [129] and even audio [78]. Of late a similar problem is being ad-

dressed for virtualized environments such as VMWare [111], in order to share I/O devices between

host and guest operating systems.

5.6 Summary

This chapter presented a technique by which lightweight embedded devices can import mul-

tiple remote resources over generic communication links. The technique imposes a constant over-

head that is largely independent of the number of resources being imported. The basis of the

approach is to universally encapsulate all resources as files, which makes it applicable to software,

hardware and custom resources. The technique offers the opportunity to implement richer, more

interactive software on embedded devices while imposing nominal demands on them.



6

Conclusion

150



6. Conclusion 151

In conclusion, we recap the motivations for using filesystem abstractions to support embedded

software development and present our contributions in realizing and using these abstractions. We

present a case for why the use of our approach would remain feasible and relevant in the longer

term in the highly dynamic semiconductor industry. We also present ideas for future work, both in

the form of concrete objectives and as broad research ideas arising based on the completed work.

6.1 Motivations for Using Filesystem Abstractions

Filesystem abstractions enable use of uniform, well understood interfaces to interact with the

heterogeneous processing elements that coexist within embedded systems. The uniformity saves

the user from having to be cognizant of the differences in the debug, configuration and other in-

terfaces among the processors. File abstractions effectively allow separation of interface from the

supporting implementation, which gives system developers a means by which to safeguard intel-

lectual property associated with the various components within the system. File based interfaces

offer familiarity to human users and also a convenient back-end on which to base wide a range of

tools for debugging, programming, task automation, and data analysis. By virtue of their compo-

sitional nature, file-based interfaces from various constituent components within a system can be

naturally assembled to progressively create higher level interfaces with which to interact with the

entire system. Since file interfaces can be exported over communication links, they can easily be

accessed remotely.

Based on these advantages, our distributed filesystem abstraction is best suited for systems

exhibiting certain specific characteristics including: hierarchical and/or locally distributed archi-

tecture, heterogeneous composition, autonomous operation among sub-systems. In systems de-

signed based on a distributed architecture, the pieces comprising the filesystem can be naturally



6. Conclusion 152

be implemented within the various constituent entities in the architecture distribution; similarly

with hierarchical systems, filesystems implemented in the lower levels can be composed hierar-

chically thereby progressively creating richer filesystems. Filesystem abstractions are well suited

for systems exhibiting heterogeneous composition as in these cases uniform file interfaces can help

conceal the heterogeneity within the system. File operations issued in our model are serviced in a

distributed manner and hence inherently have a high latency. Therefore for performance reasons,

our model is better suited for architectures consisting of autonomous subsystems whose cross in-

teractions in the form of file operations would be sufficiently infrequent.

6.2 Summary of Contributions

The central question addressed in this thesis is as to how the workstation centric idea of a dis-

tributed filesystem can be implemented and effectively applied to facilitate various software de-

velopment tasks in the embedded domain. As part of our work we have implemented filesystem

building blocks that can be used to hierarchically assemble file abstractions within resource con-

strained embedded architectures. The hierarchy includes the ’embedded’ filesystem block that

encapsulates a basic embedded system design unit (such as a SoC device) using a file interface in

a resource conscious manner. The various embedded filesystem instances within a system may be

composed together using a mount file system (MFS) block which then provides a holistic interface

using which to interact with the entire system; the MFS block is thus responsible for providing our

model with its compositional features. We provide means to access these filesystems on the work-

station side by mounting them within the local operating system namespace, thereby enabling

them to be accessed like any other ’conventional’ file.

We apply our virtual filesystem technology to facilitate software development in two distinct



6. Conclusion 153

embedded application domains. The first application addressed is concurrent debugging and trac-

ing of software executing within multi-processor SoC based embedded systems. File abstractions

capture debug interfaces of the constituent (potentially) heterogeneous processors within the sys-

tem using uniform file namespaces. We present a technique for implementing these abstractions

within SoC based embedded systems using filesystem building blocks described earlier. Using

prototypes we demonstrate use of these abstractions to support several issues central to debugging

and tracing in SoC based embedded systems including:

• providing internal visibility of constituent processor state through a generic file interface

• creation of a logical interface that is independent of system hardware layout

• presenting interfaces for debugging at different levels of abstraction and thereby having the

ability to to conceal proprietary debug interfaces among processor cores

• integration of disparate processor debug/trace interfaces into unified system level debug so-

lutions and in the process sharing on-chip resources (such as trace buffers, communication

ports) among them

A second application for our filesystem framework is to enable usage and deployment of sensor

networks. In contrast to the first application wherein the filesystem framework was used to control

and check status of execution of embedded processor elements, in the sensor network domain the

file abstraction facilitates event management and efficient sensor data retrieval from within the

network. Distributed filesystem abstractions for sensor networks as implemented in our work use

filesystems of limited functionality at the sensor node level that support more capable filesystems

at the cluster head level, both of which work in conjunction to support file abstractions for the

entire network. We demonstrate use of file abstractions to support two common sensor network

usage scenarios, relating to data-centric and event based application classes. To complement its use



6. Conclusion 154

during network operation, the virtual filesystem infrastructure can also be used to draw requisite

sensor architectural information to enable sensor software configuration and to deploy resulting

binaries within sensor nodes using generic file operations after compilation. Thus our framework

enables creation of a single, central interface by which to access, control and deploy hierarchical

networks of distributed, heterogeneous sensor nodes.

6.3 Long Term Relevance

We argue that use of embedded, virtual filesystems for supporting software development would

remain feasible and relevant in the longer term. With increasing transistor densities, dedicating a

fraction of the on-chip logic to support debugging is affordable [116]. Presence of these debug

support structures would be warranted by the increasing volume and complexity of embedded

software - as indicated the fact by 2011 it is estimated that a new car will run 100 million lines

of code, which more than twice as much as in the Windows operating system [25]. Incorporat-

ing dedicated logic within system-on-chip devices for purposes other than supporting core device

functionality has been actively considered recently. For instance, Zorian et al [130] have investi-

gated use of ’Infrastructure IP’ embedded within SoC devices as an instrumentation technique to

collect manufacturing (defect) information which is then used to diagnose yield problems. The

automotive sector is beginning to accept the Nexus standard [20] that uses on-chip debug logic to

standardize message based interactions between processors and debugging tools.

To complement the inexorable increase in the amount of software in embedded systems, the

number of processor cores within designs is increasing as well [18]. Reasons inducing this trend

include the broadening range of features being supported by embedded devices and the power

advantages incurred in using multiple processors running at lower clock rates rather than using a



6. Conclusion 155

single higher speed processor [77]. In the presence of multiple processors, there is a need to support

concurrent and ’global’ debugging of software across multiple processors. The emerging trend is

thus to move towards dedicated system debug interfaces [62, 20] which support features such as

cross triggering [3] and synchronized start/step operations. The work presented is a step in the

same direction.

There is definitive shift in the system design process from using custom built application specific

intergrated circuits (ASICs) to using third party SoC devices. This trend is motivated by the costs in

designing and manufacturing ASIC’s which according to estimates by the International Technology

Roadmap currently range between $10 million and $20 million for an SoC within a PDA. These

costs are estimated to increase as feature sizes shrink because of the increase in complexity and

number of masks required as part of the chip fabrication process [28]. To counter these prohibitive

costs system design companies resort to buying the SoCs backing their products from third party

vendors specializing in semiconductor design. SoC based design also allows reuse of pre-built

hardware blocks which helps designers roll out their products within ever shortening times to

market. As systems with increasingly rich functionality come into fore, designing complex chips at

their core require expertise in diverse technology areas such as microarchitecture, communication,

multimedia etc. [58], all of which is hard to find in a single organization; the solution is to buy off

the shelf SoC’s which can readily be integrated into systems.

As the use of SoC devices in system development gains ground, system development teams

have to contend with the disconnection from SoC development teams and consequently with the

limited available design details of the SoC device. As the number of SoCs available in the mar-

ketplace proliferate, the differentiator among these devices will be the software and debug support

built into the device that allows system development teams to use, program and debug the software



6. Conclusion 156

within the device at the time of integration. Our approach allows SoC providers to be expose pro-

gramming and debug interfaces for their chips at the desired levels of abstraction, while providing

them with the opportunity to conceal proprietary details of the internal cores.

6.4 Future Work

In this section we outline specific opportunities for future work that extend the implementa-

tion supporting this dissertation. We also discuss broader research questions related to the virtual

filesystem model arising based on the presented work.

Our existing filesystem infrastructure has minimal fault tolerant mechanisms incorporated within

it. To address this issue, filesystems need to be able to detect and handle errors in hardware that it

they are abstracting. A related issue is the detection and handling of failures among one or more

filesystems themselves in the distributed filesystem hierarchy. The embedded filesystem block pre-

sented has its associated namespace statically compiled into its implementation. A useful extension

would be to allow the namespace content information to be specified at startup time; handlers for

file operations performed on these files can be implemented as libraries dynamically linked into

the filesystem core at execution time.

Our work used the filesystem technology to enable concurrent debugging in a multi processor

prototype representing a system-on-board scenario; realizing the model in a system-on-chip en-

vironment would help better illustrate its potential. Quantifying the computational requirements

imposed by the filesystem on the support processor would help SoC designers make an informed

choice of processor hardware for fulfilling the role of the support processor. Implementation of



6. Conclusion 157

filesystems as services within popular embedded operating systems (such as VxWorks) can pro-

mote acceptance of our model. Use of hardware debug adapters for interfacing the support pro-

cessor with standard processor debug interfaces can facilitate easy integration of on-chip hardware

with the filesystem and also help offload a part of filesystem debug functionality from within the

support processor to dedicated hardware.

The implementation of our filesystem model within sensor networks assumes a single-hop com-

munication between the cluster head and sensor nodes. Extending this to support multi-hop sce-

narios though use of more sophisticated protocols such as RMST [110] and PSFQ [118] can broaden

the applicability of our work. Use of higher throughput protocols than the currently used alternat-

ing bit protocol would improve the effective latency seen for file operations targeting sensors.

A general question that arises based on our work is whether the distributed filesystem should

be built using 9P, or more generally any other request-response based protocol for enabling interac-

tions between client and server sides and across filesystems. While use of 9P allows its associated

suite of tools derived from Plan9 to be used with our filesystems, it does not naturally support asyn-

chronous behavior (for event support), and its usage contains inefficiencies in terms of the amount

of data transferred. Another intriguing consideration relates to the dependency of our filesystem

model on the underlying communication infrastructure. This issue may be addressed by investi-

gating the feasibility and usability of our filesystem infrastructure over specialized communication

links found in the embedded domain, such TTCAN - a time triggered bus used in automobiles, and

bit based links such as scanchains through use of framing protocols such as HDLC. An ambitious

endeavor would be to automatically generate filesystems for SoC devices with a given hardware

(core) layout, in order to support existing chips.



Bibliography

[1] 16/32-bit lpc2000 family. http://www.nxp.com/products/microcontrollers/32bit/index.html.

[2] ARM extended trace macrocell (etm) technical reference guide.

http://www.arm.com/documentation/TraceDebug.

[3] ARM’s coresight on-chip debug and trace technology. http://www.arm.com/products/solutions/CoreSight.html.

[4] Armulator, ARM. http://www.arm.com/support/ARMulator.html.

[5] Device file system guide. http://www.gentoo.org/doc/en/devfs-guide.xml.

[6] exportfs, srvfs - network file server from plan9 man pages. http://plan9.bell-

labs.com/magic/man2html/4/exportfs.

[7] Features of the msp430 bootstrap loader (rev. d). http://focus.ti.com/lit/an/slaa089d/slaa089d.pdf.

[8] Freescale, MPC565 user’s manual, 2002.

[9] Introduction to on-board programming with intel flash memory.

http://www.intel.com/design/flcomp/applnots/29217902.pdf.

[10] Iso 13239 : High-level data link control protocol.

[11] Msp430 : Ultra low power mcu from texas intruments. http://www.ti.com/msp430.

158

http://www.nxp.com/products/microcontrollers/32bit/index.html
http://www.arm.com/documentation/TraceDebug
http://www.arm.com/products/solutions/CoreSight.html
http://www.arm.com/support/ARMulator.html
http://www.gentoo.org/doc/en/devfs-guide.xml
http://plan9.bell-labs.com/magic/man2html/4/exportfs
http://plan9.bell-labs.com/magic/man2html/4/exportfs
http://focus.ti.com/lit/an/slaa089d/slaa089d.pdf
http://www.intel.com/design/flcomp/applnots/29217902.pdf
http://www.ti.com/msp430


BIBLIOGRAPHY 159

[12] National ecological observatory network. http://www.neoninc.org.

[13] OCP-IP: Open Chip Protocol International Partnership. http://www.ocpip.org.

[14] Providing asynchronous file i/o for the plan 9 operating system.

http://pdos.csail.mit.edu/papers/plan9:jmhickey-meng.pdf.

[15] Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap.

[16] Simulavr: an AVR simulator. http://savannah.nongnu.org .

[17] The two percent solution. http://www.embedded.com/story/OEG20021217S0039.

[18] What processor is in your product? http://www.embedded.com/columns/showArticle.jhtml?articleID=193101174.

[19] Emstar: A software environment for developing and deploying wireless sensor networks. In

Proceedings of the USENIX 2004 Annual Technical Conference, 2004.

[20] The Nexus 5001 Forum Standard for a Global Embedded Processor Debug Interface, 2004.

http://www.nexus5001.org.

[21] Guest editorial: Concurrent hardware and software design for multiprocessor SoC. Trans. on

Embedded Computing Sys., 5(2):259–262, 2006.

[22] D. E. L. G. M. H. A. Cerpa, J. Elson and J. Zhao. Habitat monitoring: Application driver for

wireless communications technology. In Proceedings of the 2001 ACM SIGCOMM Workshop on

Data Communications in Latin America and the Caribbean, April 2001, 2001.

[23] K. M.-M. A. Mayer, H. Siebert. Debug support, calibration and emulation for multiple pro-

cessor and powertrain control socs. IEEE Trans. Comput., 55(2):174–184, 2006.

[24] C. G. A. S. Tanenbaum and B. Crispo. Taking sensor networks from the lab to the jungle.

IEEE Computer Magazine, 39(8):98–100, 2006.

http://wwwneoninc.org
http://www.ocpip.org
http://pdos.csail.mit.edu/papers/plan9:jmhickey-meng.pdf
http://www.w3.org/TR/soap/
http://savannah.nongnu.org
http://www.embedded.com/story/OEG20021217S0039
http://www.embedded.com/columns/showArticle.jhtml?articleID=193101174
http://www.nexus5001.org


BIBLIOGRAPHY 160

[25] D. F. Bacon. Realtime garbage collection. Queue, 5(1):40–49, 2007.

[26] T. W. Bart Vermeulen and S. Bakker. Ieee 1149.1-compliant access architecture for multiple

core debug on digital system chips. In Proceedings of the International Test Conference, 2002.

[27] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex transmis-

sion over half-duplex links. Commun. ACM, 12(5):260–261, 1969.

[28] S. Bhattacharya, J. Darringer, D. Ostapko, and Y. Shin. A mask reuse methodology for re-

ducing system-on-a-chip cost. In ISQED ’05: Proceedings of the 6th International Symposium

on Quality of Electronic Design, pages 482–487, Washington, DC, USA, 2005. IEEE Computer

Society.

[29] G. Biegel and V. Cahill. A framework for developing mobile, context-aware applications. In

2nd IEEE International Conference on Pervasive Computing and Communications (PerCom 2004,

March 2004.

[30] Bluetooth.com : The official Bluetooth Technology Website.

http://www.bluetooth.com/bluetooth/.

[31] J. W. Branch, J. S. Davis II, D. M. Sow, and C. Bisdikian. Sentire: A framework for building

middleware for sensor and actuator networks. In The 3rd IEEE International Conference on

Pervasive Computing and Communications (PerCom 2005), March 2005.

[32] Lg electronics selects broadcom platform for blu-ray and hd dvd player.

http://www.broadcom.com/press/release.php?id=947700.

[33] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential processes. Journal

of the ACM (JACM), 31:560–599, July 1984.

http://www.bluetooth.com/bluetooth/
http://www.broadcom.com/press/release.php?id=947700


BIBLIOGRAPHY 161

[34] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Readings in hardware/software co-design,

chapter Ptolemy: a framework for simulating and prototyping heterogeneous systems, pages

527–543. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[35] CIFS. http://www.microsoft.com/mind/1196/cifs.asp.

[36] OMG’s Corba website. http://www.corba.org/.

[37] D. Culler, D. Estrin, and M. Srivastava. Guest editors’ introduction: Overview of sensor

networks. IEEE Computer, 37(8):41–49, August 2004.

[38] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco. TinyLIME: Bridg-

ing mobile and sensor networks through middleware. In 3rd IEEE International Conference on

Pervasive Computing and Communications (PerCom 2005), March 2005.

[39] H. Dai, M. Neufeld, and R. Han. Elf: an efficient log-structured flash file system for micro

sensor nodes. In Proceedings of the 2nd international conference on Embedded networked sensor

systems(SenSys), 2004.

[40] E. W. Dijkstra. Chapter i: Notes on structured programming. pages 1–82, 1972.

[41] S. M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. W. Trickey, and P. Winterbottom. The

inferno operating system. Bell Labs Technical Journal, pages 5–18, Winter 1997.

[42] A. Dunkels. Full TCP/IP for 8 Bit Architectures. In Proceedings of the First ACM/Usenix Inter-

national Conference on Mobile Systems, Applications and Services (MobiSys 2003), San Francisco,

May 2003.

[43] A. Dunkels. Full TCP/IP for 8 Bit Architectures. In Proceedings of the First ACM/Usenix Inter-

national Conference on Mobile Systems, Applications and Services (MobiSys 2003), San Francisco,

May 2003.

http://www.microsoft.com/mind/1196/cifs.asp
http://www.corba.org/


BIBLIOGRAPHY 162

[44] A. Dunkles. Protothreads: lightweight, stackless threads in c.

http://www.sics.se/∼adam/pt.

[45] emNet technical overview. www.emware.com.

[46] D. R. Engler, M. F. Kaashoek, and J. J. O’Toole. Exokernel: an operating system architecture

for application-level resource management. In SOSP ’95: Proceedings of the fifteenth ACM

symposium on Operating systems principles, pages 251–266, New York, NY, USA, 1995. ACM

Press.

[47] M. B. Z. Eric E. Johnson, Jiheng Ha. Lossless trace compression. IEEE Transactions on Com-

puters, 50(2):158–173, 2001.

[48] R. Faulkner and R. Gomes. The process file system and process model in UNIX system V. In

USENIX Association. Proceedings of the Winter 1991 USENIX Conference, pages 243–252, Berke-

ley, CA, USA, 1991. USENIX.

[49] S. F.Oakland. Considerations for implementing ieee 1149.1 on system-on-a-chip integrated

circuits. In Proceedings of the International Test Conference, 2000.

[50] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deployment of adap-

tive wireless sensor network applications. In The 24th International Conference on Distributed

Computing Systems (ICDCS’05), 2005.

[51] L. W. K. A. R. K. Francisco DaSilva, Yervant Zorian. Overview of the ieee p1500 standard. In

International Test Conference 2003, page 988, 2003.

[52] Fuse: Filesystem in userspace. http://fuse.sourceforge.net.

[53] D. Galernter. Generative communication in Linda. ACM Computing Surveys, 7(1):80–112,

1985.

http://www.sics.se/~adam/pt
file:www.emware.com
http://fuse.sourceforge.net


BIBLIOGRAPHY 163

[54] D. R. Gonzales. M*CORE architecture implements real-time debug port based on Nexus

consortium specification, 1999. http://www.nexus5001.org/archive/pdf/northcon99.pdf.

[55] M. M. Gorlick. The flight recorder: an architectural aid for system monitoring. In PADD ’91:

Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debugging, pages 175–181,

New York, NY, USA, 1991. ACM Press.

[56] N. A. Gray. Comparison of web services, java-rmi, and corba service implementation. In Fifth

Australasian Workshop on Software and System Architectures, Melbourne, Australia, 2004.

[57] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks

using Kairos. In International Conference on Distributed Computing in Sensor Systems (DCOSS),

2005.

[58] R. Gupta and Y. Zorian. Introducing core-based system design. IEEE Design and Test of

Computers, pages 15–25, 1997.

[59] W. Heinzelman, A. Chandrasekaran, and H. Balakrishnan. Application-specific protocol ar-

chitectures for wireless networks. IEEE Transactions on Wireless Communications, 1(4), October

2002.

[60] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo. Middleware to support

sensor network applications. IEEE Network, 18(1):6–14, 2004.

[61] E. V. Hensbergen and R. Minnich. Grave robbers from outer space : Using 9p2000 under

linux. In Proceedings of Freenix, 2005.

[62] A. B. T. Hopkins. Debug support strategy for systems-on-chips with multiple processor cores.

IEEE Trans. Comput., 55(2):174–184, 2006. Member-Klaus D. McDonald-Maier.

http://www.nexus5001.org/archive/pdf/northcon99.pdf


BIBLIOGRAPHY 164

[63] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network

programming at scale. In SenSys ’04: Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 81–94, New York, NY, USA, 2004. ACM Press.

[64] GNU Hurd. http://www.gnu.org/software/hurd/hurd.html.

[65] Ieee 802.15.4 standard. http://standards.ieee.org/getieee802/802.15.html.

[66] C. T. Inc. Mote in-network programming user reference. http://www.tinyos.net/tinyos-

1.x/doc/Xnp.pdf.

[67] Intel: Product brief of intel ixp2850 network processor.

http://www.intel.com/design/network/prodbrf/25213601.pdf.

[68] International technology roadmap for semiconductors 2001 edition: Design, 2001.

http://public.itrs.net/Files/2001ITRS/Home.htm.

[69] Jini architectural overview. http://www.sun.com/software/jini/whitepapers.

[70] L. L. Johannes Gehrke. Guest editors’ introduction: Sensor-network applications. IEEE Inter-

net Computing, 10(2):16–17, Mar/Apr 2006.

[71] Ifs kit - installable file system kit. http://www.microsoft.com/whdc/DevTools/IFSKit/default.mspx.

[72] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, and L. Iftode. Smart messages: A dis-

tributed computing platform for networks of embedded systems. The Special Issue on Mobile

and Pervasive Computing, the Computer Journal, 2004.

[73] T. J. Killian. Processes as files. In USENIX Association. Proceedings of the Summer 1984 USENIX

Conference, pages 203–207, Berkeley, CA, USA, 1984. USENIX.

[74] S. R. Kleiman. Vnodes: An architecture for multiple file system types in sun UNIX. In

USENIX Summer, pages 238–247, 1986.

http://www.gnu.org/software/hurd/hurd.html
http://standards.ieee.org/getieee802/802.15.html
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf
http://www.intel.com/design/network/prodbrf/25213601.pdf
http://public.itrs.net/Files/2001ITRS/Home.htm
http://www.sun.com/software/jini/whitepapers
http://www.microsoft.com/whdc/DevTools/IFSKit/default.mspx


BIBLIOGRAPHY 165

[75] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular router. ACM

Transactions on Computer Systems, 18(3):263–297, August 2000.

[76] V. Kottapalli, A. Kiremidjian, J. Lynch, E. Carryer, T. Kenny, K. Law, and Y. Lei. Two-tiered

wireless sensor network architecture for structural health monitoring. In SPIE Annual Meet-

ing, 2003.

[77] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-isa heteroge-

neous multi-core architectures: The potential for processor power reduction. In MICRO 36:

Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, page 81,

Washington, DC, USA, 2003. IEEE Computer Society.

[78] T. M. Levergood, A. C. Payne, J. Gettys, G. W. Treese, and L. C. Stewart. Audiofile: A network-

transparent system for distributed audio applications. In Proceedings of the USENIX Summer

Conference, 1993.

[79] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. In ASPLOS-X:

Proceedings of the 10th international conference on Architectural support for programming languages

and operating systems, pages 85–95, New York, NY, USA, 2002. ACM Press.

[80] S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei. Event detection services using data service

middleware in distributed sensor networks. In Second International Workshop on Information

Processing in Sensor Networks, 2003.

[81] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer. Design and implementation of a single

system image operating system for ad hoc networks. In The International Conference on Mobile

Systems, Applications, and Services (MobiSys), June 2005.

[82] J. Liu, M. Chu, J. Liu, J. E. Reich, and F. Zhao. State centric programming for sensor and

acutator network systems. IEEE Pervasive Computing, 2(4):50–62, 2003.



BIBLIOGRAPHY 166

[83] C. Locke. Styx-on-a-brick. http://www.vitanuova.com/inferno/rcxpaper.html.

[84] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional query

processing system for sensor networks. ACM Transactions on Database Systems, 30(1), 2005.

[85] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor net-

works for habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM international workshop

on Wireless sensor networks and applications, pages 88–97, New York, NY, USA, 2002. ACM

Press.

[86] H. S. Mark Birnbaum. How vsia answers the soc dilemma. IEEE Computer, 32(6):42–50, 1999.

[87] S. J. J. J. K. P. R. N. B. S. Martin Burtscher, Ilya Ganusov. The vpc trace-compression algo-

rithms. IEEE Transactions on Computers, 54(11):1329–1344, 2005.

[88] D. F. McMullen, T. Devadithya, and K. Chiu. Integrating instruments and sensors into the

grid with c90ahmst-ima web services. In The APAC Conference and Exhibition on Advanced

Computing, Grid Applications and eResearch, Gold Coast, Australia, 2005.

[89] A. Milenkovi and M. Milenkovi. An efficient single-pass trace compression technique utiliz-

ing instruction streams. ACM Trans. Model. Comput. Simul., 17(1):2, 2007.

[90] R. Minnich. 9p2000 file system support for unix/linux/*bsd.

http://v9fs.sourceforge.net.

[91] A library of plan 9 client software for unix. http://swtch.com/plan9port/.

[92] S. M. C. M. H. R. D. S. Morris, J. H. and F. D. Smith. Andrew: A distributed personal com-

puting environment. Communications of the ACM, 1986.

[93] Ifs kit - installable file system kit. http://www.microsoft.com/whdc/DevTools/IFSKit/default.mspx.

http://www.vitanuova.com/inferno/rcxpaper.html
http://v9fs.sourceforge.net
http://swtch.com/plan9port/
http://www.microsoft.com/whdc/DevTools/IFSKit/default.mspx


BIBLIOGRAPHY 167

[94] R. Newton and M. Welsh. Region streams: functional macroprogramming for sensor net-

works. In DMSN ’04: Proceeedings of the 1st international workshop on Data management for

sensor networks, pages 78–87, New York, NY, USA, 2004. ACM Press.

[95] npfs : Library for writing 9p2000 compliant user-space file servers.

http://sourceforge.net/projects/npfs.

[96] OMG Object Management Group. Smart transducers interface specification, 2003.

[97] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbot-

tom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254, Summer 1995.

[98] R. Pike and D. M. Ritchie. The styx architecture for distributed systems. Bell Labs Technical

Journal, 4(2):146–152, 1999.

[99] B. Pisupati and G. Brown. File System Interfaces for Embedded Software Development. In

Proceedings of the International Conference on Computer Design, 2005.

[100] B. Pisupati and G. Brown. File system framework for organizing sensor networks. In SAC

’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 935–936, New York,

NY, USA, 2006. ACM Press.

[101] D. Presotto and P. Winterbottom. The organization of networks in Plan 9. In USENIX Associ-

ation. Proceedings of the Winter 1993 USENIX Conference, pages 271–280 (of x + 530), Berkeley,

CA, USA, 1993. USENIX.

[102] A. Rubini. Kernel korner: The ”virtual file system” in linux. Linux J., 1997(37es):21, 1997.

[103] Samba - opening Windows to a wider world. http://www.samba.org.

[104] A. D. Samples. Mache: no-loss trace compaction. In SIGMETRICS ’89: Proceedings of the 1989

http://sourceforge.net/projects/npfs
http://www.samba.org


BIBLIOGRAPHY 168

ACM SIGMETRICS international conference on Measurement and modeling of computer systems,

pages 89–97, New York, NY, USA, 1989. ACM Press.

[105] S. Shempler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck.

Network file system NFS version 4 protocol. Technical Report RFC 3530, Network Working

Group, April 2003.

[106] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking architecture

and applications. IEEE Personal Communications Magazine, 8(4):52–59, 2001.

[107] I. C. Society. Ieee standard test access port and boundary-scan architecture, 2001.

[108] E. Souto, G. Guimares, G. Vasconcelos, M. Vieira, N. S. Rosa, C. Andr, and G. Ferraz. A

message-oriented middleware for sensor networks. In Workshop on Middleware for Pervasive

and Ad-hoc Computing, 2004.

[109] P. Stanley-Marbell and L. Iftode. Scylla: a smart virtual machine for mobile embedded sys-

tems. wmcsa, 00:41, 2000.

[110] R. Stann and J. Heidemann. Rmst: Reliable data transport in sensor networks. In Proceedings

of the 1st IEEE International Workshop on Sensor Net Protocols and Applications (SNPA), 2003.

[111] J. Sugermann, G. Venkitchalam, and B. H. Lim. Virtualizing i/o devices on vmware work-

station’s hosted virtual machine monitor. In Proceedings of the 2001 USENIX Annual Technical

Conference, Boston, MA, USA, 2001.

[112] Q. C. Y. C. D. E. J. G. S. G. L. G. T. H. S. K. L. L. S. S. J. S. R. S. A. W. T. Abdelzaher, B. Blum. En-

virotrack: Towards an environmental computing paradigm for distributed sensor networks.

In 24th IEEE International Conference on Distributed Computing Systems (ICDCS’04), pages 582–

589, 2004.



BIBLIOGRAPHY 169

[113] S. Tilak, B. Pisupati, K. Chiu, and G. Brown. A File System Abstraction for Sense and Respond

Systems. In Proceedings of the Workshop on End-to-End Sense and Respond Systems, 2005.

[114] TinyOS: An operating system for wireless sensor networks. http://www.tinyos.net.

[115] B. L. Titzer and J. Palsberg. Nonintrusive precision instrumentation of microcontroller soft-

ware. In LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems, pages 59–68, New York, NY, USA, 2005. ACM Press.

[116] J. Turley. Nexus standard brings order to microprocessor debugging.

http://www.nexus5001.org/nexus-wp-200408.pdf.

[117] Upnp - universal plug and play forum. http://www.upnp.org.

[118] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. Psfq: a reliable transport protocol for

wireless sensor networks. In WSNA ’02: Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 1–11, New York, NY, USA, 2002. ACM Press.

[119] D. Wilner. Windview: a tool for understanding real-time embedded software through system

vizualization. In LCTES ’95: Proceedings of the ACM SIGPLAN 1995 workshop on Languages,

compilers, & tools for real-time systems, pages 117–123, New York, NY, USA, 1995. ACM Press.

[120] A. Winfield and O. Holland. The application of wireless local area network technology to the

control of mobile robots. Journal of Microprocessors and Microsystems, 23(10):597–607, 2000.

[121] P. Winterbottom. Acid: A debugger built from a language. In Proc. of the Winter 1994 USENIX

Conference, pages 211–222. USENIX, 1994.

[122] R. W. Wisniewski and B. Rosenburg. Efficient, unified, and scalable performance monitoring

for multiprocessor operating systems. In SC ’03: Proceedings of the 2003 ACM/IEEE conference

on Supercomputing, page 3, Washington, DC, USA, 2003. IEEE Computer Society.

http://www.tinyos.net
http://www.nexus5001.org/nexus-wp-200408.pdf
http://www.upnp.org"


BIBLIOGRAPHY 170

[123] W. Wolf. The future of multiprocessor systems-on-chips. In Proceedings of the 41st annual

conference on Design automation - Volume 00 (DAC ’04), pages 681–685. ACM, 2004.

[124] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the java system. Computer

Systems, 9(4):265–290, 1996.

[125] A. Woo, S. Seth, T. Olson, J. Liu, and F. Zhao. A spreadsheet approach to programming

and managing sensor networks. In IPSN ’06: Proceedings of the fifth international conference

on Information processing in sensor networks, pages 424–431, New York, NY, USA, 2006. ACM

Press.

[126] Crossbow technology. http://www.xbow.com.

[127] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor net-

works. SIGMOD Record, 2002.

[128] Y. Yao and J. Gehrke. Query processing for sensor networks. In Proceedings of the 2003 CIDR

Conference, 2003.

[129] G. Zimmermann, G. Vanderheiden, and A. Gilman. Universal remote console - prototyping

the alternate interface access standard. In Center on Disabilities Technology and Persons with

Disabilities Conference, 2000.

[130] Y. Zorian. Embedding infrastructure ip for soc yield improvement. In DAC ’02: Proceedings

of the 39th conference on Design automation, pages 709–712, New York, NY, USA, 2002. ACM

Press.

http://www.xbow.com

	Acknowledgements
	Abstract
	Introduction
	Software in Embedded Systems
	Underlying Methodology
	Motivations for using Filesystem Abstractions
	Alternate Approaches
	Contributions & Overview of Dissertation
	Changes

	Underlying Technology
	Introduction
	Alternatives for File System Implementation
	The Plan 9 Model
	9P protocol

	Implementing 9P filesystems
	Embedded Filesystem
	Mount Filesystem
	Clone Filesystem

	Host Access of 9P filesystems
	Summary

	Application to Embedded Software Development
	Introduction
	Requirements for SoC software development
	Present Practice
	Overview of JTAG
	Limitations of JTAG

	Methodology
	Filesystem Representations for System on Chip (SoC)
	Addressing SoC requirements

	Implementation
	Design objectives
	Architecture Layout
	Discussion

	Application to Debugging
	Application to Tracing
	Related Projects
	Summary

	Application to Sensor Networks
	Introduction
	Sensor Networks Background
	Filesystem Representations for Sensor Networks
	Usage
	Data Centric Applications
	Event Based Applications
	Sensor Application Configuration & Deployment

	Distributed Filesystem Implementation
	Related Work
	Evaluation
	Summary

	Enabling Proxy Based Resource Access for Embedded Devices
	Introduction
	Methodology Adoption
	Resource Export
	Embedded Resource Access

	An Illustrative Example
	Discussion
	Writing Richer code for small devices
	Moving to a SoC scenario

	Related Work
	Summary

	Conclusion
	Motivations for Using Filesystem Abstractions
	Summary of Contributions
	Long Term Relevance
	Future Work

	Bibliography

