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ABSTRACT
Effective defense against Internet threats requires data on global 
real  time network status.  Internet  sensor networks provide such 
real time network data. However, an organization that participates 
in a sensor network risks providing a covert channel to attackers if 
that organization’s sensor can be identified. While there is benefit 
for every party when any individual participates  in such sensor 
deployments,  there  are  perverse  incentives  against  individual 
participation.  As  a  result,  Internet  sensor  networks  currently 
provide limited data.  Ensuring anonymity of individual  sensors 
can decrease the risk of participating in a sensor network without 
limiting data provision.

Two  contributions  are  made  in  this  paper.  The  first  is  an 
anonymity mechanism to  defeat  injection  attacks.  This  defense 
mechanism  is  based  on  economics  rather  than  classic 
cryptographic  protocols.  The  second  builds  on  the  foundations 
created by the first. It is the a proposal for randomized sampling 
of correlated sensory inputs to asymmetrically increase the cost of 
sensor identification for attackers without significantly reducing 
the quality of the published data.
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1.INTRODUCTION
The problem of sensor anonymity is derived from a need to share 
data.  Our solution is constructed  upon a foundation of network 
protocol analysis, information theory, and economics, rather than 
cryptographic assurances of anonymity. We begin by describing 
Internet  sensor  networks,  then  provide  a  brief  overview  of 
previous  work on  anonymity-enhancing  network  protocols.  We 
also  define  the limitations of previous approaches and illustrate 
the advantages of the proposed approach.

After this high level introduction, we focus on probe attacks for 
various classes of sensor  networks.   This includes  a high level 
description of how attackers use probe networks to obtain covert 
channels.

The  third  major  section  details  our  proposed  approach.  We 
conclude that in the daily operation of sensor networks, economic 
incentives,  and  information theoretic  defenses  that  increase  the 
cost to attackers can create an effective defense. 

1.1  Internet Sensor Networks
Attacks can be roughly categorized into two groups according to 
their  targeting strategy: directed  attacks and undirected  attacks. 
Directed  attacks  or  targets  of  choice  occur  when  attackers 
purposely mount an attack on a previously identified and selected 
organization.  Undirected attacks or targets of opportunity occur 
when attackers are searching for some class of resource in order to 
exploit it. In undirected attacks, the location of such resource is of 
minor  importance.  Organizations  usually  have  very  different 
approaches to defending against these two types of attacks; thus, 
being able to distinguish them is extremely useful.

Differentiating between directed and undirected  attacks requires 
information  about  the  global  state  of  the  Internet  as  close  as 
possible  to  real  time.  Data  on  network  status  enables 
administrators  to  classify threats  as  directed  or  undirected,  and 
thus choose an appropriate defense. In addition, by indicating the 
breadth of an attack, the victim can identify possible allies and 
collaborative  sources  of  information.  Global  data  enables 
administrators to better respond to abnormal behavior in their own 
systems. However, as each network administrator can only know 
the status  of the  network under  his/her  control,  data sharing is 
required  to  produce  a  global  view.  Cooke  et  al.[29]  show 
evidence that  distributed  data sharing is inadequate  as different 
address  blocks  observe  different  traffic  patterns.  Thus,  even  a 
large aperture sensor is inadequate for knowledge of the network 
state if it  is located in a continuous address block.  Widespread 
sensor placement is required to have a representative sample of 
the  global  Internet.   It  is  not  a  surprise  that  multiple  data 
aggregation services have emerged to provide such global view.  

Aggregation  services  collect,  transform  and  publish  some 
summary  of  the  information  locally  gathered  by  the  sensors. 
Sensors  are  individual  sources  of  local  network  status  such  as 
honeypots or IDS. Examples of such services/systems include the 
Internet Storm Center (ISC or Dshield)[16], the Worminator[15], 
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Neti@home[12], myNetwatchman[10], CAIDA[7], the University 
of Michigan Internet Motion Sensor[17], and the US Department 
of  Homeland  Security  PREDICT  system[24].  All  these 
aggregation services work in a similar manner: data from sensors 
are  collected,  filtered and  published  at  a predefined rate1  The 
rates vary between services from one hour to twenty-four hours. 
The scope of publication also varies, with Dshield publishing the 
least  detailed  data  to  the  public  at  large  and  the  UM Internet 
Motion  Sensor  publishing  detailed  data  only  to  its  members. 
These observations indicate the understanding of the existence of 
a  trade-off between the  value  and  the  risk of  data  availability. 
There is a concern that more public and detailed data may be more 
useful to attackers than to defenders. Effective anonymization of 
data  sources  can  mitigate  this  trade-off  between  empowering 
defenders and enabling attackers. 

The relationships between sensors, aggregation services and users 
of the service are summarized in Figure 1.

Figure 1. Data Flow For A Data Aggregation Service.

1.2 Previous Work
Maintaining source anonymity of widely published data has been 
a  problem  of  interest  in  politics  for  several  centuries2.  The 
problem of measuring the efficacy of anonymization methods has 
two recent theoretical  and practical  contributions for measuring 
the efficacy of anonimization are important to this work. The first 
comes  from  Latanaya  Sweeney  [13,14],  who  not  only 
reintroduced  and  analyzed  the  problem  of  cross-data 
identification,  but  also  provided  a  solution  for  static  data  sets 
called  k-anonymity.  The  second  contribution  comes  from 
Serjantov  and  Danezis  [22]  who  redefined  the  concept  of 
‘anonymity set’ in a more precise and information theoric manner. 
Serjantov and Danezis illustrated that several methods  presumed 
to yield a high anonymity set provided much less anonymity than 
previously thought. While their work is based on mix networks 

1 Actually, the DHS's PREDICT system would work on base of 
NDA agreements. It is still unclear of the need for a trust chain 
for researchers will be a limiter in the use of the data.

2 Examples  of  anonymously  published  political  documents 
include  the  Federalist  Papers,  and  the  translations  of  ‘The 
Rights of Man and the Citizen’, which were not welcomed by 
colonial powers at the end of the 18th century.

their  ideas  can  be  expanded  to  other  anonymity  producing 
methods.

In  the  network  security  arena,  the  first  efforts  at  providing 
methods for anonymity came from Flegel et. al[4,6].  Their efforts 
were  directed  at  removing  power  from  system administrators 
through anonymization of system logs.  Minshall[9]; Fan et.al[5]; 
and Pand and Paxon[11] provided partial solutions to the problem 
of  anonymization  of  IP  addresses  on  captured  packet  traces. 
Slagel  et.  al  [25]  focused  on  the  problem  of  netflow 
anonymization.  Lakshmanan  et.  al[8]  propsoed  a  generic 
transformation  widely  applicable  to  communication  headers. 
Lincoln  et  al.  [23]  proposed  a  structure  to  enable  sharing 
searching  of  IDS  alerts  in  order  to  detect  correlations. 
Unfortunately,  with  the  exception  of  the  packet  traces 
anonymization methods and  the works of  Lakshmanan et al.[8] 
and  Lincoln[23],  the  efficacy  of  the  proposed  solutions  or 
methodologies have not been tested against data linking.  In the 
case of packet traces, the possibility of cross data linking is made 
explicit but never analyzed.

Bethencourt  et  al.[2],  was  the  first  researcher  to  illustrate  the 
problems  of  cross  data  linking  in  Internet  sensors.  The  set  of 
proposed solutions does not include measurements,  nor does it 
provide theoretical bounds  on the effectiveness of their solutions. 
This  paper  complements  their  work by providing  a  theoretical 
framework in which to address the problem of probe attacks as 
wel as giving potential solutions  to a system with the parameters 
as Dshield. 

Clayton et al.[28] makes a good introduction on the fallacies of 
some data  anonymization  systems.  In  particular,  they conclude 
that:  “...  no operation concerning a pseudonym should have an 
observable side effect that could leak the identity of the user... ”. 
Internet sensor networks, the domain of interest, are designed to 
show side  effects.  Yet  the  identity  of  internet  sensors  (the  IP 
address), should remain hidden.

Another area of interest is the privacy preserving data mining. In 
particular,  the  work  of  Agrawal  et  al.[1],  and   Brickell  and 
Shmantikov[26].  Their  research  is  targeted  on  effectively 
anonymizing the sensors from data miners by using cryptographic 
or  data  perturbation  techniques.  We  will  explain  what 
differentiates our work from previous work in section 1.4. We will 
provide details of the problem space, including the attacks models 
and trust assumptions, in section 1.3. 

1.3. Defining the Problem
Our model assumes that the adversary has very little control over 
the  network  infrastructure,  but  does  have  complete  control  on 
many  end  points.  We  assume  that  the  aggregation  service  is 
trusted by all the sensors, in that the aggregation service will not 
reveal the identity of the sensors. We assume that there is some 
mechanism to ensure that the communication channel between the 
sensors  and  the  aggregation  service  is  protected  against  traffic 
analysis.  We assume that  the  aggregation  service can  uniquely 
identify any sensor with whom it has previously interacted. We 
assume  that  full  aggregated  data  are  available  to  the  attacker 
(he/she belongs to the data sharing consortia), and that an attacker 
has control  over some, but not a significant part of the sensors. 
We further assume that the sending of probes has a very small yet 
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non-zero cost to the attacker. The problem that we are trying to 
solve is:  Is there a way to make the probe sensor identification of 
a large portion of the sensors economically unfeasible? Can we 
provide a high lower bound on this cost? Further, Can we measure 
how  much  our  data  output  changes  when  different  mitigation 
mechanisms are applied? This last question will only be analyzed 
for a Dshield like system.

The assumption that  an attacker is able to compromise multiple 
end points but not as likely to compromise infrastructure nodes is 
simply the recognition of botnets [21]. In our trust model, we trust 
the aggregation service, but do not trust the other entities that are 
also receiving the data from the sensors.  This is  consistent  not 
only with botnets, but also with a grayhat adversary or adversaries 
that are competitors in other arenas. 

One of the interesting elements of this problem is that attackers 
use the infrastructure, i.e. the reports of the sensor networks, to 
attack the infrastructure, the location and accuracy of the sensor 
network. This particular study focuses on adversaries that cannot 
control  or  observe  how  the  information  passes  through  the 
network, rather focuses on adversaries  that take advantage of the 
implicit feedback loop generated by the process of publishing the 
data.

The  key  differentiators  of  the  sensor  network  anonymization 
probse are: (i) the data are not static, data is periodically added to 
the output (ii) the data provided by the aggregator are available to 
the  attacker,  and  (iii)  the  defender  cannot  distinguish  'a priori' 
probe data from bad injected data. 

1.4 Comparison with Previous Approaches

With  all  the  assumptions  detailed  above,  it  is  reasonable  to 
believe that  this problem can be solved by applying previously 
published anonymization techniques.  In  this  section  we explain 
why some general techniques fail to address our problem.  

Data filtering may seem like an obvious approach.  The problem 
with data filtering is that abnormal network status data injected by 
attackers cannot be distinguished from abnormal network data due 
to non-probing attackers.  

Mix  networks  or  onion  routing  cannot  be  used  as  a  defense 
mechanism  against  probe  attacks  (data  injection)  as  these  are 
designed to address a different problem.  Mix networks and onion 
routing  provide  unlikable  communication  channels  across 
untrustworthy communication intermediate peers that are trying to 
determine who is communicating with whom. In our solution and 
model, this part of the problem is assumed to be solved potentially 
by some implementation of these mechanisms such as Tor[27]. 
Further,  our  problem  statement  differs  from  anonymous 
communication problems in that  our adversary has very limited 
control of the infrastructure, yet still controls many end points. 

Sweeney’s [13,14]  emphasizes the  use of k-anonymity only for 
static  data  sets.  The  process  of  re-identification  of  datasets  is 
usually done with the use of external data utilized for cross data 
linking.  For data that increases over time where the attacker has 
some  control,  another  method  can  be  used:  the  use  of  probe 
response attacks.  The possibility of such attacks in the Internet 
has been known in the literature[11] but it was not until the work 
of Bethencourt et. al. [2] that an algorithm and simulations were 
published.  Bethencourt  et  al.  demonstrated  the  problem  by 

showing how simulations allow easy discovery of sensors of the 
ISC[16].   In  this  paper,  we  generalize  the  costs  for  such 
identification procedures for any aggregation service in addition 
to providing guidance to mitigation mechanisms. The procedure 
we introduce increases the cost for the attacker while minimizing 
the distortion of the data released by the aggregation service.

The proposal of Agrawal et al. [1] consists of adding a random 
variable to the sensor data to effectively perturb the data output. If 
the  random  variable  has  a  very  large  variance,  this  method 
requires  a  large  number  of  inputs  to  effectively  approach  the 
original  distribution.  If the  variance  is  small,  the  attacker need 
only  to  generate  data  outside  the  variance  to  create  a  reliably 
detectable signal.

The  work  of  Lincoln[23]  includes  several  techniques  for 
anonymization and related defense mechanisms. The method they 
propose against probe response attacks is the use of randomized 
delay alert correlation,  with the time stamp field scrubbed.  This 
method  cannot  be  reasonably  used  for  our  purposes,  as  data 
sharing  for  operational  use  requires  near  real  time  latency. 
Further, strategic (long term) use requires timestamps with at least 
a one day resolution.

The  work  of  Brickell  and  Shmantikov[26]  uses  cryptographic 
techniques  to  unlink  data  thus  protecting  individuals  from 
releasing their identity to data miners.  However this work does 
not  take into account the possibility that the data being reported 
can be influenced by the party that is trying to identify the identity 
of the data sources. 

The approaches suggested by Bethencourt et al.[2], in particular 
the sampling of data outputs, appears to be a good compromise. In 
particular,  Bethencourt  uses  economic  incentives  to  prevent 
‘marking’  of  packets.  The  problem  with  this  approach  is  that 
sampling  is  done  on  a  per  sensor  level,  after  data  have  been 
collected. This approach does not increase the signal to noise ratio 
for  the  attacker.   This  approach  does  not  work  if  we  assume 
attackers with access to large botnets, as the defense mechanism 
leaves the attack trivially parallelizable.

All of the previously suggested techniques  address the problem 
after  the  data  have been  aggregated.  In  economic  terms,  these 
post-collection sampling mechanisms provide more advantage to 
the  attackers  than  the  defenders.  Post  collection  data 
transformation  are  more  expensive  for  the  aggregator  than 
injection for the attacker, thus creating a systematic asymmetry. 
The approach presented here advantages the defenders by utilizing 
the  ability  to  apply  sampling  at  different  dimensions  and  in 
different  levels  at  event  recording  time.  Thus  attackers  must 
synchronize  their  injected  signals  in  all  the  possible  filtering 
dimensions.  The  result  is  an  economic  disadvantage  for  the 
attacker, as described in more detail in the following pages. 

2.PROBE ATTACKS AND INTERNET 
SENSOR NETWORKS
Internet  sensor  networks are the  data source  for Internet  status 
aggregation  services.  Aggregation  serves  two  functions:  It 
centralizes data publishing, and enables limited anonymization of 
the sensors. Sensor anonymization is a fundamental requirement 
for the contributors as well as the quality of the aggregate data. 
An attacker who can identify the sensors will be able to: (i) hide 



attacks (hide or slow worm spread), (ii) hide a directed attack to 
an  organization,  or  (iii)  completely  distort  the  quality  of  the 
exported data, thus making the data sharing effort useless. 

Anonymization is so important, that despite economic benefits to 
data  sharing[18],  sharing  detailed  information  security  data  is 
usually  highly  limited.  Organizations  that  share  internal  data 
include  the Honeynet Alliance [19] and the business sector-based 
ISAC structure in the US. But even within those groups, data are 
aggregated,  filtered  and  thus  transformed  before  release.  (The 
Honeynet  Alliance  is  a  notable  exception  to  this  rule.  Sensor 
anonymity is not an issue in the Honenet Alliance as the lifespan 
of honeypots is usually limited to a few intrusions). Many of the 
current data sources include sensors that are not easily relocated, 
such as Darknets.  For  others,  the  shared information is usually 
reduced  to  summaries  of  data  for  example  as  with  the  REN-
ISAC[20].

2.1 Probe Internet Sensor Attacks
Probe sensor attacks use the feedback channel implicitly provided 
by the data compilation and aggregation.  Since the publication 
phase  cannot  distinguish  “good”  users  from  “bad”  users,  a 
malicious  user  can  send  traffic  into  potential  sensors  to  try to 
observe  the  abnormal  signals  in  the  output  of  the  data 
aggregation. See Figure 2.

The most generalized statement of the problem from the attacker's 
perspective is:  “Determine the parameters of an box with some 
controllable  inputs  and some observable outputs”.  However the 
sensor  identification  problem  differs  from  most  system 
identification methods because our system has many inputs and 
outputs, and is generally non-linear.  The attacker's objective is to 
estimate the sampling function used to collect the data from the 
Internet. The function’s secret parameters are the true location of 
the  sensors,  as  the  remaining  parameters  must  be  published  in 
order to make sense of the published data.

Figure 2. Data Flow For Probe Response Attacks.

The costs associated with running sensor identification attacks can 
be  explained  by  running  time  and  bandwidth  costs.  We  will 
discuss two attack algorithms: a brute force approach and an N-
ary  recursive  approach.  These  are  analyzed  in  terms  of  their 
“running time”. This parameter is used to estimate the cost for an 
attacker. The running time of an algorithm describes a bound on 
the number of operations needed to complete the algorithm. The 

cost  for  each  algorithm  is  expressed  in  terms  of  the  needed 
bandwidth required for its operation.

2.1.1 Linear (Brute Force) Algorithm
This  algorithm essentially iterates  through each of the  possible 
sensors  to  determine  if  it  is  a  sensor  or  not.  The algorithm is 
expressed below:
1. For each possible location
2.   Estimate the number of sensors in the current 
selected location
3.   if number of sensors is zero 
4.       then discard location
5.       else location is a sensor

The running time of this algorithm is:  U*K.  Where U is the size 
of the search space and K is the number of iterations needed to 
determine  whether  a  sensor  has  been  located.  In  this  case,  a 
partition of size one. The bandwidth cost per iteration is P, where 
P is the number of packets required to generate a readable signal 
in  the  aggregate  data.   The  total  cost  for  such  algorithm  is 
calculated  by multiplying the  running time by the  per iteration 
cost: 

Total cost= running time * iteration cost= U*K*P.

This algorithm has a minimal cost, but also has a linear running 
time. A linear running time is unfeasible for large sensor spaces, 
such as the Internet. 

2.1.2 N-ary Search Algorithm
Another way to approach sensor identification is to use a divide 
and  conquer  approach.  In  this  algorithm  (based  on  the  one 
published by Bethencourt et. al.[2]),  the possible search space is 
partitioned at each iteration.  A partition can be discarded if  it 
contains no sensors, or the partition is of size one, meaning that 
the location of the sensor has been discovered.
1. Make the set of non-empty partitions={all the 
search space}.
2. while the set of non-empty partitions is not 
empty do
3.   Extract one of the element from the set of 
the non-empty partitions. Name it x.
4.   Partition x up to N partitions.
5.   For each of the subpartitions of x do:
6.    Estimate the number of elements in it.
7.    if the number of elements in the 
subpartition is zero
8.       then discard the subpartition.
9.       else if size of subpartition is equal to 
one
10.              then sensor has been located
11.              else     insert the subpartition into the set of non-
empty partitions

The  maximum running time of the algorithm is O((log U)*S*K). 
Where:  U is  the  size  of  the  search  space;  S  is  the  number  of 
sensors; and K in the number of iterations needed to estimate the 
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number  of  sensors  in  a  partition.  The  expected  running  time 
assuming  a  uniform  distribution  of  the  sensors  is  also  O((log 
U)*S*K).  The  change  from  a  linear  U  dependency  to  a 
logarithmic U dependency is  due  to  the  comparison  in  step 7. 
Once a portion of the search space has been determined without 
interest,  it  can be safely disregarded. Thus most of the research 
has evolved on making this comparison to zero unreliable[2]. The 
side effect of this algorithm’s reduction in time is an increase in 
resources needed.  In particular, the cost of each iteration is  the 
partition  size  times  P.  As the  maximum partition  size  is  U/N, 
where  N  is  the  maximum number  of  partitions,  the  cost  per 
iteration is bounded by U/N*P. 

The total cost is then: O(log U * S *K) * cost_per_iteration <= 
O(log U * S *K * P * U/ N).

3. A RISK BASED APPROACH
The previous analysis assumed is possible to detect a specialized 
signal injected into the system, by injecting some special packets. 
While there is no proof that this can be done with 100% certainty, 
it  can be proved that retrieving a signal over time can be done 
with  arbitrary  precision  given  some  very lax  conditions  (This 
proof  is  on  the  appendix).  Given  this  fact,  data  aggregator 
designers  must  optimize  the  expense,  not  the  possibility  of  an 
attack. Like a work factor in cryptography, solutions must have 
very large  bounds.  In  our  analysis,  we have assumed that  the 
sensor location is fixed for the duration of the sensor attack. This 
assumption approximates current practices and limits the usage of 
the  equations,  but  provides  useful  guidance  for  future 
deployments. This is also the worst case scenario.

The previous equations show dependencies on:

● U: the size of the potential sensor identifications, ie. the 
a priory size of the anonymity set; 

● S: the number of sensors in the aggregation service (S);

● K: the number of iterations required to make a decision, 
or  the number of iterations  required  to  reliably detect 
the attacker’s signal. 

● P.  the  number  of  packets  required  per  iteration  to 
generate a readable signal.

● N ( in the N-ary case), the number of partitions that we 
can  make  per  iteration  or  the  number  of  orthogonal 
signals  that  we  can  inject  into  the  system (with  the 
assumption that the costs are the same).

Only two parameters can be controlled by the aggregator service: 
K and P.   The design goal for data aggregator is to implement 
aggregation methodologies that increase these two values for the 
attacker while having a smaller effect on the overall aggregated 
data (This is in lieu of database perturbation methods). Again the 
key is to measure how well each possible implementation affects 
both the attacker and the defender.

3.1.1 P:  Noise and Sensitivity  

The  P  parameter  is  the  minimum amount  of  effort  required  to 
insert  a  detectable  signal  in  the  published  data.  This  value  is 
directly related to the sensitivity of the system and the noise level 
of the system. For a linear system  (such as the D-shield),  P needs 

to be chosen depending on the average value and the deviation of 
the undisturbed output. P is also related to the resolution of the 
output channel, the set of possible output values for each value in 
the  dataset.  In  general,  increasing  the  size  of  P  reduces  the 
sensitivity of the output or increases the signal to noise ratio.

P  can  also  be  thought  as  an  economic  disincentive  value. 
Increasing P  increases  the  marginal  costs for attackers as  more 
resources are required to extract the identity of any sensor. The 
precise value and effect on attackers depends not only on P, but 
also on the problem specific costs per probe. In the case of simple 
network probes, this cost is almost negligible given the possibility 
of  large  botnets[21].  For  other  types  of  monitors  where  more 
interaction is required, this approach might yield the best results.

Another  advantage of P  is that  it  is  easy for the  aggregator to 
calculate.  The  other  parameter,  K,  is  harder  to  estimate,  thus, 
assumptions about its efficacy must be carefully detailed by both 
designers and deployers of Internet sensors. 

3.1.2 K: Uncertainly and Entropy  
The  K  parameter  represents  a  measure  of  the  amount  of 
information that can be extracted from the published data per each 
interaction. K is an information theoric limit on the properties of 
the  published  data  which  depends  on  the  interaction  of  the 
aggregation service with the sensors. In particular, K for the n-ary 
algorithm is the number of iterations needed to determine estimate 
with  arbitrary  precision  that  there  are  no  sensors  present  in  a 
subset. Augmenting the K parameter does not imply an increased 
cost in resources for the attacker but an increased cost in time.  An 
increase  in  K  requires  a  longer  running  time  that  cannot  be 
compensated by more resources (compromised systems). For low 
interaction systems, where the number of sensors is sufficiently 
large,  the immediate way to generate an increased K is the use of 
sensor  sampling  at  the  aggregator  level.  For  systems  which 
provide richer and more sensitive data, there is no clear way to 
achieve  anonymization  while  preserving  the  probabilistic 
properties of the data. As there is more entropy in the data and 
this a large place for attackes to put unique ‘tokens’  in the data. 
Using  sampling  at  the  sensor  level,  the  number  of  iterations 
required to determine the presence of a sensor  with precision r 
when  the  per  sampling  rate  is  p  is  given  by:
log 1−r / log 1− p .   Notice  that  this  value  is 

independent on the how the markings are done or the independent 
cost per probe.

Another  possible  way  to  increase  the  cost  is  not  to  directly 
increase P or K, but to increase the communication effort needed 
to potentially scan a host. If sufficient communication overhead is 
placed on the attacker then the “free” bandwidth and cycles of the 
compromised  machines  stops  being  “free”.  However  this  is 
beyond the control of the aggregator.

It is important to emphasize that it is impossible to prevent the use 
of  the  system output  as  a  verification  oracle.  The  goal  of  the 
techniques and methods proposed here is to significantly increase 
the cost of using the system as a verification oracle for multiple 
systems simultaneously.  Confirmation attacks  are  still  possible, 
but the use of the attacks to explore the address space is no longer 
feasible.



3.2 An Example with Dshield
Previously discussed is the need to increase the values of P and K 
as much as possible to make the cost or the time required for an 
attacker to  be sufficiently large. In this  section we will discuss 
mechanisms for  a  well  documented  and  understood  aggregator 
service: Dshield.

3.2.1 Dshield Operation
Dshield  collects  data  about  unexpected  connection  attempts  to 
computers. Its sensors are end hosts’ firewall logs. These logs are 
given voluntarily to Dshield by the internet community.  Dshield 
aggregates  such  logs  and  reports  the  number  of  connection 
attempts per port every hour. Dshield also reports the number of 
hosts  and  the  number  of  sensors  that  observed  such  behavior. 
Dshield  was  the  first  aggregation  service  studied  for  probe 
attackers by Bethencourt et al.[2] . That work described two types 
of  defenses  against  probe  attacks:  social  and  technical.  Social 
methods include pricing the published data and the use of private 
reports. But pricing the data would make the data less useful and 
the use of private reports can only help if there no attackers are 
also sensors.

Technical measures suggested include:  per packet sampling, use 
of top lists , scan prevention and Delayed reporting. However all 
of  these  methods  have inherent  problems.  Per  packet  sampling 
generates an increase in P, but does not address the parallelization 
of the attack. Top lists changes the nature of the reported data. 
Scan  prevention  such  as  the  use  of  IPv6  address  space  would 
make the system not useful. Delayed reporting is problematic as 
late data  is  of no  good  for most uses  and in  fact  probe attack 
efficiency is reduced by only a constant.  

We believe that other methods can be more effective at providing 
the  same  level  of  protection  to  the  sensors.  In  particular  the 
increase  in  K is  not  discussed  and  might  be  one  of  the  most 
powerful incentives to prevent such attacks.

3.2.2 Increasing P
The easiest way to increase P is to use of per packet sampling. By 
selecting a packet to be reported with probability p the attacker 
must select its reliability measure r (probability of not detecting a 
sensor)  and  then  he/she  needs  to  send  at  least 
log 1−r / log 1− p   packets  per  iteration  per 

destination.

There are two problems with this approach: First while sampling 
augments the amount of packets  required to detect the signal, it 
also reduces the noise level and thus some channels that where 
previously unusable due to noise become available.  Second this 
sampling technique does not over count the packets. Therefore an 
attacker can use this information to determine an upper bound on 
sensors  in  a  partition.  The  attacker  can  end  probing  on  a 
subpartition when that bound is reached. 

A potentially better method is the use of randomized sampling. At 
each period each sensor selects a probability between p1 and p2 
(with uniform distribution between these two values). By using 
this method three things happen. First, the attacker must use the 
lowest probability to guarantee that his signal is observed while 
the  sensors  average  probability  is  (p1+p2)/2.  Second,  this 
introduces some noise factor. Third, probes can be over counted, 

this overcounting prevents the attacker from discarding  any sub 
partitions  when  thresholds  are  reached.   The  advantage  is  the 
information  asymmetry  of  the  method.  There  is  a  difference 
between the guaranteed probability of selection and the expected 
probability of selection. In other words, this method disturbs the 
data more effectively for attackers than for defenders. 

Other approaches include the use of buckets of defined sizes to 
group  data  or  limiting  the  resolution  of  the  output  signal. 
Resolution is deceased by limiting the number of significant digits 
of the output. However the effect of these methods is similar to 
the simple per packet sampling.

3.2.3 Increasing K
This section provides multiple mechanisms to increase K. Recall 
K is the information theoric limit on the cost function. One  way 
to potentially increase K is also to use sampling, but at the sensor 
level. At each time interval, the aggregation service will select the 
logs from some sensor to be added to the aggregate list with some 
probability p. By using this sampling, an attacker signal for each 
sensor  would  be lost  at  each interval  with probability (1-p)  no 
matter what type of signal he/she introduced.

Another  way to  increase K  is  the use of data correlations.  As 
Dshield  is  designed  to  detect  automated  threats,  we  can  use 
certain domain specific knowledge about  such threats.  Data are 
uncorrelated in the source IP address. Data are also uncorrelated 
in the time domain.  With this in mind, assume that the lower X 
bits of IP address space are uniformly distributed and use them to 
sample. By sampling on one of these bits, an attacker using only 
one  compromised  machine  has  a  50%  change  of  not  being 
reported, independent of the number of probes sent to the sensor. 
Time is the other possible correlation dimension we can use . The 
time  sampling  mechanism  could  select   randomly  only   even 
seconds or only on the first half hour ( or every uneven packet ). 
This would force the attacker  to not only use more resources but 
also to spread them in a more uniform distribution. This requires 
synchronization  among all  the  systems used  by the  attacker to 
launch the attack.

In general, the use of data correlations does not directly increase 
K,  but  provides  a  large  disincentive  to  try  to  determine  the 
location  of  a  sensor.  The  probability  of  observing  the  output, 
given an attacker that  can generate different packets that  match 
each  of  our  selection  dimensions  is  given  by: 
p randomselectionn−1/N

Where

● Pandomselection is the base probability of selecting any one 
random packet ,

● n is the number of probes sent by the attacker that are in 
different dimension 

● N is the total number of possible selections.

Another  option  is  to  use  a  Markov  chain  to  select  whether  a 
sensor reports data back to the aggregate sensor.  While this does 
not  provide  extra  protection  it  increaes  the  complexity  of  the 
attack. The order of the running time remain the same, but  the 
attacker is forced to store more state. Specifically attackers must 



interleave the sampling of data and cannot use depth first attacks. 
Markov chains and data correlations are examples of the use of 
information asymmetry.  

The requirement of state date makes the attack more expensive 
while not changing the accuracy of the collected data.

3.2.4 Limitations of the methods

All  methods  discussed  in  the  increase  of  K  and  P  have  two 
potential  problems.  The  first  is  that  the  data  quality  of  the 
collection  system  is  decreased.   However,  assuming  the 
distributions are uniform in the dimensions selected for sampling, 
adding noise does not change the expectation of the output before 
and after using the proposed methods.  The real  problem comes 
from calculating the expected deviation of this output given each 
sampling mechanism.

The second potential pitfall is the that the system is more sensitive 
to rogue sensors. The effects of rogue sensors can be amplified 
with sampling is the sensor implements the sampling and provide 
malicious  data.  However, if  the  sensors  are  required  to  submit 
sampled  sanitized  data  then  abnormal  deviations  of  sampling 
values can be detected. The sensor system still needs to use other 
tools to validate the data  reported by individual sensors, but this 
question  is out  of the  scope of this  paper.Please  use  a 9-point 
Times Roman font, or other Roman font with serifs, as close as 
possible in appearance to Times Roman in which these guidelines 
have been set. The goal is to have a 9-point text, as you see here. 
Please use sans-serif  or  non-proportional  fonts only for special 
purposes,  such  as  distinguishing  source  code  text.  If  Times 
Roman is  not  available,  try the  font  named  Computer  Modern 
Roman.  On  a  Macintosh,  use  the  font  named  Times.   Right 
margins should be justified, not ragged.

4.CONCLUSIONS
Anonymization procedures employed by aggregation services are 
a  unique  and  important  special  cases  of  anonymity.  Without 
proper  anonymization,  those  services  vulnerable  to  injection 
attacks and reduces the confidence of sensors. The absence of an 
absolute  method  to  assure  anonymity for  sensors  indicates  that 
economic  and  information  theoric  approaches  are  needed.  We 
have shown the fastest known algorithm for sensor location and 
the kinds of mitigation mechanisms that can be put in place.  We 
introduced  two  parameters  that  can  be  used  to  explain  the 
effectiveness of potential mitigation solutions. 

In  the  particular  case  of  the  Dshield  we have  enumerated  the 
problems of other  currently proposed  defense  mechanisms.  We 
have  offered a  set  of  methods  that  can  be  used  to  avoid  said 
enumerated  problems  such  as  the  use  of  randomized  packet 
sampling, sensor sampling and correlation sampling. Further we 
have  shown  that  specificity  when  describing  sampling 
methodologies is required. Sampling in different spaces generates 
different dependencies.
Further  research  is  required  into  the  efficacy  of  leveraging 
determining information asymmetries. Currently we are working 
to determine how robust our proposed methods are against rogue 
sensors.  Currently  deployed  data  aggregators  must  implement 
defense mechanisms as soon as possible in order to guarantee the 
accuracy of their data set. Future aggregation services must spend 
more  time  in  the  analysis  of  the  anonymization  mechanisms 

specifically in on how to generate anonymization methods with 
highest marginal costs for attackers.
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APPENDIX
Sensor identification in discrete spaces:

What we have then is a problem of system identification. These 
type of problems are very common in the control theory, and our 
problem tough similar hast three properties that make them a little 
bit different: (i  ) exact knowledge of complexity  of the transfer 
function,  (ii )  large input  space,  and  (iii   )  non-zero mean (or 
median)  error.  The  exact  knowledge  of  the  complexity  of  the 
transfer function means that  we know the exact structure of the 
system we  want  to  identify,  thus  the  identification  task  is  to 
generate good approximations for the parameters of that structure. 
The fact that this structure is known  a priori   in general reduces 
the  complexity  of  the  identification  procedure.  Usually 
identification systems have a relatively small input space of order 
less than 103  where in our case we have a large set of inputs, that 

is  all  valid  Internet  end  points  around109 .  This  means  that 
methods that require large number of input-output probes cannot 
be used as the space cannot be generated or stored. The non-zero 
mean error means that some techniques as sum of squares cannot 
be used directly.
However,  the  theory  and  knowledge  of  system  identification 
procedures can still be used but with some caveats. For our case 
the critical part is to determine the excitation signals necessary for 
appropriate  identification.  These  signals  must  satisfy  two 
conditions: They must cover as much as possible the internal state 
of  the  system and  they must  be  detectable(identifiable)  in  the 
output. Since an attacker can reach any end point in the system, 
what really requires study is the detection of the signal.

A.1Signal detection in discrete spaces 
Discrete signal detection is a known problem in communication 
systems. In particular, in cases where the transmission channel is 
linear and the noise is with finite energy and with zero mean (ex. 
white noise) methods to detect signal are pretty much known. Our 
case in particular has a finite output space and the signal is also 
discrete in time. Our function is not linear (in general) and the 
noise is bounded and has has non-zero mean. But even in these 
case, signal detection with an arbitrary non-zero error is possible 
under the following circumstances:
1.Ability to excite the channel
2. Noise is i.i.d. (Independent identically distributed) at each time 
period.
3. System is time invariant. 
4. The conditional PDF of the output in the case with no signal is 
known.
5. For at least one of the possible output values yi   the conditional 
probability, given the signal is present is known to differ from the 
no signal case by at least some known εi. In other

words:  ∃ yi /∥P  y i∣Nosignal −P  yi∣Signal ∥≥i

A.2 Proof, binary Case
 If the output function is binary, from condition (4) we know the 
signal less distribution d 1 with parameters: p1  and q1  = 1 − p1 . 
Since this distribution is time invariant  (conditions (2),  (3)) ,  a 
sequence of outputs of this distribution will generate a binomial 
distribution. This binomial distribution with N trials has:

d1=Np1

d1, 2=d1
2 =Np1q 1

(a.1)

From the conditions  for identification(condition  (5)  )  we know 
that for the signal case we have  p2  p1   +  (Or the opposite,  in 
which we can rename the output signals). In this case (with signal) 
the  repeated  trial  would  yield  to  another  binomial  distribution 
with:

d2=Np2

d2, 2=d2
2 =Np2 q2

(a.2)
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Now, we want the error to be least that some  preq. If we set the 
decision threshold in the midpoint between the two expectations t 
= (Np1 + Np2)/2. The error of detection is given by the maximum 
area where the decision threshold gives the opposite value. What 
is needed is to find an N which the error would be less than that.  
Using the Tchevycheff’s inequality we can say:

P∣X d1−d1≥t∣≤
d1

2

t 2 ≤ preq (a.3)

Replacing in equation (4) with values from equation
[30] we can come with:

Np1 q 1

N  p2−p 1/2
2≤p req

4p1 q1

N  p2− p1
≤ preq

Thus:

N ≥
p1 q1

preq p 2−p 1
2

Similarly for the second distribution (with signal) we have:

N ≥
p 2 q 2

preq p 2−p 1
2

Thus we can find a bound for N that satisfies the requirement for 
an arbitrary but non-zero error requirement preq .

A.3 Arbitrary Case
We can convert an arbitrary function that we know at least some 
i into the binary case. And we can use the above proof.
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