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Abstract. The rapid progress of human genome studies leads to a steomayi
of aggregate human DNA data (e.qg, allele frequencies, tatsstics, etc.), whose
public dissemination, however, has been impeded by pricacgerns. Prior re-
search shows that it is possible to identify the presencemksparticipants in a
study from such data, and in some cases, even fully recoggmNA sequences.
A critical issue, therefore, becomes how to evaluate sudskaon individual
data-sets and determine when they are safe to releases leiér, we report our
research that makes the first attempt to address this issuérddidentified the
space of the aggregate-data-release problem, throughir@rgnsommon types
of aggregate data and the typical threats they are facingn, e performed an
in-depth study on different scenarios of attacks on difietgpes of data, which
sheds light on several fundamental questions in this pnobliemain. Particularly,
we found that attacks on aggregate data are difficult in génas the adversary
often does not have enough information and needs to solvediiplete or NP-
hard problems. On the other hand, we acknowledge that thekattan succeed
under some circumstances, particularly, when the soli@te of the problem
is small. Based upon such an understanding, we propose-saddk system and
a methodology to determine when to release an aggregatselzdad when not
to. We also used real human-genome data to verify our findings

1 Introduction

With rapid advancement in genome sequencing technoldgiesan genomic data has
been extensively collected and disseminated to facilitatean genome studies (HGS).
A prominent example is genome-wide association study (GWAE a research tech-
nique that has been demonstrated to be highly valuable éattifging the genetic fac-
tors underlying common diseases. In a GWAS study, a groupadfcpants with a
disease/phenotype of interest (cases) are genotyped tpaterthe statistical features
of their single-nucleotide polymorphisms (SNPg) those of the individuals without
the disease/phenotype (controls). It is highly desired ttia DNA data gathered dur-
ing this process can be conveniently accessed by otherchses, which will greatly
benefit the HGS community. Such data dissemination, howeeeds to be balanced
with the protection of participants’ privacy, which is ofraanount importance to this
kind of research: for example, revealing the identity of aecandividual in a GWAS
relates her to the disease under the study, which can haeaseonsequences such
as denial of access to health/life insurance, educatiahearployment. Prior research
shows that raw DNA data (genotypes) is often too risky to jghi@ven after removal of

1 common terminologies of genomics are summarized in AppeAdi
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explicit identifiers (such as name, social security numéiter), as de-anonymization of
a participant’s identity can happen through examining #eegic markers related to her
observable features (a.k.a. phenotyp&$).[What has been thought to be of low risk
is aggregate genome datauch asllele frequenciesi.e., the frequencies of different
SNP values, because such data covers an individual’s isfiwmwith that of others.
As an example, the NHGRI/NIH used to make allele frequermidsicly available.
Aggregate data releasesA recent development in inference technologies, however,
has completely changed the risk perception associatedhdgtaggregate data. Particu-
larly, Homer et al {{2] discovered that the presence of an individual in a casemcan
be reliably determined from allele frequencies using ttatim’'s DNA profile, which
can be acquired, for example, from a single hair or a drop 0bdbl In response to
this finding, the NIH swiftly removed all aggregate genom&adeom the public do-
main to protect the participants of HGS and avoid legal ttesif’]. Today, those who
want to access the data have to file an application and siggraement, a complicated
procedure that is time consuming. This becomes a hurdlectaigsemination of the
data critical to HGS, and as a result, provokes intensivaidstjl 0]: some researchers
pointed out that the NIH may have overreacted, as the attaskeipachievable over at
least some data-sets can be very limitéd, [6]. On the other hand, such agreement-
based protection has been found to be insufficient, as coni@eser information can
still be derived from other public sources: a recent study hows that even the test
statistics (e.g., p-values, r-squares) calculated frdeteafrequencies and published in
HGS papers give away a significant amount of informationpime cases enough for
identifying participants or even recovering portions cgitrDNA sequences. To make
things worse, HGS researchers typically receive littledgace on what they are not
supposed to share. Oftentimes, fine-grained allele frefjesftest statistics can be di-
rectly acquired from the authors of HGS papers.

Our work. The currentway aggregate human DNA data is handled indieatksturb-
ing lack of understanding of its privacy implication: suchta have been both over-
protected, which unnecessarily restricts their availighib the HGS researchers, and
underprotected, which exposes the HGS participants tagyithreats. Crucial to the
progress of the human genome research, therefore, becanmedepth study on how to
evaluate the information leaks in the aggregate data ardrdite when they are safe to
release, which also poses a challenge to the privacy rés&ard his paper reports our
research that makes a first step toward this end. We considdypes of common ag-
gregate data, the allele frequencies for both individugPSEnd SNP pairs, and the test
statistics derived from the frequencies. Such data is etudhder two typical threats,
identification attackthat uses an individual’s DNA profile to determine her relati
with an aggregate data-set] 49, 57], andrecovery attackhat re-constructs individu-
als’ SNP sequences from such data. We investigated théfiggsif these attacks on
different data and the difficulty in executing the attacks. &xample, a recovery attack
is doomed to fall if its target data cannot be uniquely mappedset of SNP sequences,

2 The NIH's guideline for sharing GWAS dat&][explicitly states “the NIH takes the posi-
tion that technologies available within the public domaiday, and technological advances
expected over the next few years, make the identificationpetific individuals from raw
genotype-phenotype data feasible and increasingly stfaigvard”.
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and the effects of an identification attack are constrainethé statistical powers that
can be achieved over a data-set. When these attacks welsetbksucceed, we fur-
ther analyzed their computational complexities, whichaften intractable. However,
we found that solving such problems in practice can ofterabditated by the unique
background knowledge of human genomes, particularly, théability of a reference
population that resembles case individuals.

Based upon such an analytical study, we further exploregdtential to build a
risk scale systerto guide the dissemination of the aggregate data. Undesyisiem,
data-sets are classified according to their susceptibdligyspecific type of attack: those
in the Green zoneare deemed safe to release; those inRled zonere considered to
be too risky to publish; th&ellow zonecontains the data whose privacy implications
are yet to be determined. For example, an aggregate datarsbe placed in th&reen
zoneif it corresponds to multiple sets of DNA sequences and thersection among
these sets is small. To justify that a data-set belongs tR#étezongwe need to show
that it can be exploited by a known attack. For this purposealso present a novel
technique that improves on an existing identification &t{&c]. Our new attack does
not rely on theinteger constraintused in the prior approach and works even on the
data-sets that contain significant noise.

Contributions. We summarize the contributions of this paper as follows:

eFundamental studies on information leaks in aggregate défa performed both
information-theoretic and complexity analyses on the camihreats to different types
of aggregate data. Our research sheds light on the fundahggmistions on whether an
attack on a specific data-set is feasible and how difficuit lbe. Of particular impor-
tance here is our consideration of the special featuresmfinugenomes, which, as we
show in the paper, can have significant impacts on the angwénsse questions.
ePreliminary research on the risk-scale systéfie propose a risk-scale system to clas-
sify aggregate data and guide the release of such data. €aaroh, though preliminary,
is the first attempt to evaluate the risk of information leaka broad spectrum of ag-
gregate data, including both single and pair-wise alledgdiencies and different test
statistics. We also present a new attack that identifiesdividual from the test statis-
tics published by an HGS, which serves the purpose of idengfthe datasets that
should not be released.

2 Backgrounds and Assumptions
2.1 Aggregate Human-Genome Data

Our research has been conducted on two types of aggregaimgedata allele fre-
gquenciesandtest statisticsBoth are among the most valuable data to human genome
research and are also most widely disseminated: for exathgléormer has been pub-
lished by the NIH [] and the latter are elaborated in every GWAS pafér47,50,59].

Each SNP has two alleles, encoded as 0 (major) or 1 (minoingUkis encoding
scheme, the DNA profiles (containing the nucleotide segeen€ the participants) of
N individuals . SNPs, could be simply represented a8 & L matrix. Figurel gives
an extremely small sample of encoded SNP profiles of 5 ppatits and 8 SNPs. The
single-allele frequencieg of a SNP site are the frequencies of the site’s "alleles, and
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thepair-wise allele frequencieﬁ%q of a SNP pair represent the frequencies of saad
j of the four allele combinationgig € {00,01,10,11}. Note that allele frequencies
can be simply calculated from allele counts by dividiNge.g. f;7 = C}/N).

From the allele frequencies, test statistics are often edeapin different human-
genome studies. Particularly, GWAS researchers utdgsociation testto detect the
SNPs related to the disease under the study. These testamthp single-allele fre-
guencies of the case population with those of the controlufation, in the hope of
identifying the genetic marker of the disease. The signifieaof each SNP (i.e., the
strength of its tie to the disease) is measured by a p-valacdlly, those with p-
values belowl0~7 are selected as putative markers. Such marker-diseasee&sts
can also be quantified using other test statistics such asratids.

In addition to analyzing individual SNPs, a GWAS also exagsithe putative marker’s
associations with other SNPs in the same genetic locugddailkage disequilibrium
(LD) [48], which could also have a connection with the disease. LDlotas is typi-
cally measured by the test statistics such as D’ and r-sgudiieh are calculated from
pairwise allele frequencies of the locus. Sometimes, rekess further analyzed the
allele combinations involving multiple correlated SNPs,,haplotypeswhich are in-
ferred fromgenotypeshrough a class gfhasing algorithmg$1, 54, 55].

Figure2 shows how to calculate these test statistics and some samiples for
Figure 1, which are routinely published in HGS papef®[50, 52, 58]. Oftentimes,
these papers include the p-values of hundreds of SNPs anddithat illustrate their
LDs. More detailed information can also be acquired fromathhors. In our research,
we focused on p-values and r-squares, the two most-commemdyted test statistics.

2.2 Threats

The threats studied in our research includentification attackandrecovery attack
two major privacy concerns in human genome research. Thed@stification attack
on aggregate data has been proposed by Homer, £flaMfhich requires availability
of a SNP profile from the victim. The objective here is to detieie the presence of an
individual in the case group, so as to relate her to a dis@asthis end, the attacker
runs a statistic test that evaluates whether the victim'B phofile is independent from
the single-allele frequencies of the case population.X;et {0,1} be the allele of
SNPj in the profile, andfj0 and f? be the major allele frequencies of that SNP in the
case population and a reference population, respectidelyer’s attack measures the

DataName Sample Values or Formula
C; |single allele count for SNP(major) [(C =3,C3 =4
00000100 CP1 |pair wise allele counts for SNPand;j |C12 = 2, CT5 =2
01101000 C?” |single allele count for SNP Cls =
</10010000 — 00 GIT —G0T o 10)2
10000001 r3; |r-sguare, measures association and L

01011111

Fig.1. A 0-1 encoded SNP Fig. 2. untinely published data (single allele
counts without superscript means major counts,

profiles of N = 5 individu- o
e.q0.C; =Cy).

als andL = 8 SNPs
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following distance:
D(Y;) = Y; = [} = 1¥; = f]| (1)

Under the assumption that the distributions of individulele frequencies are identical
in the case and the reference, the sunb¢¥;) across a large number of SNPs follows
a normal distribution with a zero mean if the victim is not ggst in the case group.
Otherwise, the sum becomes positive and significantly deviaom the mean. In their
paper, the authors report identification of a case indiigtt a extremely low false
positive rate, given 25,000 SNPs of the victim. This lineedearch has been followed
by multiple research groups& 1, 43,49, 56,57]. Particularly, Sankararaman, et @l
utilized the likelihood ratio test to estimate the uppetshd of the identification power
achievable on single-allele frequencies. They also btdlbacalled SecureGenomél]

to evaluate such a threat on different data sets.

Besides single-allele frequencies, pair-wise alleledestries and test statistics were
also found to leak out a substantial amount of informationptior research7] , it
was found that the identification attack can happen to evenett statistics published
in GWAS papers, through a statistical test based ugignedr values. GivenN se-
qguences of. neighboring SNPs in the genome, the signgdetween two SNPsand
j(1<i<j<L)isdefinedas;; = % whereC?1? is the pair-wise allele
counts, i.e. the number of the sequences with afiélec {0,1}) at SNP; and alleleg
(¢ € {0,1}) at SNPj, andC?* andC*? are single allele counts,; can be computed
from rfj (Figure2) except its sign. Like Homer’s approach, the attack needfeasence
population whose r values are denoted#y in addition to the case populatior),
and a SNP profile from the victim in whicK? € {0, 1} indicates whether her SNP
pairij has a pair-wise allelgg. A test statistic’,. is thus constructed as follows:

T = Yicicjen( —rff) - (VP + YV =Y - Y50) 2)
T, is much more powerful than the statistical attacks on siatitde frequenciesy/],
as it makes use of the relations among SNPs, the linkageudiigeoym, which contain
much more information than individual SNPs. A problem hé&myever, is the need
to know the signs, which is not typically released. They azterdmined in the prior
work [57] by taking advantage ohteger constraintsbase upon the assumption that the
published r-squares are calculated from allele countsd@rs) and are not perturbed
by noise.

The recovery attack aims at re-constructing the SNP segsee., haplotypes)
used in an HGS: prior research] report a successful restoration of 100 sequences
involving 174 SNPs on a locus from their single and pair-velkele frequencies. Note
that these frequencies can be estimated through reverseeerigg the test statistics
published in GWAS paper$}]. Compared with the identification attack, such an at-
tack can be more difficult to succeed and consume much moreuimg resources.
However, it does not rely on the DNA profile from the victim.

Anideal privacy goal here differential privacy{ 30], which ensures that two aggre-
gated datasets differing from each other by one individwddta have indistinguishable
statistical features. An example when this happens is treatata from a very large
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number of participants is aggregated so that the contdbuwdf an individual becomes
negligible. This privacy goal, once achieved, can defdaténce attacks using all kinds
of background knowledge. However, this condition is knowibé¢ hard to satisfy in a
practical system. For genomic data, the knowledge aboutititien’s DNA profile and

a good reference population is deemed as a strong assuniptibe adversary’s fa-
vor [21,56]. Based on such an assumption, we report our research oedhbiility and
complexity of these two types of attacks on the two types tdiskts, and the method-
ology to determine whether a specific set of data is safe tasel.

2.3 Adversary Model

We consider a probabilistic polynomial time adversary whn rot accomplish the task
that needs exponential computing power, for instance, Baghan exponential space
to determine a probability distribution over this spacenétthan that, we assume the
adversary has sufficient resources and perfect informatidrer disposal for individ-
ual attacks. Specifically, for the identification attack, eansider that the adversary
has access to the victim’s DNA profile and a good referenceilptipn with an allele
distribution identical to that of the case population. Tisithe best resource such an
attack can expect!p, 57]. For the attack involving test statistics, we assume tigtt-h
precision data is available, which affects the outcome ohsn attack, as indicated in
the prior researchy[/].

3 Case 1: Identification Threat to Allele Frequencies

For single allele frequencies, the statistical identifaathreat they are facing has been
well studied [17]. More specifically, SecureGenomeéq] is proposed to evaluate the
identification risk of such data. For pairwise allele freqcies, one can utilize a near-
optimal statistic proposed ib[] (7-) to assess the identification power achievable over
the dataset. We also developed a likelihood ratiodesthich is also near-optimal. Due
to the space limitation of the paper, we move the descrigifahe test to Appendi®.

4 Case 2: Recovery Threats to Allele Frequencies

Given a set of pairwise allele frequencies, a recovery latiros at partially recovering
the haplotype sequences of HGS participants, which is cetelylrealistic according to
prior researchi/]. These sequences, once restored, can be used to reydbatié par-
ticipants, a threat well recognized by the NIH (see Footdaiad []). This section re-
ports a new methodology for determining the susceptildlitgifferent allele-frequency
data to such an attack.

4.1 The Problem

Figure 3 illustrates the recovery attack, in which the adversargnagtts to recover a
matrix, with each of its row vectors being a haplotype segaefrom the constraints
of pairwise allele frequenciésThis problem can be formulated asaplotype matrix

recovery problenbelow:

8 Note that the pairwise allele frequencies contain all tiermation of single allele frequencies.
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Haplotype matrix recovery problem. Consider anN x L haplotype matrix\/ that
representsV haplotype sequences oveISNP sites. The set of pairwise allele frequen-
cies of M is denoted byl = {f{}q}, wherep andq are the allele types at SNP sites

andj, respectively. Note that there are in to(éb such pairs among SNPs. LetS be
the space of\/ (the matrix), andD be the space af (the pairwise allele frequency).
Givend and N, the adversary intends to recover the haplotype matrixjshto find an
M'in S, which is equivalent td/ ignoring the order of their row vectors.

Itis conceivable that in some cases (some pairwise allepiEncyl) the problem
has uniquesolution that is, there exists a unique matriX, disregarding the ordering
of its rows, that satisfies the constraints imposedipwhereas in some other cases,
the problem has no solution (i.e. the pairwise allele fregies are nosatisfiable,
and in the remaining cases, the problem has multiple saolsitibigures illustrates an
example that multiple solutions exists for a givérlf there are multiple solutions and
the intersection of all the solutions is small, when an &ttagets one solution, she has
low confidence if any of the sequence in his solution is indaede original haplotype
matrix.

Challenges in risk classification.To determine the risk scale of a given frequency set
d, we first find out whether it has multiple solutions. If thigrise and the overlap among
these solutions is sufficiently small, we can comfortablytbe set in the Green zone.
Unfortunately, this decision turns out to be extremely diffi to make, because several
problems on the haplotype matrix recovery are computaiyphard. Specifically, we
found that:

Theorem 1. Determining if there is a haplotype matrix for a given paiseiallele fre-
quency set is NP-complete.

Corollary 1. Determining the number of haplotype matrices for a givempiae allele
frequency set is NP-hard.

Conjecture 1.Determining if a solution is unique for a given pairwise fuegcy set is
Co-NP-complete.

Corollary 2. Recovering one haplotype matrix for a given pairwise alfedguency
set is NP-hard.

Corollary 3. Determining if there exists a solution for a given pairwidlela frequency
set that does not contain a given row vector is NP-complete.

201%1 000001
0

1 f f
1 1 “ N 011010
;5§ T 101100
L 110110
110111

Fig. 3. Recovering a matrix from pairwise
allele frequencies. Given a pairwise allele

— rq i
frequency setl = {fij 1 _the_ attacker tries
to recover the matrix satisfying

Fig. 4. The left matrix and the right matrix
have exactly the same single allele frequen-
cies and pairwise allele frequencies, but do
not share any single haplotype sequence.
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Corollary 4. Recovering one haplotype matrix for a given pairwise alfedguency
set that does not contain a given row vector is NP-hard.

Proofs are provided in Appendix. Theorem 1 to Corollary 4 show that determining
the existence of unique or multiple solutions for a giverlalfrequency set and recov-
ering even single one of them are all hard problems. Notepiwting average-case
complexity is well known to be difficult{7]. Nevertheless, our empirical study using
IBM Cplex [5] with parallel enabled suggests that at least the decisioblems here
do not seem to be easy in the average time. We randomly sarhplethtrices of size
100 x 80 and put them on a workstation with 4 Quad-Core Xeon 2.93Gldzgssors,
none of them could be solved within one week.

Notto

To Release Unknown Risk
'|\S||:HD||>>1 Known '

Attack

count
@
S

207 fest

GO 20 40 60 80 100 120 140 160 180 200
number of solutions

Fia 5. Solution Distributi N = 40. L Fig.6. Risk spectrum. When||S]|
_'97' ' oluthn _|st1r|oc;1(§|on. (N = i ’ . |ID|| > 1, data is placed in the Green zone.
= [, sampe sizé = » Space ratio (estiy yore s 5 known attack, data must be

mated number of solutions) = 7.861, aVerageplaced in the Red zone. Otherwise further

=116.855) investigation is needed for the data (Yellow
Zone).

Determination of risk scales.In spite of the difficulty in finding the number of so-
lutions, it is still plausible to estimate whether a giveeduency set is likely to have
multiple haplotype matrix solutions, by considering splble size of the recovery prob-
lem as determined by two parameters, i.e., the number of 88¥/sand the number
of haplotype sequences. We compare the solution spa§| and the frequency set
space||D||. When || DJ|| =~ ||S]|, the corresponding frequency set is likely to have a
unigue haplotype matrix solution. Conversely, wHiéh| > || D||, a data-sef becomes
very likely to have multiple solutions. Intuitively, theddiibution of the solutions over
the differentd tends to have a very small deviation: that is, it is unlikéigttonly a
few have many solutions while the others have unique onethémunore, because the
distribution is over a large number of variables (i.e. trengdnts in the haplotype ma-
trix) and it is very complicated, the adversary cannot estérithe distribution without
using exponential computing power. The adversary, whossiteabout the uniqueness
of the solution, but, on the other hand, is aware of the stindigations that multiple
solutions exist, will end up with little faith in any soluticshe is able to find. What is
more, she may not even know how close to the real haplotypesegs her solution is,
if ||S|| becomes sufficiently large to ensure that many data-seesraitiple solutions.
Although it is difficult to rigorously define the distributicof solutions overl, we
conducted an empirical study on the distribution as laidbmlibw. We randomly sam-
pled 1000 haplotype matrices of si2é= 40 andL = 7, and calculated their pairwise
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allele frequencié€’s Using each set of these pairwise allele frequentias constraints,
we computed for each instance all solutions that can be foyr@plex, a state-of-the-
art NP solver J] °. As expected, the distribution of the number of solutionsldse to

a normal distribution with a small standard deviation (Fegt). The standard devia-
tion (19) is on the same scale as the square root of the meé (ddicating that it is
unlikely that only a fewd have many solutions while others have only a few or single
solutions.

The above analysis indicates that we can have a shadefigkespectrum, as
illustrated in Figures, which is approaching the Green end with the increase of the
ratio||.S|| : | D||. Intuitively, this suggests that the larger the ratio, #mslthe adversary
knows about the distance between her solution and the re&lldpon the spectrum, we
can use a distance threshold to determine when a frequetesgéican be designated
to the Green zone. This research is elaborated in Se¢titand4.3.

Towards the Red end of the spectrum, we proved that restarsagution matrix
from allele frequencies is NP-hard, even if the solutionniswn to be unique. How-
ever, we also acknowledge that the special features of higaaome data, particularly
the LD relations among them, could make the problem traetad indicated in prior
research7]. Therefore, a conservative approach is to label a datéRset” only when
it is found to be vulnerable to a known attack. Otherwise da&-set is put in the Yel-
low zone, awaiting further investigation, if it is also nataiified for the Green zone.
The details of this analysis are presented in Sectidn

4.2 When to Release

As discussed above, when the solution space becomes sufffidager than the space
of allele-frequency sets, the threat of recovery attackbsamitigated, as the adversary
cannot determine whether a given frequency data-set thesca unique set of SNP
sequences. Here, we present an analysis on how large thims@pace needs to be.

Solution-space analysisLet us first consider the solution spageFor L. SNPs, there
are2” possible SNP sequences. The number of different soluté@esy of which is an

N by L haplotype matrix, is at Ieasé?;), i.e., selectingV distinctive sequences from
the2” sequences.

Then, we estimate the space of pairwise allele frequensy/3eGiven N and a
frequency setl = { [/}, we can have a set of pairwise allele couf®’’}, which
directly determine the set of single allele coufits;}. Since for any SNP pair, the
frequencies of one pairwise allele and one single allelesaficient for inferring the
frequencies of other alleles, pairwise or single, for tes&NP pair (see Inequality 3
in [57]), the setd is uniquely determined byC;} and the set of pairwise major allele
counts, which we denote By;; } for simplicity.

From the fact that”;; andC; can take any value ifd, N] and there aré¢) SNP
pairs andL single SNPs, we know that the number of different frequertydswill not

4 We chose this problem scale becadsand N met the condition in Equatio and the problem is small enough to be
solved by Cplex in reasonable time.

5 We did not enumerate all putative solutions. Instead, wehsapopulate limit of Cplex as 200 to save memory and time.
Hence, the number of solutions shown here may be smalletthiesactual number of solutions.

5 An exception here is some special cases, for example, wheinejuencies of the pairwise allele type 00 become 1 for
all SNP pairs. Such cases, however, can be identified béfereata being released.
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exceed N +1)@) . (N 41)E = (N 41)@)+L, Comparing]S|| with | D, we can geta
necessary condition for the existence of multiple soILﬁlQﬁ (N + 1)+, But

itis too complex to use. Using Stirling’s approximation, ge - J\{)L+2L (1— 103,{

10222 V) > log(N + 1)7. This gives usZ¥; (1 — lOgL — 1a21N) > log(N + 1). For

N .
L > 200,1— %= _ loe2tN 1 |gnoring other constants, we get the following
condition:

2N

log(N + 1) > L ®)
For example, giver, = 200, N should be greater than a threshold1660, which is
roughly5 L, to guarantee that Inquali/holds. Intuitively, this suggests that the adver-
sary (with polynomial-time computing power) cannot unipudetermine the haplotype
sequences in a case group of 1000 or more sequences (500 eindividuals) from
the allele frequencies of 200 SNPs in an HGS study. Notakibn & N exceeds the
threshold by a small margin, there will be a huge expansighefatio betweerS||
and||D||. For example, increasiny by 1 ( one more sequence in the case group) in-
dicates the ratio of the spacgsS|| /|| D|| increaseg”, which dramatically increases the
likelihood of the presence of multiple solutions for thecfuency set.

Partial recovery of haplotype matrix. The above analysis did not take into considera-
tion the possibility that multiple solutions, althoughytexist, are close enough to each
other for a given set of pairwise allele frequencies, elgre are a significant number
of sequences shared between them. If this occurs and tleketsomehow recovered
all the solutions (even though it is NP-hard, Corolld)y and makes an intersection
over these solutions, she knows the resulting common segeenust be in the case
group. To defend against such attacks, we need strongettioorno assure the security
of the pairwise allele frequency data to be released: foreaifp haplotype sequence,
there should exist another haplotype matrix solution tleaschot contain this sequence.
When this happens, even if an attacker manages to obtaintoso(i.e. a set of haplo-
type sequences), she is not confident #ratsequence in her solution is present in the
actual haplotype matrix, because for any such sequence,ithalways another haplo-
type matrix that is equally likely to be the actual matrix aislo does not contain this
sequence (although to find this matrix is NP-hard accordin@drollary4). Similarly,
even if the attacker obtained multiple solutions, the seetion of these solutions will
not give her any confidence that the sequence in the intévaaoust be present in the
actual matrix.

To get this stronger condition, we consider the solutiorcefdar a given instance
d with N rows (sequences) and columns (SNP sites), but one haplotype sequence
in the original matrix is not in these solutions. This is e@lent to the entire matrix
space, i.e.2 7 Subtracted by the matrix space with one fewer row (set agities

haplotype sequence), i. QW By using the same analysis from above, we get the
following condition:

7 Unless otherwise specifiethg meandog, in this paper.
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2(N —1)
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Once the size of a haplotype matri¥' (and L.) meets this condition, its solution
space will become sulfficiently large that the intersectiallof its solutions is unlikely
to contain even one haplotype sequence. This conditiors@s \&@ry close to that of
Equationl.

Empirical study. To verify whether the above privacy assurance is suffidieptrac-
tice, we conducted an empirical study on a number of smalesgroblems. We ran-
domly sampled 30 haplotype matrices that satisfy the cmmdiwith N = 40 and

L = 8), and for each haplotype sequence in the original matrixattempted to re-
cover another haplotype matrix that did not contain thisisege but still has the same
pairwise allele frequencies as those of the original matkiyain, we used Cplex to
search for all matrix solutions (with a populate limit of 20h the end, for each of the
haplotype sequences in the 30 matrices we sampled, at kkastitions were found
that did not contain that sequence, indicating that giventeaplotype sequence in a
matrix, there likely exists an alternative solution (aresthaplotype matrix) associated
with the pairwise frequency set of the original matrix, whioes not include that se-
quence. This study shows that Equatibican be used to estimate when a pairwise
frequency set is unlikely to be vulnerable to an intersectittack.

4.3 The Impact of Human Genetic Structure

A critical pitfall in the analysis above is that it does nokeanto consideration the
prominent features of human genome sequences. Insteadngf tramdom binary se-
quences (0 for major and 1 for minor allele) as assumed in aatet human genome
sequences contain complex structures that are well studi®dman genetics and can
be inferred from publicly accessible human genome datad). Thus, the adversary
could simply examine a solution she finds to determine whiétheoks like a human
genome sequence. This leads to the further reduction obthan space|S||. In this
section, we present another analysis based upon a humaticgandel.

Human genetic model.We model haplotype sequences with a Markov chain (MC),
a standard approach extensively used in human geneticrebsies the modeling of
the LD structure (single and pairwise allele frequenciesa ispecific genetic locus
[38, 45, 46]. Given L SNP sites, the model can be represented as a heterogeneous
Markov chain with a sequence df states(X;X5...X1), whereX; € 0,1, repre-
senting the major (0) or minor (1) allele, and an initial pabbity distribution (de-
noted byP°(X1)) as well asL — 1 different transition probability matrices (denoted
by P(X;11]|X;)) are used to model the transition probabilities from tHh state to
the (i + 1)-th state, which are estimated from the single and pairwistedrequencies
using standard methodsd, 45, 46]. As a result, each of the” haplotype sequences
corresponds to a state sequence and the probability ofvabgérunder the MC model
can be computed b (X, X...X 1) = PO(X,)- T[S P¥(Xi11|X:). Once built from

a group of haplotype sequences from human individuals {leegcase group or a ref-
erence group), the MC model can be used to evaluatefthetivespace of haplotype
matrices that are likely sampled from real human individuaimong totally2” pos-
sible haplotype sequences, the probabilities of obsersimge sequences are so low
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that they are deemed unlikely to appear in human genomesgawithe strong as-
sociations among neighboring SNPs. These sequences staildé considered when
estimating the solution space of haplotype matrices. Asstina probabilities o2” se-
quences and a threshald(close to 1, e.g. 0.99999) are given, the effective space of
haplotype sequences can be estimated by the number of nobsthpe sequences that
have a cumulative probability greater tharThis was achieved in our research through
an approximation algorithm presented in Appenfelix
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Fig. 7. The Markov Chain model for estimating the effective solutspace. (A) Cumulative dis-
tributions of the probabilities of haplotype sequencegeshin descending order of probabilities.
Cutoff probabilityd = 0.99999. (B) Total number of most probable sequences vs. their carmul
tive probabilities. Vertical red line represent the cutoff

Evaluation. To estimate the solution space under a human genetic modghased
3008 sequences from WTCCC ch7 of 100 SNPs by using PHABE\e chosT =
8192 bins to estimate distribution of haplotype sequences uttfteMC model. As
shown In Figure7 (A), with cutoff probabilityd = 0.99999, only 729 bins ofx 2°2
most probable sequences are obtained, as compared to tresgatice o220 hap-
lotype sequences, which indicates that the incorporatidheohuman genetic model
significantly reduces the effective space of haplotype sages. Figure8 shows the
space comparison betwe#f|| and||D||. We could see that in the original analysis,
we need aboui sequences to ensure multiple solutions for the given psénallele
frequencies. Defending against the intersection attagkires pretty much the same
number of sequences as shown in the figure. To incorporateutman genetic model
(the MC model), we need roughl2 L sequences.
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Fig. 8. Comparison between matrix spagg|| and constrain spadeD|| for data fromWTCCC1
of SNP 100.
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4.4 When Not to Release

For the frequency set that cannot be put in the Green zonsoliision is likely to be
unique. The adversary who finds the solution has reason i@vbdhat it is the correct
one. Here, we elaborate how to classify such a data-set.

Red-zone dataAlthough recovering SNPs sequences is NP-hard in gertleesdpecial
features of human genome can enable the attack to succe¢tkastasome frequency
sets. Prior research reports a successful attack on a efatalated to 100 SNP se-
guences and 174 SNPs from the FGFR2 locig.[The approach leverages the LD
relations among these SNPs to break the matrix into smatkbklin a way that pre-
serves the strong inter-SNP relations within individualdids. Such relations allow the
adversary to first restore individual blocks and then useatigregated relations be-
tween blocks to connect them together.

To avoid releasing the data vulnerable to the recoverylatiaavell as overprotect-
ing those that can actually be disclosed, we suggest to festjaency set with known
attacks and assign it to the Red zone when it is exploitedelattacks fail, we can label
the data-set as “Yellow” to leave the decision on its releasbe future research.

5 Case 3: Identification Threat to Test Statistics

Besides allele frequencies, also widely disseminated b§ ld@ the test statistics com-
puted from these frequencies. Particularly, HGS papersSr@y report p-values and
r-squaresi?) over tens or even hundreds of SNP sites. Prior researgrshows the
key to an identification attack on such data is knowledge efvidlues ofr- or equiv-
alently, their signs (given?). Once such information is given, we can u§e [57] to
decide whether a set of r-squares can be released, in theveaynes SecureGenome
and the/ statistic (Sectior8) do to single and pairwise allele frequencies. Specifically
we can release such a data-set if given all correct signadhievable statistical power
on it, as reported by, is still below a threshold. However, when the power turngou
be high, a decision to keep the data off limit can be premasiter all, there we assume
that all the signs are recovered, which is by no means easaatipe, as discussed later
in this section. Therefore, a question becomes how to segglaer bound”, allowing
the statistics to be released when it is too difficult to rerav dangerous amount of
information from them. This issue is addressed in this eacti

The rest of the section presents our understanding of theeyro how sign recovery
improves the chance of successful identifications and hdficwt this can be done.
Then, we come up with the yardsticks for releasing teststtedi and describe a new
potent attack that helps decide when data should be helddtdatication.

5.1 The Problem

How many signs need to be recoveredPrior research shows that under some circum-
stances, the signedtan be fully recovered/]. However, there are plenty of real-world
situations where this cannot be done. For example, whenatistis being released are
of low precision, signs can only be partially restored][ Also, the existing attack only
works under “integer constraints”, when allele counts aeduto compute the statis-
tics, and relies on the consistent relations among SNP&xample, the r-squares of
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SNP 1 and 2, SNP 2 and 3, and SNP 1 and 3 must be consistent wiitlogeer. These
conditions no longer hold in many studies that utilize a Mawim Likelihood Estimate
(MLE) algorithm to roughly estimate r-squares from genetyfp3]. Therefore, it is
completely realistic to consider the scenarios when thessiginnot be fully recovered.

An important question we are asking is how many correct segaisccessful attack
needs. The answer sheds light on the conditions under whelattack becomes in-
effective. To find out the answer, we can analyze the relatimiween the rate of the
correct signs used in an optimal test and the statisticakpdvwcan achieve on a par-
ticular data-set. Specifically, givenrate of correct signsy, we can randomly assign
correct signs to the of a fractiona of SNP pairs, and then ruf. under the assignment
to determine its power, i.e., the rate of successful ideatifons. This test needs to be
conducted repeatedly for each rate of correct signs, tohgeinaximum power under
different sign assignments. In this way, we can obtain ameséd power-sign relation,
and then use a threshold to determine the maximum rate céatasigns that will not
pose a serious identification threat.

Complexity of releasing statisticsGiven a threshold: (o € [0, 1]) of the correct sign
rate, a set of test statistics (r-squares) can be placeei@itben zone if the adversary
cannot correctly recover as many asof all (g) signs. This can be ensured if the
set of r-squares is mapped to multiple setsvalid signed r values, and the overlap
among these sets is below the thresheldVhen this happens, the adversary, even if
she can recover all these sets of signed r values, cannaifydemough signs with any
confidence for a successful attack. Obviously, gi‘@)] r-squares ovel. SNP sites,
there are totaIIQ(g) possiblesign assignmentsvith each of them corresponding to a
different set of signed r values. However, not all of suchigasaents are valid: many
of them do not correspond to any haplotype matrix, as thosigraments lead to the r
values inconsistent with each other.

We studied asign recovery problengiven a set of r-square valueg overL SNP
sites, a set of single allele frequencigs(i = 1,2, ..., L), which could be recovered
from p-values 7], and the total number of sequences in the case grd)pfind a set of
signed r values;; so that (1)%- = ffj ;and (2)r;; arevalid, i.e. there exists a haplotype
matrix whose pairwise allele count¥ (p, ¢ € 0,1) satisfyN - fi = 37 11y C?jq
cycltl-chicyy Simi .
—overorer imilar to thehaplotype matrix recovery
problem several key problems related to the sign recovery problentemputation-
ally hard if we assume the haplotype matrix has more thargjfistv rows (haplotype
sequences). This can be satisfied by all real HGS studieshwypically contains hun-
dreds of individuals. Specifically, under this conditiore 8how that:

Theorem 2. Determining if there exists a set of sign assignmentsfof a given set of
r-squares and single allele frequencies is NP-complete.

Corollary 5. Recovering a valid sign assignment for a given setsfuares and single
allele frequencies is NP-hard.

Corollary 6. Finding the number of valid sign assignment for a given setsfuares

and single allele frequencies is NP-hard.

for all ¢ andj, andr;; =

The proofs are provided in Appendix We note that these results have strong im-
plications on classifying an r-square set into Green or Regkg. Briefly, an adversary
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faces the following computational difficulty: assume tHa¢ snanages to recover some
sets of signs from r-squares, which itself is NP-hard; skiehsis no clue whether there
are any other valid sign assignment and how many correcs $igme been discovered
in her solution. In other words, she will not have any reabtmaonfidence in the iden-
tification she makes from the r-square data-set. There ixegpéon, though: if the
solution space of valid sign assignments (or equivaleh#yricorresponding haplotype
matrices) is sufficiently small, for example, as small assth&ce of r-squares, then the
adversary has a good reason to believe that every set ofiresgjhas a unique valid sign
assignment. Here the situation is analogous with that ire@aSectiord). Similarly,
we need a solution-space analysis to ensure that the adyesanot get any useful
information from a data-set to be released.

5.2 When to Release

Before placing a data-set to the Green zone, we need to ethsititbe adversary cannot
recover enough signs from it to achieve any significant ifieation power. Consider
that a polynomial-time adversary learns from the ratio leetwthe space of r-squares
| R?| and the space of matricé$ || that an r-square set can haveolutions. Given a
specific set of r-squares, she has no reason to believe thaetthas fewer solutions,
because she can neither determine the exact number ofosutor sample the expo-
nential space& (whenN and L are large) to estimate the distribution of matrices over
r-square sets. Also, recovering all these matrices is NB-dnad therefore the adversary
has no clue how many different sets of valid signs exist, piitet the number will not
exceeds. Whenk is sufficiently large, the adversary, even after she mantggst a
set of signs, does not know whether the overlap among al(s#ish can be as many
ask) goes abové — o of all (§) signs.

Solution-space analysisTherefore, the condition for the release of an r-square set
is that||S|| : ||R?| should be sufficiently large to ensure that the adversarg doé
know whether she recovers enough correct signs. As dedcib8ection4, ||S|| =~
2LN(XY=N (27 N)~1/2, Since the space size of the r values is approximatly:

e

L
, b
1))+ from r to r-squares, the space shrinkg #?|| ~ (N’j# To ensure mul-
2
tiple solutions, we neefliS|| > || R?||, which gives:
2N
— > L 5
log(N+1)—1 ®)

For example, for alocus involving 100 SNPs, at least 22%iddals (450 haplotype
sequences) should be in the case group to ensure the erisiEnultiple solutions.
Not surprisingly, this is less stringent than the condit@mplacing a set of pairwise
allele frequency in the Green zone (where one needs to hdwasat500 sequences for
a 100-SNP locus), because r-squares contain less infamitan the pairwise allele
frequencies. To further prevent the adversary from idgimtif more thanl — « of the
correct signs, we need to make it possible to have an elemekit ibe mapped by

L
2

at least2* (%) element& in S. To ensure this, we must have thed|| is at least

8 Note that the adversary has to consider the situation theitesle elements (matrices) are associated with differsetsr,
as she has no computing power to estimate the relations eetand matrices.
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2(1-2)(3) times as large a&R?|. This ultimately gives us the following condition:

2N
log(N+1) -1+«

> L (6)

Considering human models.Again, when the special properties of human genomes
are being considered, we need to re-assess the matrix ggddesed upon a human
genetic model, as described in Sectibf. In our research, we ran the approximation
algorithm (Sectiont.3) to identify L and N that satisfy the above conditions (multiple
sets of signs with a large distance), using the WTCCCL1 data.

Figure9 shows the result of the experiment involving 100 SNPs. Asaveabserve
from the figure, in absence of a human model, a population mithe than 250 indi-
viduals (500 sequences) are required to make sure that netimam 60% of signs can
be identified. If we consider the human features, we need alatpn of at least 600
individuals (v > 1200).

x10°
—MC
~—MC0.6
~REAL
~REAL0.6

v

solutions (log2)

0 /
="

0 5 10 15

sample size x*L

Fig. 9. Comparison between matrix spag§|| and || R?|| for data from WTCCC1 of, = 100
SNP. Vertical line shows the required sample size estinfadedformula5 and6 and then added
by a buffer of0.5L.

5.3 When Not to Release

When the space of matricéscomes close to that of the r-squares, the adversary knows
that once she acquires a set of valid r values, they are likelye correct. Although

we have shown that recovering signed r values from r-squsiéB-hard (Corollar),
some instances of the sign recovery problem may be easywe, solparticular when

a human genetics model is employed to help solve the proltlena we present a new
attack technique that helps determine when this situatomurs, and thus a data-set
should not be released.

A new attack. Although sign recovery from? is NP-hard in general, the special prop-
erties of human-genome data could make the attack feasidkrigome circumstances,
as demonstrated by prior researbdli][ Therefore, we again need to do the Red-Yellow
classification as described in Sectiér: a set of r-squares is labeled as Red if it is
found to be vulnerable to a known attack, and Yellow othegwishis classification re-
lies on the availability of the testing techniques, the npagént attacks we can find, for
evaluating the amount of the information inferable from taezet.
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Prior research{/] reports such an attack technique, which utilizes the ietegn-
straints and high precision statistics to recowdrom 2. In this paper, we present a
new attack technique that works on tifedata directly estimated from genotypes with
MLE, as did in many human-genome studigs][ Such data are of poor quality, in the
sense that they do not reflect the real allele counts and &evan consistent with each
other. This makes sign recovery difficult.

The new techniques we propose leverage the special steuafthuman genome se-
guences and the availability of a reference populatiorfeBaht groups of people often
share very similar linkage disequilibrium structures. $hahaplotype sequence can be
viewed as a combination of many small blocks of SNP sitedd@dlaplotype blocks),
with strong linkages among the SNPs within the same blockngak linkages among
those in different blocks. Such relations are captured lgyeggate LD information, r-
squares in particular. Biologically, this property is cadi®y the fact that human DNA
is passed from one generation to another in a way that recatitns occur more often
at some regions in the genome than other regions. Those atst gprecombinations
form the boundaries of haplotype blocks. As a result, a esfeg population often has a
very similar block structure as the case group. Our appraditists the individual hap-
lotype blocks of the reference population as well as thailgimations using a machine
learning algorithm, in attempt to make the r-squares of éisalting haplotype matrices
(of the reference) as close to that of the case group as padSile to the limited space
of the paper, we put the details of the attack in Apperilix

Evaluations. We ported thé_D function, which is used in many GWAS papers for cal-
culating MLEr2, from the snp.plotter][?] package oR[9] to Matlab and implemented
the recombination attack using a stochastic hill climbitggpéthm with multiple start-
ing points. Then, we evaluated the attack on the data egttfebm WTCCC1. We
extracted 180 SNPs from chromosome 7. A case group and &metegroup of 100
each were randomly sampled from the data-set. After thatMhbE-estimated-2, to-
gether with single allele frequencies, was used as the gattion target for both inner
block and inter block recombinations. On average, the sgeement rate between
the initial haplotype matrix (reference) and the targetrirgdtase) was 58.7%, which
had very small power (identification rate 3.0% under a falssitive rate 1%). After
learning, the sign rate agreement was improved to 67.2% @mge and the identifica-
tion rate became 8.1%: that is, our approach enabled ansatydp identify about 8
participants from the aggregate data with a poor quality.

6 Case 4: Recovery Threats to Test Statistics

Previous research has shown that single allele frequecarebe accurately recovered
from these published statistic$ 7. In this section, we study the possibility for an at-
tacker to recover haplotype matrices from published r-sgjualues and single allele
frequencies. As discussed in Sectignsince r-squares contain less information than
pairwise allele frequencies, such a recovery attack is miffieult than the attack dis-
cussed in Sectio#, though it is not completely impossible.

When to release Conservatively, we can first check whether r-squares carlbased
using the method discussed in Case 2, assuming that th&eattaes a way to obtain
pairwise allele frequencies from the r-squares. It is obsithat if the pairwise allele
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frequencies are placed in the Green zone, the r-squarekidiesafe to release as well.
A more strict bound can be found shown7nwe left the analysis in Appendix.

2(N —1)

log(N 4+1) -1 > L O

When not to release However, as shown in the prior researéh]| it is plausible to

fully recoverr with proper algorithms under some circumstances. Whertgipens
and Inequality7 is not satisfied, the adversary could gain some confidendesiout-
come she acquires. Therefore, like in other cases, we reenhito use the method
described in'§7] to verify if a data-set is indeed vulnerable and needs tolaega in
the Red zone.

7 Related Work

The problem of releasing aggregate data while preservieig rivacy has been ex-
tensively studied in privacy preserving data analy3is 5], statistical disclosure con-
trol [18, 19, 33, inference control 4] and privacy-preserving data mining4, 15].
However, the properties of human genome data make the pnodpecial in this do-
main, which has not been well investigated. Especially, &nuindividuals share about
99.9% genomic sequences, which makes it easy to find a refegFoup from public
sources such as HapMaij [This enables both Homer’s attack and the statisticathtta
proposed in§7], as elaborated in Sectiéh2. Also remotely related to our research is
the work on privacy preserving genome computing 22,44], which however does not
focus on protecting the outcomes of a computation from bigifegred.

The recent progress in human genome resear;h §] has made a great demand on
convenient access to sensitive human genome data for cagaanmpose. The problem
of balancing privacy protection and data sharing in this dismhowever, has not been
seriously studied until Homer, et al. published their fidir. 7] a couple years ago.
After that, several research groups, including us, havéestavorking on this important
issue P1,43,49,56,57]. As a prominent example, Sankararaman, et4a] fecently
propose a technique (SecureGenome) for measuring the maxstatistical powers
achievable on a set of single-allele frequencies. Most e$¢hstudies focus on single
allele frequencies, which has been found in prior reseavdbetinsufficient $7], as
sensitive information can also be inferred from other sesifike test statistics. The
research presented in this paper is the first attempt to staohel and assess the risk in
releasing different types of aggregate data, under typiéatence threats.

Recovering SNP sequences is related to the research ongemtly table releasé(),
23,28,41,59), and discrete tomograph¥ (], which tries to reconstruct a matrix from a
small number of projections. However, the specific problémestoring a matrix from
pair-wise allele counts is new, up to our knowledge, and #h&ted complexity prob-
lems have not been studied before.

The Red-zone data identified by our techniques are not sedgose released di-
rectly. However, they could still be published after proganitization and obfuscation.
Such techniques have been studied in data-based privécyd, 31]. Particularly, the
privacy policy based upobDifferential privacy[3(], once enforced, can make an iden-
tification impossible. Therefore, an important researchdion is to develop effective
techniques to achieve such a privacy objective on aggréga@n genome data.



To Release or Not to Release 19

8 Conclusion

Availability of aggregate human DNA data is of great impoda to human genome
studies. Recent research shows that such data are vuka¢oatifferent types of pri-
vacy threats, which could lead to identification of the ma#ptnts of these studies and
disclosure of their sensitive genetic markers. Therefoceitical question becomes how
to evaluate such a risk and determine when the data are safle&se. In our research,
we make the first attempt to answer this question. We idedtifie problem space of
aggregate data release, considering both different typeata available in the public
domains (allele frequencies and test statistics) and camthreats to such data (iden-
tification attack and recovery attack). Through a systesmatploration of the space,
we gained an important new understanding of the problencifigaly, we found that
inferring useful information from such data is difficult irigeral: the adversary often
does not have enough information and needs to solve NP-etenpt NP-hard prob-
lems. On the other hand, we also show that an attack can agipén under some cir-
cumstances, particularly when the solution space of thblenois small. Based upon
such an understanding, we propose a new risk-scale sysé¢mdtermines when data
can be safely released, through analyzing their solutiaces The important findings
of this research are summarized in Table

Table 1. Summary of Main Results

Identification Attack Recovery Attack |
Aggregate data]l. Release if the power of and 1. Release if% > L adjusted
T, is very low. by MC model.

single allele fref2. NOT to release if the powgZ. NOT to release if a known attack gan
quency pairwispf A and T, is higher than aecover matrix.
allele frequency|threshold.

. . . N 2N N 2 N—l) N
Statistics: 1. Release ifi 71— >|1 Release 'W > L adjusted
L adjusted by MC model. by MC model.
r2, p-value 2. NOT to release iff’. statistig2. NOT to release if a known attack
succeeds. succeeds.

Given the scale and the depth of this data-release problamy open issues remain
in the problem space. Particularly, in Case 1, our test fasugng the statistical power
on pair-wise allele frequencies is not optimal. Actuallgsijn of an optimal test here
seems to be extremely challenging, as these frequencieslated, and their joint dis-
tribution is very complicated and very difficult to model.rRgher cases, an important
issue is how to narrow the range of the Yellow zone, to getéighounds for releasing
or not releasing an aggregate data-set. Also importangisttidy on new anonymiza-
tion techniques that obfuscate the Red-zone data to actiiéeeential privacy without
substantially compromising their scientific value.
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Terminologies

Likelihood Ratio Test

Assume the pairwise allele frequencies of,eBNP sites are given for a case graup
and a reference group, denoted agfquc andff’qu, respectively, where <i < j < L
represent two different SNP sites and; € 0, 1 represent the allele type at the sites
andj, respectively. To test if an individual with the haplotyggigence;, (1 < k < L)

is likely to be within the case gropwe design the following likelinood ratio test under
the null hypothesisi{,) that s, is sampled from pairwise allele distribution defined
by quC, and the alternative hypothesig{) that s, is sampled from pairwise allele

distribution defined by 4.

]

PGsIf) _pida”” 15 o
A®) = i = H o) = E[[E[([(WW ) (8)
log(4) = 3 > V" - (log £ —log f'")] (9)
i pq

%In practice, each human individual carries two haplotypgisaces, which can be tested independently.
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Table 2. HGS Terminologies used in this paper.

Terminologies Description
Polymorphism The occurrence of two or more genetic forms (e.g. alleleNP§ among
individuals in the population of a species.

Single Nucleotid€The smallest possible polymorphism, which involves twoetypf nu
Polymorphism cleotides out of four (A, T, C, G) at a single nucleotide sit¢hie genome.
(SNP)
Allele One of the two sets of DNAs in a human individual's genome. \VBISP
sites have two common alleles in the human population: themadlele
(denoted by 0), the one with higher frequency, and the milhelegdenoted
by 1), the one with lower frequency.
Genotype The combination of two set of alleles in a human individual & SNP site
with two common alleles, there are three possible genotyp@shomozy
gotes, 00 and 11, and one heterozygote 01.

Locus(plural loci) |The surrounding regions of a SNP site in the genome .

Haplotype Haplotype, also referred to as SNP sequence, is the speaifibination
of alleles across multiple neighboring SNP sites in a loEash individua
has two haplotypes, each inherited from one parent. Sometiipps are
more common than others in the population.
Linkage disequilibfNon-random association of alleles among multiple neigingoENP sites.
rium(LD)

D

WhereYi?q is the indicator for the pairwise allele types of the indivéd haplotype at
SNP sitesi andj: Y} = 1if p = s; andq = s;; V) = 0 otherwise. The statis-
tic A provides another test to evaluate the identification rigoeisted with a set of
pairwise allele frequencies, assuming a perfect refergramgp can be obtained, as Se-
cureGenome does on single allele frequencies. We notedtliginot necessarily the
optimal statistical test on a given set of pairwise allekgfrencies of case and refer-
ence group. Even though the likelihood ratio test is knowbemearly optimal for the
case and reference pairwise allele frequencies of a sp&difcpair, the pairwise allele
frequencies cannot be treated as independent random lesr{@&stead they are highly
correlated), and thus the summation over all pairwiseaflelquencies do not guaran-
tee the overall optimality of the statistic test. We conjeetthat it is very hard to design
an optimal statistic for distinguishing two sets of pairevadlele frequencies.

C Haplotype Recombination Attack

Let H; = [h!,h2,---,h¥]i<;<x be the haplotype blocks of a locus ahfl be the
haplotype sequences within blo¢kK be the total number of blocks, arid be the
number of haplotype sequences within blackAssume haplotype sequengé oc-

curs at a frequency ofl.j in human population. The attack consists of three steps.
First, we determine the block structure, the haplotype seges in each blockh{)

and their frequencieﬂ) from a reference group of haplotype sequences at the same
locus. Afterwards, we initialize a haplotype matrix of thgecting size by randomly
combined haplotype sequences in each block with the expéetguencies. Next, we
refine the frequencies of haplotype sequences in each bléekuse MLE-estimated
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r? and single allele frequencies to devise a target functiahuse a stochastic hill
climbing (SHC) algorithm for the optimization. Specifigalbur goal is to minimize
E = B||#2 —r2|| /() + (1 — B)||é; — eill /Li, wherer? ande; represent the-squares
and single allele frequencies in blogkand?? and¢; represent the r-squares and single
allele frequencies of the haplotype matrix being optimiz&fier this step, we get a
refined frequencies of haplotype sequence in each blockll¥zimve attempt to refine
the combination of the haplotype sequences in differeraksdo fit the r-squares of the
case group between SNP sites in different blocks. We regertire order of the haplo-
type sequences in each block. Due to the inconsistency iMLtieestimated r-squares
especially for the long distance blocks, we can not satibfiysguares. The rearrange-
ment process can be viewed as another optimization proeelat tries to minimize
the distance between thesquares computed from the haplotype matrices and thettarge
r2 for the pairs of SNP sites in two different blocks. We apptieelsimilar algorithm to
the optimization as in the previous step and ultimately wieadaal haplotype matrix.

D Proofs of Theorem1, Corollary 1, Corollary 2 and Corollary 4
Conjecture 1, Theorem 2, Corollary 5, Corollary 6

Proof of Theorem 1 This problem can be formalized as an existence probler@EP;;)
which is to determine whether @i x L binary matrix M/ exists that satisfies the con-
straints of the sets of single allele coudtS;c(; )} (€.g. the number of Os in column
i) and pairwise major allele counf€’;;c (1,11} (e.g. the number of 00 pairs of column
+ and columnyj). NOTE that these two sets are equivalent to the set of psérailele
frequencies and may be used interchangeably in this paget’e= 3, termed as 3-
EP(;, C;;). Consider a special case of ER(C;;), denoted as 3-EP, where all given
single allele counts are 3 = 3). We prove 3-EP is NP-complete by reducing the
3-Recognizing Intersection Patterns Probi@RIPP(4)), a known NP-complete prob-
lem [2€] to it. 3-RIPP() is described as: gived = [a;j]rx 1 In whicha;; = 3, is
there an integer set collectidi = {H1, Hs, - - -, Hy,} such thai;; = |H; N H,| for
1 <i,7 < L. Obviously, 3-EPc NP. Given an arbitrary instance of 3-RIRPH( we
construct an instance of 3-EPy C;;) by settingC;; = a;; for 1 <14 # j < L and set-
ting C; = a;; for 1 <4 < L. Supposeé\l « 1, is a solution of EP. We can convert each
column of My« 1, into a set, where the row indices s in the:-th column form the el-
ements in the sef;. Therefore, We getd; N H;| = a;; = Cjjfor1 <i,j < L,i # j
and|H; N H;| = a; = C; = 3. So{H,} represent a solution of 3-RIPR). Con-
versely, suppos& = {Hy, Ho,---, Hy,} is a solution of 3-RIPP{). We can construct
a solutionM of 3-EP by converting each séf; into a column of length. where for
each element € H;, fill in the k-th position by 1 in the-th column of My, and
all the other positions bg. Clearly the resulting matrid/y « , is consistent with@;,
C;), and thus is a solution of 8-P. Because the conversions described above can be
done in polynomial time, 3-Ef;, C;;) is NP-complete. Therefore, EP{, C;;) is also
NP-complete since its special case 3-€R(;;) is NP-complete.

Proofs of Corollary 1, Corollary 2 and Corollary 4 Given the number of haplotype
matrices for a given pairwise allele frequency getve can directly determine if there
is a haplotype matrix fod. So finding the number of solutions for givens NP-hard.
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By Theoreml, EP is NP-complete. So the corresponding searching probfem
recovering matrix from pairwise allele frequencies is N&eh

For Corollary4, a matrix recover problem of sizZ€ x L can be extended by adding
one column of all 1. Besides the pairwise allele frequenaystraints, we add an addi-
tional constraint excluding a row vectorof length L + 1 with the last bits as 0. Note
that this constraints will never affect the solution of trewnmatrix since the last bits
of any sequence of the new matrix can not be 0. If the new mh#&#xa solution, the
original problem has a solution by removing the last column.

Argument of Conjecture 1. Given graph G and a k-coloring of G, to determine
whether a given k-coloring of G is unique is Co-NP-complet&’].[According to a
conjecture 6] that the solution counting problem for all known NP-contplerob-
lems listed in B4], including the graph k-colorability problem and 3-RIPB( are
#P-complete. Thus, there should be a parsimonious redugtiahfrom the graph k-
colorability problem to the 3-RIPP), and the reduction we constructed in the proof of
Theorem1 from 3-RIPP{) to 3-EP is also a parsimonious reduction. These two reduc-
tions ensure every instance of the graph k-colorabilitypfam has the same number of
solutions as the corresponding instance of 3-EP. So if weletarmine whether a given
solution is unique for an arbitrary instance of 3-EP by armatgm, we can solve the
same problem for the graph k-colorability problem by the safgorithm. Thus we can
conclude that to determine whether a given solution is umiquan arbitrary instance
of 3-EP is also Co-NP-complete, and the same conclusiorhalsis for the general EP
problem.

Proofs of Theorem 2, Corollary 5. The problem stated in Theorefis equivalent
to the problem of determining if there is a matrix satisfyiag, C;, N), denoted as
SEP¢2, C;, N).

We first prove a special case case of SER(;, N) whereC; = 3 forall 1 <
i < N andN > 18, denoted as 3-SEP{, C;, N). we prove 3-SEP is NP-complete
as below. Obviously, 3-SER NP. We prove 3-SEP is NP-complete by constructing a
Karp reduction from 3-ER{;, C;;). Given an arbitrary instance of 3-EP( C;;), we
construct an instance of the 3-SEB(C;, V) as follows. GivenC;, C;;, if Ziv C; >
18, we setN = YV (;, else setV = 19. Note that settingV > 1 C; will not
affect the existence of a solution since we can always adttanprows of all Os to a
solution of matrix without changing its single allele andrpése allele counts. We then

2 o (Ci‘Nfc-;C')Q H H H H H
setry; = ci(N—]qi)cj(J\;—cj)'_ This conversion can be done in p_olynomlal tlm(_e. We
now prove that given a solutiol/  , of a 3-SEP problem}{ ;. is also a solution

of the corresponding problem of 3-EP and vice versa. Thietabse, forV > 18 and
- . 2 (Ci'NfciC-)Q . .. . . .

C; = 3, jthe .furllc.t|0n.rij = ci(N—]ci)cj(J\;—cj) is bijective. It. is easy to v.erlf;./ that

the function is injective (fronC;; to rfj). We now prove the inverse function is also

injective. Assume there are two differefit;, denoted ag’;; andC;; give the same?,.

_ (CN-CiC)? (CLN=CiCy)? . P
We then must havbi(NjCi)cj(]\;fcj) = CI_(NjCi)Cj(ALCj). SinceC; = C; =3 and

C;; # C;, then we ge(C;; + C;;)N = 18. However, becausé;; + C;; > 1 since
they are not equal anl > 18, we have(Cj; +C;;-)N > 18, which is an contradiction.
So there is a bijection between 3-SEP and 3-EP. Thereforepwelude that the SEP
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problem is NP-complete since it's special case 3-SEP is diRptete. So the problem

stated in Theoren?® is also NP-complete. Also, the corresponding searchingleno

of recovering valid sign assignment frarh and single allele frequency is NP-hard.
Proof of Corollary 6. Given the number of valid sign assignments for given C;, N),

we can directly determine if there is a valid sign assignm®atfinding the number of

valid sign assignment for givemy, C;, N) is NP-hard.

E Case 4: more strict bound

To obtain a more specific guideline for releasing r-squatees we adopt a similar
approach as described in Sectignwhich compares the haplotype matrix spd¢s|
with the r-square spadgz?||. If ||S|| > || R?||, itis very likely that multiple haplotype
matrix solutions exist for a given set of r-squares. We hdwavé that to recover a
haplotype matrix from r-squares is NP-hard, and to detegrtfie number of haplotype
matrix solutions is also NP-hard (see SectiynAs a result, if a given set of r-squares
are likely to correspond to multiple haplotype matricess iifficult for an attacker to
recover a haplotype matrix from a given set of r-squareseaed if she manages to do
so, she cannot know if there exists another matrix and howyro#ltrer matrices may
also result in the same r-squares. Since an attacker wigxpainential sampling power
cannot get the distribution of matrices over r-squares,ficent condition to safely
release a set of r-squareg|is|| > || R?||. By combining Equatiod and Equatiorb, we
get the following condition:
2(N —-1)

log(N +1) -1 > L (10)
This condition gives an estimate of the number of individuateded to ensure that
multiple solutions that does not share a sequence in comAgain, we need to con-
sider a human genetic model while analyzing the solutioosjpa we did in sectiof,
which can lead to a more conservative condition.

F Analysis algorithm

We devised aiiterative algorithmto approximate the probability distribution over all
2L sequences. Given an MC model and a thresHpind each iteration step (frorn= 1

to L), the probability of a subsequen£¥ X; X»...X;) can be computed from the prob-
ablllty ofitsi — 1 prefiXP(Xng...Xi_l), Ie,P(XngXZ) = P(XlXQ...Xi_l) .
Pi=1(X;|X;_1). To accommodate our computation into a reasonable memageys
in each step, we group all? sequences int®7" (by default, we sef’ = 2!2 = 4096)
bins based on their probabilities, where the hitfs - - BS. are used for the sequences
with a major allele ai (X; = 0), and the binsB] - - - BL are used for the sequences
with a minor allele ai (X; = 1). Afterwards, we only record the number of sequences
and theaverageprobability of these sequences in each bin. For instaneebith B
(k=1,2,...,T) contains all sequences ending witthat have a probability within the
range of[pin + 0(k — 1) /T, pmin + 0k/T], Whered = paz — Pmin, @Ndpp, and
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Pmaz TEPresent the minimum and maximum probability among alliseges of length
1, respectively. The number and the average probabilityesfalsequences are recorded.
In each step during iteration, we limit the required memasage taO (7).

The 2T bins of initial states can be easily computed because orlptbbabilities
of two sequencesl(and0) need to be computed, and stored into appropriate bins.
Now we consider how to update tl2&" bins at state + 1 from the 27" bins at state
i. For any sequenc&; X»...X; in a bin of BY (i.e. X; = 0), the probability of the
sequenceX; X»...X; X;+1 can be approximated b (X, X>...X; X;41) = P(BY) -
P(X;11]X;), where P(BY) denotes the average probability of sequences in the bin
B that is computed and stored in the previous step. Accorgiafjlsequences in the
same bin at staté will receive the same probability as long as they are extdride
the same allele typ&;;, and thus one bin at staieshould be partitioned into two
groups, one forX; ., = 0 and one forX;; = 1, each with a different probability at
statei + 1 (thus are possibly assigned to different bins at statel). To utilize this
property, we first compute the probability for each of theoitat4dT" (= 27" x 2) groups
of sequences at stater 1, then take the minimum and maximum probabilities among
them to compute the range of probability for the new bins, famally assign thelT’
groups into27" bins based on their probability. Note that the number of eaqas in
each new bin is simply the total number of sequences in thepgrthat are assigned
to this bin, and average probability of the sequences carotmpated by a weighted
average of the probabilities of these groups, weighted byntimber of sequences in
each group. By using the iterative updating algorithm, wefazally obtain the2T" bins
at the statd., which can be used to estimate the solution space. We firtsttsobins in
the decreasing order of their average probabilities. Therount the total number of
sequences in the bins and calculate the cumulative pratyaifithe counted sequences
by assuming the sequences in the same bin have the same iitpbaliheir average
The number of sequences when their cumulative probabéi#ghes the thresholtd
give the approximate effective solution space. The contjmuital complexity of each
iteration step i$)(7") and that of the entire algorithm 3(7'L).
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