
Review of the Hough Transform Method, With an Implementation of the
Fast Hough Variant for Line Detection

Danko Antolovic

Department of Computer Science, Indiana University,
and IBM Corporation

Abstract

This report explains the basic principles of the Hough Transform method for detection of
geometric shapes, and reviews some of its variants and generalizations. The report further
describes an implementation of the Fast Hough variant of the transform, for the detection
of lines and circles in the framework of an image-processing application. Considerations
of speed and efficiency of the Fast Hough algorithm are discussed in detail, with a view
toward an ASIC implementation.

Introduction

The Hough Transform method was introduced, in its most elementary form, by P.V.C.
Hough in 1962, in the form of a patent [1]. Its intended application was in particle
physics, for detection of lines and arcs in the photographs obtained in cloud chambers.
Many elaborations and refinements of this method have been investigated since.

The Hough Transform (HT) falls into the midrange of vision-processing hierarchy. It is
applied to images which have already been freed from irrelevant detail (at some given
size scale) by some combination of filtering, thresholding and edge detection. The
method attributes a logical label (set of parameter values defining a line or quadric) to an
object that, until then, existed only as a collection of pixels; therefore it can be viewed as
a segmentation procedure.

The idea behind the method is simple: parametric shapes in an image are detected by
looking for accumulation points in the parameter space. If a particular shape is present in
the image, then the mapping of all of its points into the parameter space must cluster
around the parameter values which correspond to that shape.

This approach maps distributed and disjoint elements of the image into a localized
accumulation point, which is both a benefit and a drawback. Partially occluded shapes
are still detected, on the evidence of their visible parts – for example, all segments of the
same circle contribute to the detection of that circle, regardless of the gaps between them.
On the other hand, local information inherent in the points of the shape, such as
adjacency, is lost - endpoints of circle arcs and line segments must be determined in a
subsequent step.

Computational load of the method increases rapidly with the number of parameters which
define the detected shape. Lines have two parameters, circles three, and ellipses (circles
viewed at an angle) have five. Hough method has been applied to all of these, but the
ellipse is probably at its upper limit of practicality. Attempts have also been made to

apply the Hough method to arbitrary shapes. These attempts essentially reduce the
method to template matching, canceling the benefits that derive from the analytic, few-
parameter description of the shape.

By its definition, the Hough transform has limited perceptual scope. Its greatest strength
lies in specialized vision, such as manufacturing quality control, analysis of aerial
photographs, and (one would hope) data analysis in particle physics. It has little in
common with the general-purpose vision of animals; its role in the vision systems of
free-ranging robots would likely be limited to some specialized subsystem.

Line Detection and Line-Point Duality

Line detection is based on simple point/line duality. If a line in the image is defined by
oints whose coordinates satisfy the equation p

ckxy += (1)

then each point can also be seen as defined by the bundle of lines passing through it. A
point P in x,y space defines, by equation (1) a line p in the k,c space; each (k,c) point ℓ
on the line p defines, in turn, a line L in the bundle of lines passing through P in the x,y
space.

For all the points P on a line L in x,y space, corresponding lines p form a bundle
intersecting at a point ℓ in k,c space. Coordinates of ℓ are the parameters of line L,
therefore this method can be thought of as a transform between spaces x,y and k,c (see
Figure 1).

Now, let L be a line that is present in the image (x,y space), traced by some black pixels,
possibly spread over the image in small fragments and mixed up with non-linear features.
The line must nevertheless have a corresponding point ℓ in the parameter (k,c) space.

Figure 1. Line-point duality: point P (line bundle) in the image defines line p
in the parameter space; point ℓ (line bundle) in the parameter space defines
line L in the image.

x

y c

L

ℓ

p

P

k

Let us also divide the parameter space into a raster of suitably fine cells. Each image
pixel traces a line p in the parameter space, and the passage of that line through each cell
is recorded. The cell corresponding to point ℓ accumulates large numbers of hits, and
thus identifies the line L in the original image.

Non-linear features, on the other hand, contribute only to the background distribution of
hits. Separation between the two is a matter of choosing some suitable threshold, and it is
obvious that linear features with few pixels can be lost in a large volume of non-linear
chaff.

Normal-form Parametrization of the Line

Since the equation (1) has infinite slope for the vertical line, Duda and Hart [2]
ntroduced a singularity-free alternative, the line parametrization i

θθρ sincos yx += (2)

Here ρ is the line’s distance from the origin, and θ is the inclination of the normal. Like
Equation (1), this formula defines a mapping between the image (x,y) space and the
parameter (ρ,θ) space; however, image points define sine/cosine curves in the parameter
space, rather than lines. Using ρ and θ as the line parameters removes the slope
singularity, but at the cost of computing trigonometric functions. Since these functions
only need to be computed (tabulated) for one dimension of the parameter raster, the cost
may well be acceptable.

A line in the x,y space is represented by the point of intersection of sine curves, in the
characteristic “butterfly” pattern (Figure 2.), and the line detection consists of finding
accumulation points of curves. Determining whether the point’s transform intersects a
(presumably) rectangular cell of the raster is more complicated for curves than for
straight lines; see the discussion of the Fast Hough parameter search below.

x

y

θ

ρ

Figure 2. Normal-form parametrization and the butterfly pattern

ρ

θ

Detection of Circles and Ellipses

The above method(s) can, in principle, be generalized to parametric curves, with the
implication that points in the x,y space map into surfaces in multi- (3 to 5) dimensional
parameter space. Storage requirements make this approach largely impractical, and
Hough method is often supplemented with information about edge direction, in order to
reduce the search in the parameter space.

In particular, Illingworth and Kittler [3] proposed using the Sobel operators to obtain
edge direction at each image point, and then detect circle centers as the accumulation
points at which edge normals intersect. A simple histogram detects the accumulation
points in the “radius space.”

Calculating the edge direction is typically rather inaccurate and introduces amplified
errors in the location of the circle’s center. If large convolution masks are used for more
accurate edge detection, computational load increases in turn. We have found that using
secants between pairs of points works very well for finding circle centers, introducing
smaller errors than the local edge direction. For a comparative study of the methods for
circle detection, see Yuen et al. [4]

V.F. Leavers [5] has introduced the double transform as an interesting method of
reducing the parameter space for circle/ellipse detection. It consists, first, of line-
transforming each point on the curved shape, using the normal-form parametrization.
These transforms form a family of curves in parameter space, and the envelope of the
family represent all tangents to the original shape in the image. A second transform
detects flat stretches on the enveloping curve; from these, parameters of the original
shape can be derived.

Probabilistic Hough Transform

Due to the correlated and redundant nature of visual information, all vision algorithms are
computationally intensive, either in processor time or in storage requirements. HT is no
exception, but, as discussed above, it does not use the local, neighboring-pixel
information to accumulate evidence for a parametric shape. It is therefore fairly stable
under random sampling of image data. We have used random sampling of edge images,
and have found that line and circle detection works quite well even with a fairly small
subset of image points. For a review of probabilistic methods, see Leavers [6].

Generalizations to Arbitrary Shapes

An early generalization of the Hough method to arbitrary shapes was given by
Ballard[7], who proposed describing points on an arbitrary curve as a multi-valued
tabulation of radii vs. angles, in a radial coordinate system centered at some point
curve. Not surprisingly, such tabulation undergoes simple transformation under rotation

on the

around the coordinate origin and isotropic scaling. The remainder of Ballard’s method i
template matching against the tabulated shape, under the transformations of scaling and
rotation. Its limitation is summarized by Leavers: “… a particular shape can only be
efficiently detected if one knows the transformation from a canonical form of the sh
the instance of that shape. If the transformation is not known then all plausib
transformations must be tried.” (Leavers, [5], p.116)

s

ape to
le

The reason why standard HT works so well for lines, and to a lesser degree for quadrics,
is that it exploits analytical properties of these shapes. All generalizations of HT to
arbitrary shapes ultimately reduce to template matching, as they must, with a large search
space and little promise of computational speed. As an illustration of that principle,
Stockman and Agrawala [8] show the connection between HT and template matching for
the simplest HT case, the classic line detection.

Literature based on the Hough transform covers a vast area, involving methods of very
mixed quality. The classic survey article is by Illingworth and Kittler [9], and other
recommended sources are Leavers [5], and a comprehensive textbook on machine vision
by E.R. Davies [10].

Implementation of the Fast Hough Transform

In every HT variant, major computational effort goes into scanning the parameter space,
in order to determine how many point transforms (lines, curves or surfaces) intersect each
cell. One expects to see clusters of intersections, corresponding to prominent image
features, and several methods have been proposed to find these features efficiently.

k

c

Figure 3. Example of a quadtree search in the FHT (after Li et al. [11]). Entire
parameter space is considered first, then its upper right sub-quadrant, etc. Far from
growing exponentially, the search converges rapidly on the accumulation point.

The method discussed here was introduced by Li, Lavin and LeMaster [11], under the
name “Fast Hough Transform” (FHT). It divides the parameter space into “hypercubes”
arranged in a tree structure – in the 2D case, quadrants of the plane are repeatedly divided
into sub-quadrants, and arranged into a search quad-tree. Exponential growth of the
search tree is easily prevented by pruning it down to promising quadrants only (those
with many intersections), and in fact the search converges rapidly (see Figure 3). The
infinite-slope problem can be resolved by using an “inverted” (c,k) space when .1≥k

The crux of the computation lies in determining whether lines in parameter space
(transforms of image points) intersect the quadrants of the search tree. As shown in
Figure 6, line intersects the larger (parent) quadrant, and the section is fully
determined by the values of the function

BAkc +=
BcAkz +−= at any three corners of the

quadrant. The task is to determine efficiently which of the four child quadrants this line
intersects; we relegate the discussion of the algorithm to the Appendix.

We have implemented the FHT for lines and circles, as part of an image-processing
package [12]. The FHT is accompanied by several auxiliary processing steps, whose
purpose is to speed up the parameter-space search. The implementation is fully
sequential, and can be represented by this (very simplified) pseudocode:

DoHoughTransform() { // entry point to Hough transform

 Perform thinning on the entire image; // see [13]
 Divide image into tiles;

 for (loop over tiles) {

 Find connected components within a tile; // see [14]

 for (loop over connected components) {

 while (there are unassigned feature points) {

 Random subsampling of points;
 FHT for lines;
 FHT for circles;
 }
 }
 Find line segments of the found lines;
 Find circle arcs of the circles;
 Clean up very small or irregular features;
 }
}

Test Results and Conclusion

Figures 4 and 5 are examples of interpretation of line sketches, performed by the above
image-processing program. The thin line drawings are the hand-made pixmap input, and
the boldface sketches are the CAD-like output, consisting of parametric elements (line
segments and circle arcs).

As expected, HT performs better for larger shapes. Small circles and short lines yield less
well-defined accumulation points, simply because fewer pixels contribute to the
accumulation. Consequently, small elements are recognized somewhat more
ambiguously than the large ones (e.g. details in the upper right corner in Figure 5).

Spatial relations are lost in the transformation and recovered in a subsequent image scan.
The consequence is the appearance of phantoms, since anything that lies very close to a
recognized line/circle is counted as part of it. For example, the short line segment in the
steeple window in Figure 4 lies on the line defining the roof . Even more prominently,
an unrelated line is tangential to the bottom part of the circle defining the cupola, giving
rise to a small phantom circle arc between the two round windows.

These are straightforward disambiguation problems, which can be resolved by attributing
some plausible priorities to the detected parametric shapes. However, they illustrate the
distance that has to be traveled on the way from a mathematical method to a working
vision system.

The core of the FHT, the hierarchical search in parameter space, is a remarkably simple
recursive calculation, consisting of integer arithmetic. Since the Hough Transform
inherently treats image pixels as independent from one another, per-pixel operations are
parallelizable. In a real-time implementation, each step of the recursive search should
consist of parallel image-point transforms and intersection decisions, followed by an
accumulation of hits in the search-tree quadrants. A parallel ASIC, combined with
microprocessor core(s), is a promising architecture for this algorithm.

Figure 4. A fanciful building facade

Figure 5. A fictional sheet metal pattern for a machine part

Appendix: Hierarchical Search in Parameter Space

Let us start by observing that the range of the parameter space is -1 to +1 in the k (line
slope) dimension, and that the range in the c (intercept) dimension is a simple function of
image size (it is determined by the values of the transforms of image corner-points, at

). The size of the parameter space is finite and manageable, and the entire space is
the root quadrant of the search tree, as shown in Figure 3.

1±=k

Every transform of an image point is a line of the form BAkc += , and the intersections
of this line with the sides of the quadrant are fully determined by the values of the
function at the corners. From the z-values at the corners of the parent
quadrant we can determine which child quadrants the line intersects, but the calculation
involves ratios and floating-point numbers.

BcAkz +−=

We see from Figure 6 that, if z-values are known at the corners of child quadrants as well,
we can determine whether the line intersects a side (sides are labeled a to l), merely by
comparing the signs of z at the endpoints of that side. Since the z-values for at least three
of the five corners of child quadrants would have to be calculated in the next iteration
anyway, this is an acceptable overhead.

Furthermore, all dimensions can be scaled up by a power of two, the power being the
maximum depth of the search quadtree. This converts all calculations to integer values,
the sub-quadrant divisions by two amount to right shifts, and the ratios of z-values are

replaced with sign comparisons. This form of the search algorithm not only leads to fast
code, but is also amenable to ASIC implementation.

In order to find which child quadrants the line intersects, we construct a decision tree,
such as the one in Figure 7: inner nodes of this tree represent intersections with sides, and
the leaf nodes yield all valid selections of child quadrants. Immediate question arises:
what is the minimum depth of the decision tree, i.e. how many sides must be checked, in
order to find the intersected child quadrants for an arbitrary line?

0 1

23

a

b c

di

jl

e

fg

h k c = Ak + B

Figure 6. Point transform (a line) intersects the parent quadrant and a
subset of child quadrants.

l

i a

3,0,1 k b h

2,3,0 3,0 0 j g j

0,1,2 0,1 3 j i d

1,2,3 2,3 0,1,2 k c f

1,2,3 1,2 1 0,1 2 2,3

Figure 7. Decision tree: interior nodes represent quadrant sides (as in Figure 6); left
arrows mean intersection of the line with a side, right arrows the lack of it. Leaf nodes
are the selected sets of child quadrants. In a well-constructed tree, two intersections
suffice to select a child set unambiguously.

Decision trees of depth six are easily constructed; in fact, there are great many of them.
Are there trees of depth five? Following the rightmost path down any decision tree, we
arrive at the quadrants whose intersecting lines do not intersect any of the sides chosen
along that path (see example in Figure 8). It can be surmised by straightforward
inspection that no choice of five non-intersectable sides is sufficient to select a unique set
of child quadrants; an automated exhaustive search confirms this result. The rightmost
path of any decision tree is always longer than five, therefore the least number of
intersection decisions needed to uniquely select a set of child quadrants is six.

0 1

23

a d

f

jl

h

Figure 8. Quadrants 2 and 3 are unambiguously selected by lines which do not
intersect any of the highlighted sides (rightmost path in the tree in Figure 7).

References

[1] Hough, P.V.C., “Method and Means for Recognizing Complex Patterns,” U.S.
Patent No. 3069654, 1962.
[2] Duda, R.O., Hart, P.E., “Use of the Hough Transform to detect lines and curves in
pictures,” Comm. ACM 15, pp. 11-15, 1972.
[3] Illingworth, J., Kittler, J., “The adaptive Hough transform,” IEEE Trans. PAMI-9
(5), pp.690-698, 1987.
[4] Yuen, H.K., Princen, J., Illingworth, J., Kittler, J., “A comparative study of HT
methods for circle finding,” Proc. 5th Alvey Vision Conference, Manchester 1989.
[5] V.F. Leavers, “Shape Detection in Computer Vision Using the Hough Transform,”
Springer 1992.
[6] Leavers, V.F., “The dynamic generalized Hough transform …” CVGIP: Image
Understanding, v.56(3), pp. 381-398, 1992.
[7] Ballard, D.H., “Generalizing the HT to detect arbitrary shapes,” Pattern
Recognition, v.13(2), pp.111-122, 1981.
[8] Stockman, G.C., Agrawala, A.K., “Equivalence of Hough curve detection to
template matching,” Comm. ACM v.20(11), pp. 820-822, 1977.
[9] Illingworth, J., Kittler, J., "A survey of the Hough transform," CVGIP 44, pp.87-
116, 1988

[10] Davies, E.R., "Machine Vision: Theory, Algorithms, Practicalities," Academic
Press 1990.
[11] Li, H., Lavin, M.A., LeMaster, R.J., “Fast HT: a hierarchical approach,” CVGIP,
v.36, pp.139-161, 1986.
[12] Lynx Auto-Digitizer, copyright of D. Antolovic, 1997. Indiana University has been
given permanent right to use the source code of this application.
[13] T.Y. Zhang, C.Y. Suen, “A Fast Parallel Algorithm for Thinning Digital Patterns,”
Communications of the ACM, vol. 27, no. 3, pp. 236-239.
[14] R. Lumia, L. Shapiro and O. Zuniga, “A New Connected Components Algorithm
for Virtual Memory Computers,” Computer Vision, Graphics and Image Processing,
v.22, pp.287-300, 1983.

	Review of the Hough Transform Method, With an Implementation of the
	Fast Hough Variant for Line Detection
	Danko Antolovic

