
A Lattice-Theoretical Approach to Deterministic Parallelism with
Shared State

Lindsey Kuper Ryan R. Newton

October 2012∗

Abstract
We present a new model for deterministic-by-construction parallel programming that generalizes existing single-

assignment models to allow multiple assignments that are monotonically increasing with respect to a user-specified
partial order. Our model achieves determinism by using a novel shared data structure with an API that allows only
monotonic writes and “threshold” reads that block until a lower bound is reached. We give a proof of determinism
for our model, discuss ways to express existing deterministic parallel models using it, and describe how to extend it
to support a limited form of nondeterminism that admits failures but never wrong answers.

1 Introduction
Programs written using a deterministic-by-construction model of parallel computation always produce the same ob-
servable results, offering programmers the promise of freedom from subtle, hard-to-reproduce nondeterministic bugs.
A common theme that emerges in the study of diverse deterministic-by-construction parallel systems, from venerable
models like Kahn process networks (KPNs) [15] to modern ones like Intel’s Concurrent Collections (CnC) system
[7], is that the determinism of the model hinges on some notion of monotonicity. In KPNs, for instance, processes
communicate over FIFO channels with ever-increasing channel histories, while in CnC, a shared data store of single-
assignment variables grows monotonically.

Because state modifications that only add information and never destroy it can be structured to commute with one
another (and thereby avoid insidious race conditions), it stands to reason that monotonic data structures play a key
role in the design of deterministic-by-construction parallel programming models. Yet there is little in the way of a
general theory of monotonic data structures as a basis for deterministic, shared-state concurrency. As a result, models
like CnC and KPNs emerge independently, without recognition of their common basis. In this paper we take a step
towards a more general theory.

We begin with an example. Consider the program in Figure 1(a), written in a hypothetical programming language
with locations, standard get and put operations on locations, and a let par form for parallel evaluation of multiple
subexpressions. Depending on whether get l or put l 4 executes first, the value of v might be either 3 or 4. Hence
Figure 1(a) is nondeterministic: multiple runs of the program can produce different observable results based on choices
made by the scheduler.

A straightforward modification we can make to our hypothetical language to enforce determinism is to require
that variables may be written to at most once, resulting in a single-assignment language [24]. Such single-assignment
variables are sometimes known as IVars1 and are a well-established mechanism for enforcing determinism at the
language and library level [8, 26, 7, 18] and even at the hardware level [5]. In a language with IVars, the second call
to put in Figure 1(a) would raise an error, and the resulting program, since it would always produce the error, would
be deterministic.

IVars enforce determinism by restricting the writes that can occur to a variable. However, the single-write restric-
tion can be weakened as long as reads are also restricted. In Figure 1(b), we modify get to take an extra argument,
∗Revises the previous version dated July 2012.
1IVars are so named because they are a special case of I-structures [3]—namely, those with only one cell.

1

(a)

let = put l 3 in

let par v = get l

= put l 4
in v

(b)

let = put l 3 in

let par v = get l 4
= put l 4

in v

(c)

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

Figure 1: Three example programs: (a) nondeterministic, (b) deterministic with a threshold read, and (c) deterministic
with a threshold read that returns the specified threshold value.

representing the minimum value that we are interested in reading from v. If the value of l has not yet reached 4 at the
time that get l 4 is ready to run, the operation blocks until it does, giving put l 4 an opportunity to run first. Assuming
(as we do) that the scheduler will eventually decide to run both branches of the let par expression, Figure 1(b) is de-
terministic and will always evaluate to 4. Moreover, if we had written get l 5 instead of get l 4, the program would be
guaranteed to block forever.

Our tweak fixes the specific program in Figure 1(b). But what if multiple subcomputations are writing to l in
parallel, all with values greater than or equal to four? Competing puts land us back where we started—Figure 1(c)
might evaluate to either 4 or 5 without further restrictions. Therefore we propose a design in which, if a minimum or
“threshold” value specified by a get operation has been reached, then the get operation returns that minimum value.
This get restriction is not as draconian as it may seem; later we will see how the total order in these examples can be
relaxed to a partial order, and potentially infinite sets of threshold values may be specified. Together, monotonically
increasing puts and minimum-value gets yield a deterministic-by-construction model, guaranteeing that every program
written using the model will behave deterministically.

Our proposed model generalizes IVars to LVars, thus named because their states can be represented as elements
of a user-specified partially ordered set that forms a bounded join-semilattice. This user-specified partially ordered
set, which we call a domain, determines the semantics of the put and get operations that comprise the interface to
LVars. In Figure 1(c), for instance, the domain that determines the semantics of put and get might be the natural
numbers ordered by ≤. The LVar model is general enough to subsume the IVar model—as well as other deterministic
parallel models—because it is parameterized by the choice of domain. For example, a domain of channel histories
with a prefix ordering would allow LVars to become FIFO channels that implement a Kahn process network. Different
instantiations of the domain result in a family of parallel languages, all of which are deterministic. This family of
languages is exactly the class of languages that deal with asynchronous, data-driven parallelism [19], which is critical
for irregular parallel applications such as graph algorithms.

An example application that uses rich, shared data structures and that processes irregular data is Hindley-Milner
type inference. In a parallelized type-inference algorithm, each type variable becomes an LVar, and upward movement
in the lattice represents type unification. Another example is the problem of removing duplicates from a list in parallel.
One solution is for multiple computations to insert elements into a single, shared set data structure, with a domain
ordered by subset inclusion.

Monotonically increasing variables naturally lend themselves to a variety of parallel operations on data structures
in a way that single-assignment variables do not. For instance, in the duplicate-removal example, the shared set might
be represented by a trie. Consider then inserting two keys, say, 0111 and 1111, into the trie from different points in the
parallel computation. Supposing that 0 represents “left” and 1 “right”, there would seem to be no conflict—the two
operations are filling in disjoint parts of the data structure. However, if the trie were implemented with IVars, each
operation would need to fill in a chain of IVars, populating the tree from the root to the leaf in question. To retain
determinism, IVars do not allow testing for emptiness, so there would be no way for one put operation to know if
another had already populated the root of the trie. Moreover, if both operations attempted to create a new node and
then insert it into the IVar at the root of the trie, then we would cause a violation of the single-assignment rule. This is
a limitation of IVars that LVars solve.

2

Contributions In this paper, we introduce LVars as the building block of a model of deterministic parallelism (Sec-
tion 2) and use them to define λLVar, a parallel calculus with shared state based on the call-by-value λ-calculus (Sec-
tion 3). As our main technical result, we present a proof of determinism for λLVar (Section 4). A critical aspect of
the proof is a frame-rule-like property, expressed by the Independence lemma (Section 4.3), that would not hold in a
typical language with shared mutable state, but holds in our setting because of the semantics of LVars and their put/get
interface. We present evidence that λLVar is sufficiently expressive to model two paradigms of deterministic parallel
computation: shared-state, single-assignment models, exemplified by the Intel Concurrent Collections framework [7]
and the monad-par Haskell library [18], and data-flow networks, exemplified by Kahn process networks [15] (Sec-
tion 5). Finally, we describe an extension to the basic λLVar model: destructive observations, enabling a limited form
of nondeterminism that admits failures but not wrong answers (Section 6).

⊥

⊤

0 1 2 ...

(a)

⊥

⊤

(⊥, 0) (⊥, 1) ... (0, ⊥) (1, ⊥) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

(b)

getFstgetSnd "tripwire" ⊥

⊤

1

2

⋮

(c)

3

Figure 2: Example domains: (a) IVar containing a natural number; (b) pair of natural-number-valued IVars; (c) ≤
ordering. Subfigure (b) is annotated with example threshold sets that would correspond to a blocking read of the first
or second element of the pair (see Sections 2.3 and 3.2). Any state transition crossing the “tripwire” for getSnd causes
it to unblock and return a result.

2 Domains, Stores, and Determinism
We take as the starting point for our work a call-by-value λ-calculus extended with a store and with communication
primitives put and get that operate on data in the store. We call this language λLVar. The class of programs that we
are interested in modeling with λLVar are those with explicit effectful operations on shared data structures, in which
subcomputations may communicate with each other via the put and get operations.

In this setting of shared mutable state, the trick that λLVar employs to maintain determinism is that stores contain
LVars, which are a generalization of IVars [3]. Whereas IVars are single-assignment variables—either empty or filled
with an immutable value—an LVar may have an arbitrary number of states forming a domain (or state space)D, which
is partially ordered by a relation v. An LVar can take on any sequence of states from the domain D, so long as that
sequence respects the partial order—that is, updates to the LVar (made via the put operation) are inflationary with
respect to v. Moreover, the interface presented by the get operation allows only limited observations of the LVar’s
state. In this section, we discuss how domains and stores work in λLVar and explain how the semantics of put and get
together enforce determinism in λLVar programs.

2.1 Domains
The definition of λLVar is parameterized by the choice of a domain D: to write concrete λLVar programs, one must
specify the domain that one is interested in working with. Therefore λLVar is actually a family of languages, rather
than a single language. Virtually any data structure to which information is added gradually can be represented as a

3

λLVar domain, including pairs, arrays, trees, maps, and infinite streams. Figure 2 gives three examples of domains for
common data structures.

Formally, a domain D is a bounded join-semilattice.2 In other words:

• D comes equipped with a partial order v;

• every pair of elements in D has a least upper bound (lub) t;

• D has a least element ⊥ and a greatest element >.

The simplest example of a useful domain is one that represents the state space of a single-assignment variable (an
IVar). A natural-number-valued IVar, for instance, would correspond to the domain in Figure 2(a), that is,

D = ({>,⊥} ∪ N,v),

where the partial order v is defined by setting ⊥ v d v > and d v d for all d ∈ D. This is a lattice of height three
and infinite width, where the naturals are arranged horizontally. After the initial write of some n ∈ N, any further
conflicting writes would push the state of the IVar to > (an error).

The motivation for requiring domains with the given structure is as follows:

• the least element, ⊥, is needed to initialize store locations;

• the greatest element, >, is needed to denote “conflicting” updates to store locations;

• the requirement that every two elements must have a lub means that it is always possible to fork a computation
into subcomputations that can independently update the store and then join the results by taking the lub of
updates to shared locations.

2.2 Stores
During the evaluation of a λLVar program, a store S keeps track of the states of LVars. Each LVar is represented by a
binding from a location l, drawn from a set Loc, to its state, which is some element d ∈ D. Although each LVar in a
program has its own state, the states of all the LVars are drawn from the same domain D. We can do this with no loss
of generality because lattices corresponding to different types of LVars could always be unioned into a single lattice
(with shared > and ⊥ elements). Alternatively, in a typed formulation of λLVar, the type of an LVar might determine
the domain of its states.

Definition 1. A store is either a finite partial mapping S : Loc fin→ (D − {>}), or the distinguished element >S .

We use the notation S[l 7→ d] to denote extending S with a binding from l to d. If l ∈ dom(S), then S[l 7→ d] denotes
an update to the existing binding for l, rather than an extension. We can also denote a store by explicitly writing out
all its bindings, using the notation [l1 7→ d1, l2 7→ d2, . . .]. The state space of stores forms a bounded join-semilattice,
just as D does. The least element ⊥S is the empty store, and >S is the greatest element. It is straightforward to lift the
v and t operations defined on elements of D to the level of stores:

Definition 2. A store S is less than or equal to a store S′ (written S vS S′) iff:

• S′ = >S , or

• dom(S) ⊆ dom(S′) and for all l ∈ dom(S), S(l) v S′(l).

Definition 3. The least upper bound (lub) of two stores S1 and S2 (written S1 tS S2) is defined as follows:

• S1 tS S2 = >S iff there exists some l ∈ dom(S1) ∩ dom(S2) such that S1(l) t S2(l) = >.

2Although we will sometimes abbreviate “bounded join-semilattice” to “lattice” for brevity’s sake in the discussion that follows, λLVar domains
do not, in general, satisfy the properties of a lattice.

4

• Otherwise, S1 tS S2 is the store S such that:

– dom(S) = dom(S1) ∪ dom(S2), and

– For all l ∈ dom(S):

S(l) =

 S1(l) t S2(l) if l ∈ dom(S1) ∩ dom(S2)
S1(l) if l /∈ dom(S2)
S2(l) if l /∈ dom(S1)

By Definition 3, if d1 t d2 = >, then [l 7→ d1] tS [l 7→ d2] = >S . Notice that a store like [l 7→ >] can never arise
during the execution of a λLVar program, because (as we will see in Section 3) an attempted write that would take the
state of l to > would raise an error before the write can occur.

2.3 Communication Primitives
The new, put, and get operations create, write to, and read from LVars, respectively. The interface is similar to that
presented by mutable references:

• new extends the store with a binding for a new LVar whose initial state is ⊥, and returns the location l of that
LVar (i.e., a pointer to the LVar).

• put takes a pointer to an LVar and a singleton set containing a new state; it updates the store, merging the current
state of the LVar with the new state by taking their lub, and pushes the state of the LVar upward in the lattice.
Any update that would take the state of an LVar to > results in an error.

• get performs a blocking “threshold” read that allows limited observations of the state of an LVar. It takes a
pointer to an LVar and a threshold set Q, which is a non-empty subset of D that is pairwise incompatible,
meaning that the lub of any two distinct elements in Q is >. If the LVar’s state d in the lattice is at or above
some d′ ∈ Q, the get operation unblocks and returns the singleton set {d′}. Note that d′ is a unique element of
Q, for if there is another d′′ 6= d′ in the threshold set such that d′′ v d, it would follow that d′ t d′′ = d 6= >,
which contradicts the requirement that Q be pairwise incompatible.

The intuition behind get is that it specifies a subset of the lattice that is “horizontal”: no two elements in the subset can
be above or below one another. Intuitively, each element in the threshold set is an “alarm” that detects the activation
of itself or any state above it. One way of visualizing the threshold set for a get operation is as a subset of edges in the
lattice that, if crossed, set off the corresponding alarm. Together these edges form a “tripwire”. This visualization is
pictured in Figure 2(b). The threshold set {(⊥, 0), (⊥, 1), ...} (or a subset thereof) would pass the incompatibility test,
as would the threshold set {(0,⊥), (1,⊥), ...} (or a subset thereof), but a combination of the two would not pass.

Both get and put take and return sets. The fact that put takes a singleton set and get returns a singleton set (rather
than a value d) may seem awkward; it is merely a way to keep the grammar for values simple, and avoid including set
primitives in the language (e.g., for converting d to {d}).

2.4 Monotonic Store Growth and Determinism
In IVar-based languages, a store can only change in one of two ways: a new binding is added at ⊥, or a previously
⊥ binding is permanently updated to a meaningful value. It is therefore straightforward in such languages to define
an ordering on stores and establish determinism based on the fact that stores grow monotonically with respect to the
ordering. For instance, Featherweight CnC [7], a lightweight, single-assignment imperative language that models the
CnC system, defines ordering on stores as follows:3

Definition 4 (store ordering, Featherweight CnC). A store S is less than or equal to a store S′ (written S vS S′) iff
dom(S) ⊆ dom(S′) and for all l ∈ dom(S), S(l) = S′(l).

3In Featherweight CnC, the store interface is simpler still: no store location is ever bound to ⊥. Instead, if l /∈ dom(S) then l is defined to be
at ⊥, and a location springs into existence at the time that its permanent value is written.

5

Given a domain D with elements d ∈ D:

configurations σ ::= 〈S; e〉 | error
expressions e ::= x | v | e e | new | put e e | get e e | convert e

values v ::= l | Q | λx. e
threshold set literals Q ::= {d1, d2, . . . , dn} | {d | pred(d)}

(where pred(d) is computable)
stores S ::= >S | [l1 7→ d1, l2 7→ d2, . . .]

(where di 6= >)

Figure 3: Syntax for λLVar.

Our Definition 2 is reminiscent of Definition 4, but Definition 4 requires that S(l) and S′(l) be equal, instead of our
weaker requirement that S(l) v S′(l) according to the user-provided partial order v. In λLVar, stores may grow by
updating existing bindings via repeated puts, so Definition 4 would be too strong; for instance, if ⊥ @ d1 v d2

for distinct d1, d2 ∈ D, the relationship [l 7→ d1] vS [l 7→ d2] holds under Definition 2, but would not hold under
Definition 4. That is, in λLVar an LVar could take on the state d1 followed by d2, which would not be possible in
Featherweight CnC. We establish in Section 4 that λLVar remains deterministic despite the relatively weak vS relation
given in Definition 2. The keys to maintaining determinism are the blocking semantics of the get operation and the
fact that it allows only limited observations of the state of an LVar.

3 λLVar: Syntax and Semantics

The syntax and operational semantics of λLVar appear in Figures 3 and 4, respectively.4 As we’ve noted, both the
syntax and semantics are parameterized by the domain D. The operational semantics is defined on configurations
〈S; e〉 comprising a store and an expression. The error configuration, written error, is a unique element added to the
set of configurations, but we consider 〈>S ; e〉 to be equal to error, for all expressions e. The metavariable σ ranges
over configurations.

Figure 4 shows two disjoint sets of reduction rules: those that step to configurations other than error, and those
that step to error. Most of the latter are merely propagating existing errors along. A new error can only arise by way
of E-PARAPPERR, which represents the joining of two conflicting subcomputations, or by way of the E-PUTVALERR
rule, which applies when a put to a location would take its state to >.

The reduction rules E-NEW, E-PUTVAL, and E-GETVAL in Figure 4 respectively express the semantics of the
new, put, and get operations described in Section 2.3. The incompatibility property of the threshold set argument
to get is enforced in the E-GETVAL rule by the incomp(Q) premise, which requires that the least upper bound of
any two distinct elements in Q must be >.5 The E-PUT-1/E-PUT-2 and E-GET-1/E-GET-2 rules allow for reduction
of subexpressions inside put and get expressions until their arguments have been evaluated, at which time the E-
PUTVAL (or E-PUTVALERR) and E-GETVAL rules respectively apply. Arguments to put and get are evaluated in
arbitrary order, although not simultaneously.6

3.1 Fork-Join Parallelism
λLVar has an explicitly parallel reduction semantics: the E-PARAPP rule in Figure 4 allows simultaneous reduction of
the operator and operand in an application expression, so that (eliding stores) the application e1 e2 may step to e′1 e

′
2.

In the case where one of the subexpressions is already a value or is otherwise unable to step (for instance, if it is a

4 In addition to the version of λLVar presented here, we have developed a runnable model of a variant of λLVar using the PLT Redex semantics
engineering toolkit [11]. Our Redex model and test suite are available at https://github.com/lkuper/lambdaLVar-redex.

5Although incomp(Q) is given as a premise of the E-GETVAL reduction rule (indicating that it is checked at runtime), in a real implementation
the incompatibility condition on threshold sets might be checked statically, eliminating the need for the runtime check. In fact, a real implementation
could forego any runtime representation of threshold sets.

6It would, however, be straightforward to add to the semantics E-PARPUT and E-PARGET rules analogous to E-PARAPP, should simultaneous
evaluation of put and get arguments be desired.

6

https://github.com/lkuper/lambdaLVar-redex

Given a domain D with elements d ∈ D, and a value-conversion function δ:

incomp(Q)
4
= ∀ a, b ∈ Q. (a 6= b =⇒ a t b = >) 〈S; e〉 ↪−→ 〈S′; e′〉

(where 〈S′; e′〉 6= error)

E-REFL

〈S; e〉 ↪−→ 〈S; e〉

E-PARAPP
〈S; e1〉 ↪−→ 〈S1; e

′
1〉 〈S; e2〉 ↪−→ 〈S2; e

′
2〉 〈Sr

1 ; e
′r
1 〉 = rename(〈S1; e

′
1〉, S2, S) S

r
1 tS S2 6= >S

〈S; e1 e2〉 ↪−→ 〈Sr
1 tS S2; e

′r
1 e

′
2〉

E-PUT-1
〈S; e1〉 ↪−→ 〈S1; e

′
1〉

〈S; put e1 e2〉 ↪−→ 〈S1; put e′1 e2〉

E-PUT-2
〈S; e2〉 ↪−→ 〈S2; e

′
2〉

〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e
′
2〉

E-PUTVAL
S(l) = d2 d1 ∈ D d1 t d2 6= >
〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉

E-GET-1
〈S; e1〉 ↪−→ 〈S1; e

′
1〉

〈S; get e1 e2〉 ↪−→ 〈S1; get e′1 e2〉

E-GET-2
〈S; e2〉 ↪−→ 〈S2; e

′
2〉

〈S; get e1 e2〉 ↪−→ 〈S2; get e1 e
′
2〉

E-GETVAL
S(l) = d2 incomp(Q) Q ⊆ D d1 ∈ Q d1 v d2

〈S; get l Q〉 ↪−→ 〈S; {d1}〉

E-CONVERT
〈S; e〉 ↪−→ 〈S′; e′〉

〈S; convert e〉 ↪−→ 〈S′; convert e′〉

E-CONVERTVAL

〈S; convert v〉 ↪−→ 〈S; δ(v)〉

E-BETA

〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉

E-NEW

〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉
(l /∈ dom(S))

〈S; e〉 ↪−→ error

E-REFLERR

error ↪−→ error

E-PARAPPERR
〈S; e1〉 ↪−→ 〈S1; e

′
1〉 〈S; e2〉 ↪−→ 〈S2; e

′
2〉 〈Sr

1 ; e
′r
1 〉 = rename(〈S1; e

′
1〉, S2, S) S

r
1 tS S2 = >S

〈S; e1 e2〉 ↪−→ error

E-APPERR-1
〈S; e1〉 ↪−→ error

〈S; e1 e2〉 ↪−→ error

E-APPERR-2
〈S; e2〉 ↪−→ error

〈S; e1 e2〉 ↪−→ error

E-PUTERR-1
〈S; e1〉 ↪−→ error

〈S; put e1 e2〉 ↪−→ error

E-PUTERR-2
〈S; e2〉 ↪−→ error

〈S; put e1 e2〉 ↪−→ error

E-PUTVALERR
S(l) = d2 d1 ∈ D d1 t d2 = >

〈S; put l {d1}〉 ↪−→ error

E-GETERR-1
〈S; e1〉 ↪−→ error

〈S; get e1 e2〉 ↪−→ error

E-GETERR-2
〈S; e2〉 ↪−→ error

〈S; get e1 e2〉 ↪−→ error

E-CONVERTERR
〈S; e〉 ↪−→ error

〈S; convert e〉 ↪−→ error

Figure 4: An operational semantics for λLVar.

7

a = ...
b = ...

let par

let par

x = ...
y = ...

in ...
in ...

put

get

(a) (b)

Figure 5: A series-parallel graph induced by basic parallel λ-calculus evaluation (a), vs. a non-series-parallel graph
created by put/get communication (b).

blocked get), the reflexive E-REFL rule comes in handy: it allows the E-PARAPP rule to apply nevertheless. When the
configuration 〈S; e1 e2〉 takes a step, e1 and e2 step as separate subcomputations, each beginning with its own copy
of the store S. Each subcomputation can update S independently, and the resulting two stores are combined by taking
their least upper bound when the subcomputations rejoin.7

Although the semantics admits such parallel reductions, λLVar is still call-by-value in the sense that arguments
to functions must be fully evaluated before function application (β-reduction, modeled by the E-BETA rule) can
occur. We can exploit this property to define a syntactic sugar let par for parallel composition, which computes two
subexpressions e1 and e2 in parallel before computing e3:

let par x = e1

y = e2

in e3

4
= ((λx. (λy. e3)) e1) e2

Although e1 and e2 are evaluated in parallel, e3 cannot be evaluated until both e1 and e2 are evaluated, because the
call-by-value semantics does not allow β-reduction until the operand is fully evaluated, and because it further disallows
reduction under a λ-term (sometimes called “full β-reduction”). In the terminology of parallel programming, the above
expression executes both a fork and a join. Indeed, it is common for fork and join to be combined in a single language
construct, for example, in languages with parallel tuple expressions such as Manticore [12].

Since let par expresses fork-join parallelism, the evaluation of a program comprising nested let par expressions
would induce a runtime dependence graph like that pictured in Figure 5(a). In the terminology of parallel algorithms,
the λLVar language (minus put and get) can support any series-parallel dependence graph. Adding communication
through put and get introduces “lateral” edges between branches of a parallel computation like that shown in Fig-
ure 5(b). This adds the ability to construct arbitrary non-series-parallel dependency graphs, just as with first-class
futures [23].

Conversely, to sequentially compose e1 before e2 before e3, we could write the expression (λx. ((λy. e3) e2)) e1.
Sequential composition is necessary for ordering side-effecting put and get operations on the store. For that reason,
full β-reduction would be a poor choice, but parallel call-by-value gives λLVar both sequential and parallel composition,
without introducing additional language forms.

7A subtle point that E-PARAPP and E-PARAPPERR must address is location renaming: locations created while e1 steps must be renamed to
avoid name conflicts with locations created while e2 steps. We discuss the rename metafunction as part of a more wide-ranging discussion in
Section 4.1.

8

3.2 Programming with put and get

For our first example of a λLVar program, we choose our domain to be pairs of natural-number-valued IVars, represented
by the lattice shown in Figure 2(b). With D instantiated thusly, we can write the following program:8

let p = new in

let = put p {(3, 4)} in

let v1 = get p {(⊥, n) | n ∈ N} in

. . . v1 . . .

(Example 1)

This program creates a new LVar p and stores the pair (3, 4) in it. (3, 4) then becomes the state of p. The premises of
the E-GETVAL reduction rule hold: S(p) = (3, 4); the threshold set Q = {(⊥, n) | n ∈ N} is a pairwise incompatible
subset of D; and there exists an element d1 ∈ Q such that d1 v (3, 4) in the lattice (D,v). In particular, the pair
(⊥, 4) is a member of Q, and (⊥, 4) v (3, 4) in (D,v). Therefore, get p {(⊥, n) | n ∈ N} returns the singleton set
{(⊥, 4)}, which is a first-class value in λLVar that can, for example, subsequently be passed to put.

Since threshold sets can be cumbersome to read, we can define some convenient shorthands getFst and getSnd for
working with the domain of pairs:

getFst p
4
= get p {(n,⊥) | n ∈ N}

getSnd p
4
= get p {(⊥, n) | n ∈ N}

Querying incomplete data structures It is worth noting that getSnd p returns a value even if the first entry of p is
not filled in. For example, if the put in the second line of (Example 1) had been put p {(⊥, 4)}, the get expression
would still return {(⊥, 4)}. It is therefore possible to safely query an incomplete data structure—say, an object that is
in the process of being initialized by a constructor. However, notice that we cannot define a getFstOrSnd function that
returns if either entry of a pair is filled in. Doing so would amount to passing all of the boxed elements of the lattice
in Figure 2(b) to get as a single threshold set, which would fail the incompatibility criterion.

Blocking reads On the other hand, consider the following:

let p = new in

let = put p {(⊥, 4)} in

let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .

(Example 2)

Here getFst can attempt to read from the first entry of p before it has been written to. However, thanks to let par, the
getFst operation is being evaluated in parallel with a put operation that will give it a value to read, so getFst simply
blocks until put p {(3, 4)} has been evaluated, at which point the evaluation of getFst p can proceed.

In the operational semantics, this blocking behavior corresponds to the last premise of the E-GETVAL rule not
being satisfied. In (Example 2), although the threshold set {(n,⊥) | n ∈ N} is incompatible, the E-GETVAL rule
cannot apply because there is no state in the threshold set that is lower than the state of p in the lattice—that is, we are
trying to get something that isn’t yet there! It is only after p’s state is updated that the premise is satisfied and the rule
applies.

3.3 Converting from Threshold Sets to λ-terms and Back
There are two worlds that λLVar values may inhabit: the world of threshold sets, and the world of λ-terms. But if these
worlds are disjoint—if threshold set values are opaque atoms—certain programs are impossible to write. For example,

8For clarity, we will write let x = e1 in e2 as a shorthand for ((λx. e2) e1).

9

Frame rule (O’Hearn et al., 2001):

{p} c {q}
{p ∗ r} c {q ∗ r}

(where no free variable in r is modified by c)

Lemma 3 (Independence), simplified:

〈S; e〉 ↪−→ 〈S′; e′〉
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉

(S′′ non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉)

Figure 6: Comparison of the frame rule with a simplified version of the Independence lemma. The ∗ connective in the
frame rule requires that its arguments be disjoint.

implementing single-assignment arrays in λLVar requires that arbitrary array indices can be computed and converted to
threshold sets.

Thus we parameterize our semantics by a conversion function, δ : v → v, to which λLVar provides an interface
through its convert language form. The conversion function can arbitrarily convert between representations of values
as threshold sets and representations as λ-terms. It is optional in the sense that providing an identity or empty function
is acceptable, and leaves λLVar sensible but less expressive (i.e., threshold sets are still first-class values, but usable
only for passing to get and put).9

4 Proof of Determinism for λLVar

Our main technical result is a proof of determinism for the λLVar language. The complete proofs appear in Appendix A.

4.1 Framing and Renaming
Figure 6 shows a frame rule, due to O’Hearn et al. [20], which captures the idea that, given a program c with precondi-
tion p that holds before it runs and postcondition q that holds afterward, a disjoint condition r that holds before c runs
will continue to hold afterward. Moreover, the original postcondition q will continue to hold. For λLVar, we can state a
property that is analogous to the frame rule, but to do so we have to define a notion of non-conflicting stores. Given a
transition 〈S; e〉 ↪−→ 〈S′; e′〉, the set dom(S′) − dom(S) is the set of names of new store bindings created between
〈S; e〉 and 〈S′; e′〉. We say that a store S′′ is non-conflicting with the transition 〈S; e〉 ↪−→ 〈S′; e′〉 iff dom(S′′) does
not have any elements in common with dom(S′)− dom(S).

Definition 5. A store S′′ is non-conflicting with the transition 〈S; e〉 ↪−→ 〈S′; e′〉 iff (dom(S′) − dom(S)) ∩
dom(S′′) = ∅.

Requiring that a store S′′ be non-conflicting with a transition 〈S; e〉 ↪−→ 〈S′; e′〉 is not as restrictive a requirement
as it appears to be at first glance: it is fine for S′′ to contain bindings for locations that are bound in S′, as long as
they are also locations bound in S. In fact, they may even be locations that were updated in the transition from 〈S; e〉
to 〈S′; e′〉, as long as they were not created during it. In other words, given a store S′′ that is non-conflicting with
〈S; e〉 ↪−→ 〈S′; e′〉, it may still be the case that dom(S′′) has elements in common with dom(S), and with the subset
of dom(S′) that is dom(S).

Renaming Recall that when λLVar programs split into two subcomputations via the E-PARAPP rule, the subcompu-
tations’ stores are merged (via the lub operation) as they are running. Therefore we need to ensure that the following
two properties hold:

9A reasonable alternative definition of λLVar would remove threshold set values entirely and require that threshold set inputs and outputs to
get/put be implicitly converted. Yet the language is deterministic even in its more general form—with first-class threshold sets—and we do not
want to unduly restrict the language.

10

1. Location names created before a split still match up with each other after a merge.

2. Location names created by each subcomputation while they are running independently do not match up with
each other accidentally—i.e., they do not collide.

Property (2) is why it is necessary to rename locations in the E-PARAPP (and E-PARAPPERR) rule. This renaming is
accomplished by a call to the rename metafunction, which, for each location name l generated during the reduction
〈S; e1〉 ↪−→ 〈S1; e′1〉, generates a name that is not yet used on either side of the split and substitutes that name into
〈S1; e′1〉 in place of l.10 We arbitrarily choose to rename locations created during the reduction of 〈S; e1〉, but it would
work just as well to rename those created during the reduction of 〈S; e2〉.

Definition 6. The rename metafunction is defined as follows:

rename(·, ·, ·) : σ × S × S → σ

rename(〈S′; e〉, S′′, S)
4
= 〈S′; e〉[l1 := l′1] . . . [ln := l′n]

where:

• {l1, . . . , ln} = dom(S′)− dom(S), and

• {l′1, . . . , l′n} is a set such that l′i /∈ (dom(S′) ∪ dom(S′′)) for i ∈ [1..n].

However, property (1) means that we cannot allow α-renaming of bound locations in a configuration to be done at will.
Rather, renaming can only be done safely if it is done in the context of a transition from configuration to configuration.
Therefore, we define a notion of safe renaming with respect to a transition.

Definition 7. A renaming of a configuration 〈S; e〉 is the substitution into 〈S; e〉 of location names l′1, . . . , l
′
n for

some subset l1, . . . , ln of dom(S).

Definition 8. A safe renaming of 〈S′; e′〉 with respect to 〈S; e〉 ↪−→ 〈S′; e′〉 is a renaming of 〈S′; e′〉 in which the
locations l1, . . . , ln being renamed are the members of the set dom(S′) − dom(S), and the names l′1, . . . , l

′
n that are

replacing l1, . . . , ln do not appear in dom(S′).

If 〈S′′; e′′〉 is a safe renaming of 〈S′; e′〉 with respect to 〈S; e〉 ↪−→ 〈S′; e′〉, then S′′ is by definition non-conflicting
with 〈S; e〉 ↪−→ 〈S′; e′〉.

4.2 Renaming Lemmas
With the aforementioned definitions in place, we can establish the following two properties about renaming. Lemma 1
expresses the idea that the names of locations created during a reduction step are arbitrary within the context of that
step. It says that if a configuration 〈S; e〉 steps to 〈S′; e′〉, then 〈S; e〉 can also step to configurations that are safe
renamings of 〈S′; e′〉 with respect to 〈S; e〉 ↪−→ 〈S′; e′〉.

Lemma 1 (Renaming of Locations During a Step). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error) and {l1, . . . , ln} =
dom(S′)− dom(S), then:

For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S′) for i ∈ [1..n]:

〈S; e〉 ↪−→
〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉
(6= error),

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S′(l).

10Since λLVar locations are drawn from a distinguished set Loc, they cannot occur in the user’s domain D—that is, locations in λLVar may not
contain pointers to other locations. Likewise, λ-bound variables in e are never location names. Therefore, substitutions like the one in Definition 6
will not capture bound occurrences of location names.

11

Proof. See Appendix, Section A.1.

Finally, Lemma 2 says that in the circumstances where we use the rename metafunction, the renaming it performs
meets the specification set by Lemma 1.

Lemma 2 (Safety of rename). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error) and S′′ 6= >S , then:
〈S; e〉 ↪−→ rename(〈S′; e′〉, S′′, S).

Proof. See Appendix, Section A.2.

4.3 Supporting Lemmas
Lemmas 3, 4, and 5 express three key properties that we need for establishing determinism. Lemma 3 expresses a local
reasoning property: it says that if a transition steps from 〈S; e〉 to 〈S′; e′〉, then the configuration 〈StS S′′; e〉, where
S′′ is some other store (e.g., one from another subcomputation), will step to 〈S′tSS′′; e′〉. The only restrictions on S′′

are that S′ tS S′′ cannot be >S , and that S′′ must be non-conflicting with the original transition 〈S; e〉 ↪−→ 〈S′; e′〉.
Like the frame rule, the Independence lemma allows us to “frame in” a larger store around e and still finish the
transition with e′, with the non-conflicting requirement ruling out name conflicts caused by allocation.

Lemma 4 handles the case where S′tSS′′ = >S and ensures that in that case, 〈StSS′′; e〉 steps to error. In either
case, whether the transition results in 〈S′ tS S′′; e′〉 or in error, we know that it will never result in a configuration
containing some other e′′ 6= e′. Finally, Lemma 5 says that if a configuration 〈S; e〉 steps to error, then evaluating e
in some larger store will also result in error.

Lemma 3 (Independence). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error), then for all S′′ such that S′′ is non-
conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ 6= >S:
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.

Proof. See Appendix, Section A.3.

Lemma 4 (Clash). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error), then for all S′′ such that S′′ is non-conflicting
with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ = >S:
〈S tS S′′; e〉 ↪−→ error.

Proof. See Appendix, Section A.4.

Lemma 5 (Error Preservation). If 〈S; e〉 ↪−→ error and S vS S′, then 〈S′; e〉 ↪−→ error.

Proof. See Appendix, Section A.5.

4.4 Diamond Lemma
Lemma 6 does the heavy lifting of our determinism proof: it establishes the diamond property (or Church-Rosser prop-
erty [4]), which says that if a configuration steps to two different configurations, there exists a single third configuration
to which those configurations both step.

Lemma 6 (Diamond). If σ ↪−→ σa and σ ↪−→ σb, then there exists σc such that either:

• σa ↪−→ σc and σb ↪−→ σc, or

• there exists a safe renaming σ′b of σb with respect to σ ↪−→ σb, such that σa ↪−→ σc and σ′b ↪−→ σc.

Proof. See Appendix, Section A.6.

We can readily restate Lemma 6 as Corollary 1:

Corollary 1 (Strong Local Confluence). If σ ↪−→ σ′ and σ ↪−→ σ′′, then there exist σc, i, j such that σ′ ↪−→i σc and
σ′′ ↪−→j σc and i ≤ 1 and j ≤ 1.

Proof. Choose i = j = 1. The proof follows immediately from Lemma 6.

12

〈S ; e1 e2〉

〈Sa1
⊔S Sa2

; ea1
 ea2

〉 〈Sb1
⊔S Sb2

; eb1 eb2〉

σc

〈S ; e1〉

〈Sa1
; ea1

〉 〈Sb1
; eb1〉

σc1

〈S ; e2〉

〈Sa2
; ea2

〉 〈Sb2
; eb2〉

σc2(= 〈Sc1
; ec1〉 or error) (= 〈Sc2

; ec2〉 or error)

By induction hypothesis, there exist σc1
, σc2

 such that To show: There exists σc such that

Figure 7: Diagram of the subcase of Lemma 6 in which the E-PARAPP rule is the last rule in the derivation of both
σ ↪−→ σa and σ ↪−→ σb. We are required to show that, if the configuration 〈S; e1 e2〉 steps by E-PARAPP to two
different configurations, 〈Sa1 tS Sa2 ; ea1 ea2〉 and 〈Sb1 tS Sb2 ; eb1 eb2〉, they both step to some third configuration
σc.

4.5 Confluence Lemmas and Determinism
With Lemma 6 in place, we can straightforwardly generalize its result to multiple steps, by induction on the number
of steps, as Lemmas 7, 8, and 9 show. 11

Lemma 7 (Strong One-Sided Confluence). If σ ↪−→ σ′ and σ ↪−→m σ′′, where 1 ≤ m, then there exist σc, i, j such
that σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ 1.

Proof. See Appendix, Section A.7.

Lemma 8 (Strong Confluence). If σ ↪−→n σ′ and σ ↪−→m σ′′, where 1 ≤ n and 1 ≤ m, then there exist σc, i, j such
that σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ n.

Proof. See Appendix, Section A.8.

Lemma 9 (Confluence). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′, then there exists σc such that σ′ ↪−→∗ σc and σ′′ ↪−→∗ σc.

Proof. Strong Confluence (Lemma 8) implies Confluence.

Theorem 1 (Determinism). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′, and neither σ′ nor σ′′ can take a step except by E-REFL or
E-REFLERR, then σ′ = σ′′.

Proof. We have from Lemma 9 that there exists σc such that σ′ ↪−→∗ σc and σ′′ ↪−→∗ σc. Since σ′ and σ′′ can only
step to themselves, we must have σ′ = σc and σ′′ = σc, hence σ′ = σ′′.

5 Modeling Other Deterministic Parallel Models
In this section, we present evidence that the λLVar programming model is general enough to subsume two rather dif-
ferent families of deterministic-by-construction parallel computation models. The first category is single-assignment
models, from which we’ll take Intel’s Concurrent Collections framework [7] and Haskell’s monad-par library [18]
as two examples. The second is data-flow networks, specifically Kahn process networks (KPNs) [15]. In Section 7,
we discuss additional models that are related to, but not directly modeled by, λLVar.

11Lemmas 7, 8, and 9 are nearly identical to the corresponding lemmas in the proof of determinism for Featherweight CnC given by Budimlić
et al.[7]. We also reuse Budimlić et al.’s naming conventions for Lemmas 3 through 6, but the statements and proofs of those lemmas differ
considerably in our setting.

13

5.1 Concurrent Collections
In Section 2.4, we mentioned the Featherweight CnC language and its monotonically growing memory store. Feather-
weight CnC is a simplified model of the Concurrent Collections (CnC) [7] language for composing graphs of “steps”,
more commonly known as actors, which are implemented separately in a general-purpose language (C++, Java,
Haskell, or Python). To begin execution, a subset of steps are invoked at startup time. Each step, when executed,
may perform puts and gets on global, shared data collections (tables of IVars), as well as send messages to invoke
other steps. The steps themselves are stateless, except for the information they store externally in the aforementioned
tables.

The role of monotonicity has been understood, at least informally, in the design of CnC. However, this has not—
until now—led to a treatment of shared data collections as general as λLVar. λLVar subsumes CnC in the following
sense. If the language used to express CnC steps is the call-by-value λ-calculus, then CnC programs can be translated
to λLVar; each step would become a function definition, generated in the following way:

• Each step function takes a single argument (its message, or in CnC terminology, its tag) and returns {}—our
unit, the empty threshold set—being executed for effect only.

• All invocations of other steps (message sends) within the step body, are aggregated at the end of the function
and performed inside a let par. This is the sole source of parallelism. The aggregation can be accomplished
either statically, by a program transformation that moves sends, or by dynamic buffering of the outgoing sends.

• The rest of the body of a step is translated directly: puts on data collections become λLVar puts; gets become
become λLVar gets.

The following skeleton shows the form of a program converted by the above method. It first defines steps, then
launches the initial batch of “messages”, and finally reads whatever result is desired.

let step1 = λmsg. get . . . ; put . . . ;
let par = step1 . . .

= step2 . . .

= step2 . . .

in {}
in let step2 = . . .

in let data1 = new - - global data collections

in let par = step1 33 - - invoke initial steps

= step2 44
in convert (get data1 key) - - retrieve final result

Somewhat surprisingly, the CnC programming model is not implementable in a parallel call-by-value λ-calculus ex-
tended only with IVars. In fact, it was this observation that began the inquiry leading to the development of λLVar.
The reason is that CnC provides globally scoped, extensible tables of IVars, not just IVars alone. While a λ-calculus
augmented with IVars could model shared global IVars, or even fixed collections of IVars, it is, to our knowledge,
impossible to create a mutable, extensible table data structure with IVars alone.

Finally, if there were not already a determinism result for CnC (which is previous work by the second author and
others [7]), one could bootstrap determinism by proving that every valid step in a CnC semantics maps onto one or
more evaluation steps for the translated version under the λLVar semantics; that is, the λLVar encoding simulates all
possible executions of the CnC program, and since it yields a single answer, so does the CnC program.

5.2 The monad-par Haskell library
The monad-par package for Haskell [18] provides a parallel deterministic programming model with an explicit fork
operation together with first-class IVars. monad-par uses explicit sequencing via a monad, together with Haskell’s

14

lazy evaluation. To translate monad-par programs to λLVar, evaluation order can be addressed using standard tech-
niques, and λLVar can model monad-par’s fork operation with let par, using the method in Section 3.1. But because
monad-par has no join operations (IVar gets being the only synchronization mechanism), it would be necessary to
use continuation-passing style in the translation. If the original monad-par program forks a child computation and
returns, the translated program must invoke both the fork and its continuation within a let par expression.

Another wrinkle for translation of monad-par programs into λLVar is that while monad-par IVars may contain
other IVars, LVars cannot contain LVars. This problem can be overcome by using a type-directed translation in which
ach IVar is represented by the wide, height-three lattice shown in Figure 2(a), and multiple IVars are modeled by prod-
uct lattices. For example, a location of type IVar (IVar Int, IVar Char) in monad-par would correspond
to a lattice similar to that pictured in Figure 2(b). Chaining IVar type constructors, e.g., IVar (IVar (...)),
would simply add additional empty states, repeatedly lifting the domain with a new ⊥. All these types create larger
state spaces, but do not pose a fundamental barrier to encoding monad-par IVars as LVars.

Although λLVar is a calculus rather than a practical programming language, the exercise of modeling monad-par
in λLVar suggests practical extensions to monad-par. For example, additional data structures beyond IVars could be
provided (e.g., maps or tries), using the λLVar translation to ensure determinism is retained.

5.3 Kahn Process Networks
Data-flow models have been a topic of theoretical [15] and practical [14] study for decades. In particular, Kahn’s
1974 paper crystallized the contemporary work on data-flow with a denotational account of Kahn process networks
(KPNs)—a deterministic model in which a network of processes communicates through single-reader, single-writer
FIFO channels with non-blocking writes and blocking reads. Because λLVar is general enough to subsume KPNs, it
represents a step towards bringing the body of work on data-flow into the broader context of functional and single-
assignment languages.

To map KPNs into λLVar, we represent FIFOs as ordered sequences of values, monotonically growing on one end
(i.e., channel histories). In fact, the original work on KPNs [15] used exactly this representation (and the complete
partial order based on it) to establish determinism. However, to our knowledge neither KPNs nor any other data-flow
model has generalized the data structures used for communication beyond FIFOs to include other monotonically-
growing structures (e.g., maps).

An LVar representing a FIFO has a state encoding all elements sent on that FIFO to date. We represent sequences
as sets of (index, value) associations with subset inclusion as the order v. For example, {(0, a), (1, b)} encodes a
two-element sequence. This makes it convenient to write threshold sets such as {(0, n) | n ∈ N}, which will match
any state encoding a channel history with a natural number value in position 0.

In this encoding, the producers and consumers using a FIFO must explicitly keep track of what position they read
and write, i.e., the “cursor”. This contrasts with an imperative formulation, where advancing the cursor is a side effect
of “popping” the FIFO. A proper encoding of FIFO behavior writes and reads consecutive positions only.12

But what of the deterministic processes themselves? In Kahn’s original work, they are treated as functions on
channel histories without any internal structure. In a λLVar formulation of KPNs, they take the form of recursive
functions that carry their state (and cursor positions) as arguments. In Figure 8, we use self-application to enable
recursion, and we express a stream filter filterDups that prunes out all duplicate consecutive numbers from a
stream.

Figure 8 assumes quite a bit in the way of syntactic sugar, although nothing non-standard. Church numerals would
be needed to encode natural numbers, as well as a standard encoding of booleans. Because the encoding of Figure 8
will only work for finite executions, the cnt argument tells filterDups how many input elements to process. The
fourth argument, lst, tracks the previously observed element on the input stream, that is, the state of the stream
transducer. The second and third arguments to filterDups are the cursors that track positions in both the input and
output streams. The convert function is necessary for computing threshold sets based on the values of cursors.

This technique is sufficient for encoding arbitrary KPN programs into λLVar. It is by no means a natural expression
of this concept, especially due to the fact that the input and output stream cursors must be tracked explicitly. However,

12In the λLVar abstraction we don’t address concrete representations or storage requirements for LVar states and threshold sets. In a practical
implementation, one would expect that already-consumed FIFO elements would be garbage-collected, which in turn requires strict enforcement of
consecutively increasing access only.

15

let filterDups = λf i1 i2 lst cnt.

let next = get inp (convert i1)
i′2 = if (lst = next) then i2

else put outp (convert (i2, next)); (i2 + 1)
in if (cnt = 0) then {}

else f f (i1 + 1) i′2 next (cnt− 1)
in filterDups filterDups 0 . . .

where convert i = {{(i, n)} | n ∈ N}
convert (i, n) = {{(i, n)}}

Figure 8: Process an input stream, removing consecutive duplicates. inp and outp are channels, globally bound
elsewhere.

with additional infrastructure for tracking stream cursors (and other state) by means of a state monad, the program
given in Figure 8 could become significantly more idiomatic.

6 Safe, Limited Nondeterminism
In practice, a major problem with nondeterministic programs is that they can silently go wrong. Most parallel pro-
gramming models are unsafe in this sense, but we may classify a nondeterministic language as safe if all occurrences
of nondeterminism—that is, execution paths that would yield an incorrect answer—are caught and reported as errors.
This notion of safe nondeterminism is analogous to the concept of type safety: type-safe programs can throw excep-
tions, but they will not “go wrong”. We find that there are various extensions13 to a deterministic language make it
safely nondeterministic. Here, we will look at one such extension: exact but destructive observations.

We take as our motivating example the shared, increment-only counter of Figure 2(c), and begin with the observa-
tion that when the state of a shared counter has come to rest—when no more increments will occur—then its final value
is a deterministic function of program inputs, and is therefore safe to read directly. The problem is determining when
an LVar has come to rest. However, if the value of an LVar is indeed at rest, then we do no harm to it by corrupting
its state in such a way that further increments will lead to an error. We can accomplish this by adding an extra state,
called probation, to the domain D. The lattice defined by the relation v is extended thus:

probation v >
∀d ∈ D. d 6v probation

13While not recognized explicitly by the authors as such, a recent extension to CnC for memory management incidentally fell into this category
[21].

let cnt = new in

let sum = new in

let par p1 = (bump3 sum; bump1 cnt)
p2 = (bump4 sum; bump1 cnt)
p3 = (bump5 sum; bump1 cnt)
r = (get cnt 3; consume sum)

in . . . r . . .

Figure 9: A deterministic program that makes destructive observations.

16

We then propose a new operation, consume, that takes a pointer to an LVar l, updates the store, setting l’s state to
probation, and returns a singleton set containing the exact previous state of l, rather than a lower bound on that state.
The idea is to ensure that, after a consume, any further operations on l will go awry: put operations will attempt to
move the state of l to >, which will cause the system to step to error.

Figure 9 shows an example program that uses consume to perform an asynchronous sum reduction over a known
number of inputs. In such a reduction, data dependencies alone determine when the reduction is complete, rather
than control constructs such as parallel loops and barriers. In Figure 9 we use semicolon as sugar for sequential
composition: for example, e1; e2 rather than let = e1 in e2. We also assume a new syntactic sugar in the form of a
bump operation that takes a pointer to an LVar and increments it by one, with bumpn l as an additional shorthand for
n consecutive bumps to l. The get cnt 3 before the call to consume serves as a synchronization mechanism, ensuring
that all increments are complete before the value is read. Three writers and one reader execute in parallel, and only
when all writers complete does the reader return the sum, which in this case will be 3 + 4 + 5 = 12.

The good news is that the program of Figure 9 is correct and deterministic; it will always return the same value
in any execution. However, the consume primitive in general admits safe nondeterminism, meaning that, while all
runs of the program will terminate with the same value if they terminate without error, some runs of the program may
terminate in error, in spite of other runs completing successfully. To see how an error might occur, imagine an alternate
version of the program of Figure 9 in which get cnt 3 is replaced by get cnt 2. This version would have insufficient
synchronization. The program could run correctly many times—if the bumps happen to complete before the consume
operation executes—and yet step to error on the thousandth run. Yet, with safe nondeterminism, it is possible to
catch and respond to this error, for example by rerunning in a debug mode that is guaranteed to find a valid execution
if it exists, or by using a data-race detector which will reproduce all races in the execution in question. We have
implemented example interpreters and a race-detector for λLVar, available at http://github.com/rrnewton/
lambdapar_interps.

6.1 Syntactic Sugar for Counting
Strictly speaking, if we directly use the lattice of Figure 2(c), the bump operation would not be possible. Therefore,
rather than use the domain in Figure 2(c) directly, we can simulate it using a power-set lattice over an arbitrary alphabet
of symbols {a, b, c, . . .}, ordered by subset inclusion. LVars occupying such a lattice encode natural numbers using
the cardinality of the subset.14 Thus, a blocking get operation that unblocks when the count reaches, say, 3 would take
a threshold set enumerating all the three-element subsets of the alphabet.

With this encoding, incrementing a shared variable l requires put l {α}, where α ∈ {a, b, c, . . .} and α has not
previously been used. Thus, without any additional support, a hypothetical programmer would be responsible for
creating a unique α for each parallel contribution to the counter. There are well-known techniques, however, for
generating a unique (but schedule-invariant and deterministic) identifier for a given point in a parallel execution. One
solution is to reify the position of an operation inside a tree (or DAG) of parallel evaluations. The Cilk Plus parallel
programming language refers to this notion as the operation’s pedigree and uses it to seed a deterministic parallel
random number generator [17].

With this encoding, we can implement an expression unique, which, when evaluated, returns a singleton threshold
set containing a single unique element of the alphabet: {α}. With the unique syntax, we can write programs like the
following, in which two parallel threads increment the same counter:

let sum = new in

let par p1 = (put sum unique; put sum unique)
p2 = (put sum unique)

in ...

(Example 3)

In this case, the p1 and p2 “threads” will together increment the sum by three. Notice that consecutive increments
performed by p2 are not atomic. With unique in place, bump l desugars to put l unique. The unique construct could
be implemented by a whole-program transformation over a sugared λLVar expression. Figure 10 shows one possible

14Of course, just as with an encoding like Church numerals, this encoding would never be used by a realistic implementation.

17

http://github.com/rrnewton/lambdapar_interps
http://github.com/rrnewton/lambdapar_interps

JuniqueK = λp. convert p

JvK = λp. v

JQK = λp. Q

Jλv. eK = λp. λv. JeK
JnewK = λp. new

Je1 e2K = λp. ((Je1K L:p) (Je2K R:p) J :p)
Jput a bK = λp. put (JaK L:p) (JbK R:p)
Jget a bK = λp. get (JaK L:p) (JbK R:p)

Jconvert eK = λp. convert (JeK p)

Figure 10: Rewrite rules for desugaring the unique construct within λLVar programs. Here we use “L:”, “R:”, “J :”
to cons onto the front of a list that represents a path within a fork/join DAG. The symbols mean, respectively, “left
branch”, “right branch”, or “after the join” of the two branches. This requires a λ-calculus encoding of lists, as well
as a definition of convert that is an injective function from these list values onto the domain D.

implementation. It creates a tree that tracks the dynamic evaluation of applications, and shows some similarity to a
continuation-passing style transformation [10].

7 Related Work
Work on deterministic parallel programming models is long-standing. In addition to the single-assignment and KPN
models already discussed, here we consider a few recent contributions to the literature.

Deterministic Parallel Java (DPJ) DPJ [6] is a deterministic language consisting of a system of annotations for
Java code. A sophisticated region-based type system ensures that a mutable region of the heap is, essentially, passed
linearly to an exclusive writer. While a linear type system or region system like that of DPJ could be used to enforce
single assignment statically, accommodating λLVar’s semantics would involve parameterizing the type system by the
user-specified domain—a direction of inquiry that we leave for future work.

DPJ also provides a way to unsafely assert that operations commute with one another (using the commutesWith
form) to enable concurrent mutation. However, DPJ does not provide direct support for modeling message-passing
(e.g., KPNs) or asynchronous communication within parallel regions. Finally, a key difference between the λLVar
model and DPJ is that λLVar retains determinism by restricting what can be read or written, rather than by restricting
who can read or write.

Concurrent Revisions The Concurrent Revisions (CR) [16] programming model uses isolation types to distinguish
regions of the heap shared by multiple mutators. Rather than enforcing exclusive access, CR clones a copy of the
state for each mutator, using a deterministic policy for resolving conflicts in local copies. The management of shared
variables in CR is tightly coupled to a fork-join control structure, and the implementation of these variables is similar
to reduction variables in other languages (e.g., Cilk hyperobjects [13]). CR charts an important new area in the
deterministic-parallelism design space, but one that differs significantly from λLVar. CR could be used to model similar
types of data structures—if versioned variables used least upper bound as their merge function for conflicts—but
effects would only become visible at the end of parallel regions, rather than λLVar’s asynchronous communication
within parallel regions.

Bloom and BloomL In the distributed systems literature, eventually consistent systems [25] leverage the idea of
monotonicity to guarantee that, for instance, nodes in a distributed database eventually agree. The Bloom language for

18

distributed database programming [1] guarantees eventual consistency for distributed data collections that are updated
monotonically. The initial formulation of Bloom [2] had a notion of monotonicity based on set containment, analogous
to the store ordering for single-assignment languages given in Definition 4. However, recent work by Conway et
al. [9] generalizes Bloom to a more flexible lattice-parameterized system, BloomL, in a manner analogous to our
generalization from IVars to LVars. BloomL comes with a library of built-in lattice types and also allows for users to
implement their own lattice types as Ruby classes. Although Conway et al. do not give a proof of eventual consistency
for BloomL, our determinism result for λLVar suggests that their generalization is indeed safe. Moreover, although
the goals of Bloom differ from those of λLVar, we believe that BloomL bodes well for programmers’ willingness to
use lattice-based data structures like LVars, and lattice-parameterized languages based on them, to address real-world
programming challenges.

Quantum programming The λLVar semantics is reminiscent of the semantics of quantum programming languages
that extend a conventional λ-calculus with a store that maintains the quantum state. Because of quantum parallelism,
the quantum state can be accessed by many threads in parallel, but only through a restricted interface. As a concrete
example, the language designed by Selinger and Valiron [22] allows only the following operations on quantum data:
(1) “appending” to the current data using the tensor product; (2) performing a unitary operation that must, by definition,
act linearly and uniformly on the data; and (3) selecting a set of orthogonal subspaces and performing a measurement
that projects the quantum state onto one of the subspaces. These operations correspond roughly to λLVar’s new, put, and
get. Quantum mechanics may serve as a source of inspiration when designing operations like consume that introduce
limited nondeterminism.

8 Conclusion
As single-assignment languages and Kahn process networks demonstrate, monotonicity serves as the foundation of
deterministic parallelism. Taking monotonicity as a starting point, our work generalizes single assignment to mono-
tonic multiple assignment parameterized by a user-specified lattice. By combining monotonic writes with threshold
reads, we get a shared-state parallel programming model that generalizes and unifies an entire class of monotonic
languages suitable for asynchronous, data-driven applications. Our model is provably deterministic, and further pro-
vides a foundation for exploration of limited nondeterminism. Future work will investigate implementation strategies,
formally establish the relationship between λLVar and other deterministic parallel models, and prove the more limited
guarantees provided by λLVar + consume.

Acknowledgments

We thank Amr Sabry for his feedback and tireless assistance through all stages of our work. This research was funded
in part by NSF grant CCF-1218375.

References
[1] Bloom homepage. URL http://bloom-lang.net.

[2] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak. Consistency analysis in Bloom: a CALM and collected
approach. In CIDR, 2011.

[3] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures for parallel computing. ACM Trans.
Program. Lang. Syst., 11, October 1989.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[5] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first search and st-connectivity on
the Cray MTA-2. ICPP. IEEE Computer Society, 2006.

19

http://bloom-lang.net

[6] R. L. Bocchino, Jr. et al. Safe nondeterminism in a deterministic-by-default parallel language. In POPL, 2011.

[7] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto, V. Sarkar,
F. Schlimbach, and S. Taşirlar. Concurrent Collections. Sci. Program., 18, August 2010. URL http:
//dl.acm.org/citation.cfm?id=1938482.1938486.

[8] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the Chapel language. International
Journal of High Performance Computing Applications, 21(3), 2007.

[9] N. Conway, W. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic and lattices for distributed program-
ming. In SOCC, 2012.

[10] O. Danvy and A. Filinski. Representing control: a study of the CPS transformation, 1992.

[11] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. The MIT Press, 1st edition,
2009.

[12] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in Manticore. In ICFP, 2008.

[13] M. Frigo et al. Reducers and other Cilk++ hyperobjects. In SPAA, 2009.

[14] J. Hicks, D. Chiou, B. S. Ang, and Arvind. Performance studies of Id on the Monsoon dataflow system. J.
Parallel Distrib. Comput., 1993.

[15] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor, Information
processing. North Holland, Amsterdam, Aug 1974.

[16] D. Leijen, M. Fahndrich, and S. Burckhardt. Prettier concurrency: purely functional concurrent revisions. In
Haskell, 2011.

[17] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel random-number generation for dynamic-
multithreading platforms. In PPoPP, 2012.

[18] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In Haskell, 2011.

[19] R. Newton et al. Deterministic reductions in an asynchronous parallel language. In Workshop on Determinism
and Correctness in Parallel Programming (WoDet), 2011.

[20] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In
L. Fribourg, editor, CSL, volume 2142 of Lecture Notes in Computer Science. Springer, 2001.

[21] D. Sbirlea, K. Knobe, and V. Sarkar. Folding of tagged single assignment values for memory-efficient parallelism.
In C. Kaklamanis, T. S. Papatheodorou, and P. G. Spirakis, editors, Euro-Par, volume 7484 of Lecture Notes in
Computer Science, pages 601–613. Springer, 2012. ISBN 978-3-642-32819-0.

[22] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. Mathematical
Structures in Computer Science, 16(3), 2006.

[23] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper. Beyond nested parallelism: tight bounds on
work-stealing overheads for parallel futures. In SPAA, 2009.

[24] L. G. Tesler and H. J. Enea. A language design for concurrent processes. In AFIPS, 1968 (Spring).

[25] W. Vogels. Eventually consistent. Commun. ACM, 52(1), Jan. 2009. doi: 10.1145/1435417.1435432.

[26] K. B. Wheeler, R. C. Murphy, and D. Thain. Qthreads: An API for programming with millions of lightweight
threads, 2008.

20

http://dl.acm.org/citation.cfm?id=1938482.1938486
http://dl.acm.org/citation.cfm?id=1938482.1938486

A Proof of Determinism

Definition 9. Two stores S and S′ are equal iff:

1. S = >S and S′ = >S , or

2. dom(S) = dom(S′) and for all l ∈ dom(S), S(l) = S′(l).

A.1 Renaming of Locations During a Step
Lemma 1 (Renaming of Locations During a Step). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error) and {l1, . . . , ln} =
dom(S′)− dom(S), then:

For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S′) for i ∈ [1..n]:

〈S; e〉 ↪−→
〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉
(6= error),

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S′(l).

Proof. By induction on the derivation of 〈S; e〉 ↪−→ 〈S′; e′〉, by cases on the last rule in the derivation. Since
〈S′; e′〉 6= error, we only need to consider rules that step to non-error configurations. In cases where dom(S′) −
dom(S) = ∅, then the only possible set {l′1, . . . , l′n} is also ∅, so in such cases we need only show that 〈S; e〉 ↪−→
〈Soldlocs; e′〉.

A.1.1 E-REFL

• E-REFL:

Given: 〈S; e〉 ↪−→ 〈S; e〉.
To show: 〈S; e〉 ↪−→ 〈Soldlocs; e〉, where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all
l ∈ dom(Soldlocs), Soldlocs(l) = S(l).

Since dom(Soldlocs) = dom(S) and since for all l ∈ dom(Soldlocs), Soldlocs(l) = S(l), we have by Definition 9
that Soldlocs = S, so the case is immediate by E-REFL.

A.1.2 E-PARAPP

• E-PARAPP:

(NB: For simplicity, we elide renaming of 〈S1; e′1〉 in this case, and assume without loss of generality that
location names created during the transition 〈S; e1〉 ↪−→ 〈S1; e′1〉 are distinct from those created during the
transition 〈S; e2〉 ↪−→ 〈S2; e′2〉.)
Given: 〈S; e1 e2〉 ↪−→ 〈S1 tS S2; e′1 e

′
2〉 and {l1, . . . , ln} = dom(S1 tS S2)− dom(S).

To show: For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S1 tS S2) for i ∈ [1..n],

〈S; e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ (S1 tS S2)(l1)] . . . [l′n 7→ (S1 tS S2)(ln)]; (e′1 e
′
2)[l1 := l′1] . . . [ln := l′n]〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = (S1tS
S2)(l).

Consider arbitrary {l′1, . . . , l′n} such that l′i /∈ dom(S1 tS S2) for i ∈ [1..n].

From the first two premises of E-PARAPP, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉 and 〈S; e2〉 ↪−→ 〈S2; e′2〉.

21

Since we assume that location names created during 〈S; e1〉 ↪−→ 〈S1; e′1〉 are distinct from those created during
〈S; e2〉 ↪−→ 〈S2; e′2〉, and since {l1, . . . , ln} = dom(S1 tS S2) − dom(S), then we have that dom(S1) −
dom(S) = {l1, . . . , lk} and dom(S2) − dom(S) = {lk+1, . . . , ln} for some k such that {l1, . . . , lk} ∩
{lk+1, . . . , ln} = ∅ and {l1, . . . , lk}] {lk+1, . . . , ln} = {l1, . . . , ln}.
Then, by IH, we have the following two facts:

1. For all sets {l′1, . . . , l′k} such that l′i /∈ dom(S1) for i ∈ [1..k]:

〈S; e1〉 ↪−→ 〈Soldlocs1[l
′
1 7→ S1(l1)] . . . [l′k 7→ S1(lk)]; e′1[l1 := l′1] . . . [lk := l′k]〉 6= error,

where Soldlocs1 is defined as follows: dom(Soldlocs1) = dom(S), and for all l ∈ dom(Soldlocs1), Soldlocs1(l) =
S1(l).

2. For all sets {l′k+1, . . . , l
′
n} such that l′i /∈ dom(S2) for i ∈ [k+1..n]:

〈S; e2〉 ↪−→ 〈Soldlocs2[l
′
k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)]; e′2[lk+1 := l′k+1] . . . [ln := l′n]〉 6= error,

where Soldlocs2 is defined as follows: dom(Soldlocs2) = dom(S), and for all l ∈ dom(Soldlocs2), Soldlocs2(l) =
S2(l).

Instantiate facts (1) and (2) with {l′1, . . . , l′k} and {l′k+1, . . . , l
′
n}, respectively, where {l′1, . . . , l′k}∩{l′k+1, . . . , l

′
n} =

∅ and {l′1, . . . , l′k}] {l′k+1, . . . , l
′
n} = {l′1, . . . , l′n}.

Note that since l′i /∈ dom(S1 tS S2) for i ∈ [1..n], it is also the case that l′i /∈ dom(S1) for i ∈ [1..k] and that
l′i /∈ dom(S2) for i ∈ [k+1..n]. Therefore, we have that:

1. 〈S; e1〉 ↪−→ 〈Soldlocs1[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)]; e′1[l1 := l′1] . . . [lk := l′k]〉 6= error, where Soldlocs1
is defined as follows: dom(Soldlocs1) = dom(S), and for all l ∈ dom(Soldlocs1), Soldlocs1(l) = S1(l).

2. 〈S; e2〉 ↪−→ 〈Soldlocs2[l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)]; e′2[lk+1 := l′k+1] . . . [ln := l′n]〉 6= error,
where Soldlocs2 is defined as follows: dom(Soldlocs2) = dom(S), and for all l ∈ dom(Soldlocs2), Soldlocs2(l) =
S2(l).

Since
〈Soldlocs1[l

′
1 7→ S1(l1)] . . . [l′k 7→ S1(lk)]; e′1[l1 := l′1] . . . [lk := l′k]〉 6= error

and
〈Soldlocs2[l

′
k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)]; e′2[lk+1 := l′k+1] . . . [ln := l′n]〉 6= error,

we have that
Soldlocs1[l

′
1 7→ S1(l1)] . . . [l′k 7→ S1(lk)] 6= >S

and
Soldlocs2[l

′
k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)] 6= >S .

Further, since S1tSS2 6= >S (from the third premise of E-PARAPP) and since {l′1, . . . , l′k}∩{l′k+1, . . . , l
′
n} = ∅,

we have that

Soldlocs1[l
′
1 7→ S1(l1)] . . . [l′k 7→ S1(lk)] tS Soldlocs2[l

′
k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)] 6= >S .

Therefore, by E-PARAPP, we have that 〈S; e1 e2〉 steps to

〈Soldlocs1[l
′
1 7→ S1(l1)] . . . [l′k 7→ S1(lk)] tS Soldlocs2[l

′
k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)];

e′1[l1 := l′1] . . . [lk := l′k] e
′
2[lk+1 := l′k+1] . . . [ln := l′n]〉.

It remains to show that the above configuration is equivalent to

〈Soldlocs[l′1 7→ (S1 tS S2)(l1)] . . . [l′n 7→ (S1 tS S2)(ln)]; (e′1 e
′
2)[l1 := l′1] . . . [ln := l′n]〉,

22

which we show as follows.

First, since dom(Soldlocs1) = dom(Soldlocs2) = dom(S), we have that:

(Soldlocs1[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)]) tS (Soldlocs2[l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)])
= (Soldlocs1 tS Soldlocs2)[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)][l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)].

Note that dom(Soldlocs1tSSoldlocs2) = dom(S). Therefore dom(Soldlocs1tSSoldlocs2) = dom(Soldlocs). Further,
by Definition 3 we have that for all l ∈ dom(Soldlocs1 tS Soldlocs2), (Soldlocs1 tS Soldlocs2)(l) = Soldlocs1(l) t
Soldlocs2(l) = S1(l) t S2(l) = (S1 tS S2)(l) = Soldlocs(l). Therefore, by Definition 9, we have that Soldlocs1 tS
Soldlocs2 = Soldlocs. Continuing from above, then, we have that

(Soldlocs1 tS Soldlocs2)[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)][l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)]
= Soldlocs[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)][l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)].

Next, since {l1, . . . , lk} ∩ {lk+1, . . . , ln} = ∅, we have that li /∈ dom(S2) for i ∈ [1..k] and li /∈ dom(S1) for
i ∈ [k+1..n]. Therefore S1(li) = (S1 tS S2)(li) for i ∈ [1..k] and S2(li) = (S1 tS S2)(li) for i ∈ [k+1..n],
and so we have

Soldlocs[l′1 7→ S1(l1)] . . . [l′k 7→ S1(lk)][l′k+1 7→ S2(lk+1)] . . . [l′n 7→ S2(ln)]
= Soldlocs[l′1 7→ (S1 tS S2)(l1)] . . . [l′k 7→ (S1 tS S2)(lk)][l′k+1 7→ (S1 tS S2)(lk+1)] . . . [l′n 7→ (S1 tS S2)(ln)]
= Soldlocs[l′1 7→ (S1 tS S2)(l1)] . . . [l′n 7→ (S1 tS S2)(ln)].

Finally, we need to show that (e′1 e
′
2)[l1 := l′1] . . . [ln := l′n] is equivalent to

e′1[l1 := l′1] . . . [lk := l′k] e
′
2[lk+1 := l′k+1] . . . [ln := l′n].

Here, note that lk+1, . . . , ln cannot occur in e′1 and l1, . . . , lk cannot occur in e′2. Therefore the above expression
is equivalent to

e′1[l1 := l′1] . . . [ln := l′n] e
′
2[l1 := l′1] . . . [ln := l′n],

which is equivalent to (e′1 e
′
2)[l1 := l′1] . . . [ln := l′n]. Therefore we have that

〈S; e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ (S1 tS S2)(l1)] . . . [l′n 7→ (S1 tS S2)(ln)]; (e′1 e
′
2)[l1 := l′1] . . . [ln := l′n]〉,

as we were required to show.

A.1.3 E-PUT-1

• E-PUT-1:

Given: 〈S; put e1 e2〉 ↪−→ 〈S1; put e′1 e2〉 and {l1, . . . , ln} = dom(S1)− dom(S).

To show: For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S1) for i ∈ [1..n],

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S1(l1)] . . . [l′n 7→ S1(ln)]; (put e′1 e2)[l1 := l′1] . . . [ln := l′n]〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S1(l).

Consider arbitrary {l′1, . . . , l′n} such that l′i /∈ dom(S1) for i ∈ [1..n].

From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉. By IH we have that

〈S; e1〉 ↪−→ 〈Soldlocs[l′1 7→ S1(l1)] . . . [l′n 7→ S1(ln)]; e′1[l1 := l′1] . . . [ln := l′n]〉.

Therefore, by E-PUT-1 we have that:

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S1(l1)] . . . [l′n 7→ S1(ln)]; put e′1[l1 := l′1] . . . [ln := l′n] e2〉.

23

Note that l1, . . . ln do not occur in e2, for if some li occurred in e2, then we would have li ∈ dom(S), which
contradicts {l1, . . . , ln} = dom(S1)− dom(S). Therefore e2 = e2[l1 := l′1] . . . [ln := l′n], and so we have:

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S1(l1)] . . . [l′n 7→ S1(ln)]; put e′1[l1 := l′1] . . . [ln := l′n] e2[l1 := l′1] . . . [ln := l′n]〉,

which is equivalent to

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S1(l1)] . . . [l′n 7→ S1(ln)]; (put e′1 e2)[l1 := l′1] . . . [ln := l′n]〉,

as we were required to show.

A.1.4 E-PUT-2

• E-PUT-2:

Given: 〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e′2〉 and {l1, . . . , ln} = dom(S2)− dom(S).

To show: For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S2) for i ∈ [1..n],

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S2(l1)] . . . [l′n 7→ S2(ln)]; (put e1 e′2)[l1 := l′1] . . . [ln := l′n]〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S2(l).

Consider arbitrary {l′1, . . . , l′n} such that l′i /∈ dom(S2) for i ∈ [1..n].

From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉. By IH we have that

〈S; e2〉 ↪−→ 〈Soldlocs[l′1 7→ S2(l1)] . . . [l′n 7→ S2(ln)]; e′2[l1 := l′1] . . . [ln := l′n]〉.

Therefore, by E-PUT-2 we have that:

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S2(l1)] . . . [l′n 7→ S2(ln)]; put e1 e′2[l1 := l′1] . . . [ln := l′n]〉.

Note that l1, . . . ln do not occur in e1, for if some li occurred in e1, then we would have li ∈ dom(S), which
contradicts {l1, . . . , ln} = dom(S2)− dom(S). Therefore e1 = e1[l1 := l′1] . . . [ln := l′n], and so we have:

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S2(l1)] . . . [l′n 7→ S2(ln)]; put e1[l1 := l′1] . . . [ln := l′n] e
′
2[l1 := l′1] . . . [ln := l′n]〉,

which is equivalent to

〈S; put e1 e2〉 ↪−→ 〈Soldlocs[l′1 7→ S2(l1)] . . . [l′n 7→ S2(ln)]; (put e1 e′2)[l1 := l′1] . . . [ln := l′n]〉,

as we were required to show.

A.1.5 E-PUTVAL

• E-PUTVAL:

Given: 〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉 (note that no new locations are created during this transition,
since we already have l ∈ dom(S) from the S(l) = d1 premise of E-PUTVAL).

To show: 〈S; put l {d1}〉 ↪−→ 〈Soldlocs; {}〉, where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and
for all l′ ∈ dom(Soldlocs), Soldlocs(l′) = (S[l 7→ d1 t d2])(l′).

Since dom(Soldlocs) = dom(S) = dom(S[l 7→ d1 t d2]) and since for all l′ ∈ dom(Soldlocs), Soldlocs(l′) =
(S[l 7→ d1 t d2])(l′), we have by Definition 9 that Soldlocs = S[l 7→ d1 t d2], so the case is immediate by
E-PUTVAL.

24

A.1.6 E-GET-1

• Case E-GET-1: Analogous to E-PUT-1.

A.1.7 E-GET-2

• Case E-GET-2: Analogous to E-PUT-2.

A.1.8 E-GETVAL

• E-GETVAL:

Given: 〈S; get l Q〉 ↪−→ 〈S; {d1}〉.
To show: 〈S; get l Q〉 ↪−→ 〈Soldlocs; {d1}〉, where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and
for all l′ ∈ dom(Soldlocs), Soldlocs(l′) = S(l′).

Since dom(Soldlocs) = dom(S) and since for all l′ ∈ dom(Soldlocs), Soldlocs(l′) = S(l′), we have by Definition 9
that Soldlocs = S, so the case is immediate by E-GETVAL.

A.1.9 E-CONVERT

• E-CONVERT:

Given: 〈S; convert e〉 ↪−→ 〈S′; convert e′〉 and {l1, . . . , ln} = dom(S′)− dom(S).

To show: For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S′) for i ∈ [1..n],

〈S; convert e〉 ↪−→ 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; (convert e′)[l1 := l′1] . . . [ln := l′n]〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S′(l).

Consider arbitrary {l′1, . . . , l′n} such that l′i /∈ dom(S′) for i ∈ [1..n].

From the premise of E-CONVERT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉. By IH we have that

〈S; e〉 ↪−→ 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉.

Therefore, by E-CONVERT we have that:

〈S; convert e〉 ↪−→ 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; convert e′[l1 := l′1] . . . [ln := l′n]〉,

which is equivalent to

〈S; convert e〉 ↪−→ 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; (convert e′)[l1 := l′1] . . . [ln := l′n]〉,

as we were required to show.

A.1.10 E-CONVERTVAL

• E-CONVERTVAL:

Given: 〈S; convert v〉 ↪−→ 〈S; δ(v)〉.
To show: 〈S; convert v〉 ↪−→ 〈Soldlocs; δ(v)〉, where Soldlocs is defined as follows: dom(Soldlocs) = dom(S),
and for all l ∈ dom(Soldlocs), Soldlocs(l) = S(l).

Since dom(Soldlocs) = dom(S) and since for all l ∈ dom(Soldlocs), Soldlocs(l) = S(l), we have by Definition 9
that Soldlocs = S, so the case is immediate by E-CONVERTVAL.

25

A.1.11 E-BETA

• E-BETA:

Given: 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉.
To show: 〈S; (λx. e) v〉 ↪−→ 〈Soldlocs; e[x := v]〉, where Soldlocs is defined as follows: dom(Soldlocs) = dom(S),
and for all l ∈ dom(Soldlocs), Soldlocs(l) = S(l).

Since dom(Soldlocs) = dom(S) and since for all l ∈ dom(Soldlocs), Soldlocs(l) = S(l), we have by Definition 9
that Soldlocs = S, so the case is immediate by E-BETA.

A.1.12 E-NEW

• E-NEW:

Given: 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉.
To show: For all l′ /∈ dom(S[l 7→ ⊥]),

〈S; new〉 ↪−→ 〈Soldlocs[l′ 7→ ⊥]; l′〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l′′ ∈ dom(Soldlocs), Soldlocs(l′′) =
(S[l 7→ ⊥])(l′′).

We have from the definition of Soldlocs that dom(Soldlocs) = dom(S). Then, since the transition 〈S; new〉 ↪−→
〈S[l 7→ ⊥]; l〉 does not update any existing bindings (since l /∈ dom(S) from the side condition of E-NEW),
Soldlocs(l′′) = S(l′′) for all l′′ ∈ dom(S). So, by Definition 9, Soldlocs = S.

Therefore, we have only to show that 〈S; new〉 ↪−→ 〈S[l′ 7→ ⊥]; l′〉, which is immediate by E-NEW since
l′ /∈ dom(S), which follows from l′ /∈ dom(S[l 7→ ⊥]).

A.2 Safety of rename

Lemma 1 characterizes the circumstances under which location renamings are safe. In the context of a transition
〈S; e〉 ↪−→ 〈S′; e′〉, it characterizes the set of safe renamings of S′ as those that can be expressed as a store Soldlocs

(whose domain is equal to the domain of S, but whose codomain may differ from that of S because of updates to
existing bindings), extended with bindings from each new location name to the value bound by the corresponding
location name in S′.

The rename metafunction, on the other hand, is defined algorithmically: it takes a configuration 〈S′; e′〉 and stores
S′′ and S as arguments and performs capture-avoiding substitution of new location names for the corresponding old
ones in 〈S′; e′〉, where the names to be replaced and the names they are to be replaced with are chosen based on S′′

and S. In and of itself, the rename metafunction does nothing to ensure that the renaming it performs is “safe”—it
is up to the caller to use it correctly. Lemma 2 shows that in the circumstances where we use rename—namely, the
circumstances where a configuration 〈S; e〉 has stepped to 〈S′; e′〉 and there exists a third store S′′ 6= >S—then the
renaming rename(〈S′; e′〉, S′′, S) meets the specification that Lemma 1 sets.

Lemma 2 (Safety of rename). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error) and S′′ 6= >S , then:
〈S; e〉 ↪−→ rename(〈S′; e′〉, S′′, S).

Proof. From the definition of rename, we have that:

rename(〈S′; e′〉, S′′, S) = 〈S′; e′〉[l1 := l′1] . . . [ln := l′n]
= 〈S′[l1 := l′1] . . . [ln := l′n]; e

′[l1 := l′1] . . . [ln := l′n]〉,

where:

26

• {l1, . . . , ln} = dom(S′)− dom(S), and

• {l′1, . . . , l′n} is a set such that l′i /∈ (dom(S′) ∪ dom(S′′)) for i ∈ [1..n].

Therefore we need to show that 〈S; e〉 ↪−→ 〈S′[l1 := l′1] . . . [ln := l′n]; e
′[l1 := l′1] . . . [ln := l′n]〉, with {l1, . . . , ln}

and {l′1, . . . , l′n} defined as above.
Applying Lemma 1 to 〈S; e〉 ↪−→ 〈S′; e′〉 and {l1, . . . , ln}, we have that for all sets {l′1, . . . , l′n} such that l′i /∈

dom(S′) for i ∈ [1..n]:

〈S; e〉 ↪−→
〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and for all l ∈ dom(Soldlocs), Soldlocs(l) = S′(l).
Instantiate that result with {l′1, . . . , l′n}. Note that since l′i /∈ (dom(S′) ∪ dom(S′′)) for i ∈ [1..n], we have that

l′i /∈ dom(S′) for i ∈ [1..n]. Therefore we have that

〈S; e〉 ↪−→ 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉.

Since our goal is to show that

〈S; e〉 ↪−→ 〈S′[l1 := l′1] . . . [ln := l′n]; e
′[l1 := l′1] . . . [ln := l′n]〉,

all that remains is to show that S′[l1 := l′1] . . . [ln := l′n] and Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)] are equal.
By Definition 9, we have to show that:

• dom(S′[l1 := l′1] . . . [ln := l′n]) = dom(Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]), and

• for all l′′ ∈ dom(S′[l1 := l′1] . . . [ln := l′n]),

(S′[l1 := l′1] . . . [ln := l′n])(l
′′) = (Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)])(l′′).

For the first conjunct, dom(Soldlocs) = dom(S) by definition, so

dom(Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)]) = dom(S) ∪ {l′1, . . . , l′n}
= dom(S) ∪ {l1, . . . , ln}[l1 := l′1] . . . [ln := l′n]
= dom(S) ∪ (dom(S′)− dom(S))[l1 := l′1] . . . [ln := l′n]
= dom(S) ∪ (dom(S′)[l1 := l′1] . . . [ln := l′n]− dom(S))

(since li /∈ dom(S))
= dom(S) ∪ dom(S′)[l1 := l′1] . . . [ln := l′n]
= dom(S) ∪ dom(S′[l1 := l′1] . . . [ln := l′n])
= dom(S′[l1 := l′1] . . . [ln := l′n])

(since dom(S) ⊆ dom(S′) and li /∈ dom(S)).

For the second conjunct, there are two possibilities for l′′:

• l′′ ∈ dom(S):

(S′[l1 := l′1] . . . [ln := l′n])(l
′′) = S′(l′′)

(since li /∈ dom(S))
= Soldlocs(l′′)

(since Soldlocs(l) = S′(l) for all l ∈ dom(Soldlocs) = dom(S))
= (Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)])(l′′)

(since additional bindings are irrelevant to the lookup of l′′).

27

• l′′ ∈ {l′1, . . . , l′n}:

(S′[l1 := l′1] . . . [ln := l′n])(l
′′) = ([l′1 7→ S′(l1) . . . l′n 7→ S(ln)])(l′′)

= (Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)])(l′′)
(since additional bindings are irrelevant to the lookup of l′′).

Therefore S′[l1 := l′1] . . . [ln := l′n] and Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)] are equal. Since both their stores and
expressions are equal, then, we have that

rename(〈S′; e′〉, S′′, S) = 〈Soldlocs[l′1 7→ S′(l1)] . . . [l′n 7→ S′(ln)] ; e′[l1 := l′1] . . . [ln := l′n]〉,

as we were required to show.

A.3 Independence
Lemma 3 (Independence). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error), then for all S′′ such that S′′ is non-
conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ 6= >S:
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.

Proof. Consider arbitrary S′′ such that S′′ is non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ 6= >S . To show:
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.

The proof is by induction on the derivation of 〈S; e〉 ↪−→ 〈S′; e′〉, by cases on the last rule in the derivation. Since
〈S′; e′〉 6= error, we only need to consider rules that step to non-error configurations. The requirement that S′′ is
non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 is only needed in the E-NEW case.

• Case E-REFL:

Given: 〈S; e〉 ↪−→ 〈S; e〉, and S tS S′′ 6= >S .

To show: 〈S tS S′′; e〉 ↪−→ 〈S tS S′′; e〉.
The proof is immediate by E-REFL.

• Case E-PARAPP:

Given: 〈S; e1 e2〉 ↪−→ 〈Sr1 tS S2; e′r1 e′2〉, and (Sr1 tS S2) tS S′′ 6= >S .

To show: 〈S tS S′′; e1 e2〉 ↪−→ 〈(Sr1 tS S2) tS S′′; e′r1 e′2〉.
From the premises of E-PARAPP, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉, 〈S; e2〉 ↪−→ 〈S2; e′2〉, and 〈Sr1 ; e′r1 〉 =
rename(〈S1; e′1〉, S2, S).
Since (Sr1 tS S2) tS S′′ 6= >S , we have that S2 6= >S . Therefore, since 〈S; e1〉 ↪−→ 〈S1; e′1〉, by Lemma 2,
we have that 〈S; e1〉 ↪−→ rename(〈S1; e′1〉, S2, S). Since 〈Sr1 ; e′r1 〉 = rename(〈S1; e′1〉, S2, S), we have that
〈S; e1〉 ↪−→ 〈Sr1 ; e′r1 〉.
Since (Sr1 tS S2) tS S′′ 6= >S , we know that Sr1 tS S′′ 6= >S and S2 tS S′′ 6= >S .

Therefore, by IH, we have that 〈StS S′′; e1〉 ↪−→ 〈Sr1 tS S′′; e′r1 〉 and that 〈StS S′′; e2〉 ↪−→ 〈S2tS S′′; e′2〉.
Since (Sr1 tS S2) tS S′′ 6= >S , we have that (Sr1 tS S′′) tS (S2 tS S′′) 6= >S .

Therefore, by E-PARAPP we have that 〈S tS S′′; e1 e2〉 ↪−→ 〈(Sr1 tS S′′) tS (S2 tS S′′); e′r1 e′2〉.
Since (Sr1 tS S′′) tS (S2 tS S′′) is equal to (Sr1 tS S2) tS S′′, we have that 〈S tS S′′; e1 e2〉 ↪−→ 〈(Sr1 tS
S2) tS S′′; e′r1 e′2〉, as required.

• Case E-PUT-1:

Given: 〈S; put e1 e2〉 ↪−→ 〈S1; put e′1 e2〉, and S1 tS S′′ 6= >S .

To show: 〈S tS S′′; put e1 e2〉 ↪−→ 〈S1 tS S′′; put e′1 e2〉.
From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉. Since S1 tS S′′ 6= >S , by IH we have that
〈S tS S′′; e1〉 ↪−→ 〈S1 tS S′′; e′1〉.
Therefore, by E-PUT-1 we have that 〈S tS S′′; put e1 e2〉 ↪−→ 〈S1 tS S′′; put e′1 e2〉, as required.

28

• Case E-PUT-2:

Given: 〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e′2〉, and S2 tS S′′ 6= >S .

To show: 〈S tS S′′; put e1 e2〉 ↪−→ 〈S2 tS S′′; put e1 e′2〉.
From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉. Since S2 tS S′′ 6= >S , by IH we have that
〈S tS S′′; e2〉 ↪−→ 〈S2 tS S′′; e′2〉.
Therefore, by E-PUT-2 we have that 〈S tS S′′; put e1 e2〉 ↪−→ 〈S2 tS S′′; put e1 e′2〉, as required.

• Case E-GET-1: Analogous to E-PUT-1.

• Case E-GET-2: Analogous to E-PUT-2.

• Case E-CONVERT:

Given: 〈S; convert e〉 ↪−→ 〈S′; convert e′〉, and S′ tS S′′ 6= >S .

To show: 〈S tS S′′; convert e〉 ↪−→ 〈S′ tS S′′; convert e′〉.
From the premise of E-CONVERT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉. Since S′ tS S′′ 6= >S , by IH we have that
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.
Therefore, by E-CONVERT we have that 〈S tS S′′; convert e〉 ↪−→ 〈S′ tS S′′; convert e′〉, as required.

• Case E-BETA:

Given: 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉, and S tS S′′ 6= >S .

To show: 〈S tS S′′; (λx. e) v〉 ↪−→ 〈S tS S′′; e[x := v]〉.
Immediate by E-BETA.

• Case E-NEW:

Given: 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉 (where l /∈ dom(S)), S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→
⊥]; l〉, and S[l 7→ ⊥] tS S′′ 6= >.

To show: 〈S tS S′′; new〉 ↪−→ 〈S[l 7→ ⊥] tS S′′; l〉.
By E-NEW, we have that 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′ 7→ ⊥]; l′〉, where l′ /∈ dom(S tS S′′). One of
the following two possibilities must hold:

– l′ = l.
In this case, we immediately have that 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l 7→ ⊥]; l〉.

– l′ 6= l.
In this case, we apply Lemma 1 to 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′ 7→ ⊥]; l′〉 and {l′}. Therefore, for
all l′′ such that l′′ /∈ dom((S tS S′′)[l′ 7→ ⊥]),

〈S tS S′′; new〉 ↪−→ 〈Soldlocs[l′′ 7→ ((S tS S′′)[l′ 7→ ⊥])(l′)]; l′[l′ := l′′]〉
= 〈Soldlocs[l′′ 7→ ⊥]; l′′〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S tS S′′), and for all l ∈ dom(Soldlocs),
Soldlocs(l) = ((S tS S′′)[l′ 7→ ⊥])(l).
Note that since l′ /∈ dom(S tS S′′), Soldlocs(l) = (S tS S′′)(l) for all l ∈ dom(Soldlocs). Therefore, since
dom(Soldlocs) = dom(S tS S′′) and Soldlocs(l) = (S tS S′′)(l) for all l ∈ dom(Soldlocs), the conditions of
Definition 9 are satisfied, and Soldlocs = S tS S′′.
Therefore, we have that for all l′′ such that l′′ /∈ dom((S tS S′′)[l′ 7→ ⊥]),

〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′′ 7→ ⊥]; l′′〉.

Instantiate the above with l. Since S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉, we know that
l /∈ dom(S′′), and we have from the side condition of E-NEW that l /∈ dom(S). Therefore l /∈ dom(S tS
S′′), and since l 6= l′, we have that l /∈ dom((StS S′′)[l′ 7→ ⊥]). Therefore, 〈StS S′′; new〉 ↪−→ 〈(StS
S′′)[l 7→ ⊥]; l〉.

29

So, regardless of whether l′ = l or l′ 6= l, we can conclude 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l 7→ ⊥]; l〉. Then,
since S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉, we have that l /∈ dom(S′′), and we have from
the side condition of E-NEW that l /∈ dom(S). Therefore, we have:

(S tS S′′)[l 7→ ⊥] = S[l 7→ ⊥] tS S′′[l 7→ ⊥]
= S tS [l 7→ ⊥] tS S′′ tS [l 7→ ⊥]
= S tS [l 7→ ⊥] tS S′′

= S[l 7→ ⊥] tS S′′.

Therefore 〈S tS S′′; new〉 ↪−→ 〈S[l 7→ ⊥] tS S′′; l〉, as we were required to show.

• Case E-PUTVAL:

Given: 〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉, and S[l 7→ d1 t d2] tS S′′ 6= >S .

To show: 〈S tS S′′; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2] tS S′′; {}〉.
We have two cases:

– l /∈ dom(S′′).
In this case, since S(l) = d2 (from the premises of E-PUTVAL), we know that (S tS S′′)(l) = d2.
Therefore, by E-PUTVAL, 〈S tS S′′; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2] tS S′′; {}〉, as we were required
to show.

– l ∈ dom(S′′).
Since S(l) = d2 (from the premises of E-PUTVAL), we know that (S tS S′′)(l) = d′2, where d2 v d′2.
We show that d1 t d′2 6= >, as follows:

∗ Since S[l 7→ d1 t d2] tS S′′ 6= >S , we know that (S[l 7→ d1 t d2])(l) t S′′(l) 6= >.
∗ Therefore, we have:

> 6= (S[l 7→ d1 t d2])(l) t S′′(l)
= d1 t d2 t S′′(l) (since (S[l 7→ d1 t d2])(l) = d1 t d2)
= d1 t S(l) t S′′(l) (since S(l) = d2)
= S(l) t S′′(l) t d1

= d1 t (S tS S′′)(l)
= d1 t d′2

Since (S tS S′′)(l) = d′2 and d1 t d′2 6= >, by E-PUTVAL we have that

〈S tS S′′; put l {d1}〉 ↪−→ 〈(S tS S′′)[l 7→ d1 t d′2]; {}〉.

It remains to show that (S tS S′′)[l 7→ d1 t d′2] is equal to S[l 7→ d1 t d2] tS S′′.
By Definition 9, to show that the stores are equal, we have two requirements to satisfy:

∗ dom((S tS S′′)[l 7→ d1 t d′2]) = dom(S[l 7→ d1 t d2] tS S′′), and
∗ for all l′, ((S tS S′′)[l 7→ d1 t d′2])(l′) = (S[l 7→ d1 t d2] tS S′′)(l′).

The first requirement follows from the observation that

dom((S tS S′′)[l 7→ d1 t d′2]) = dom(S tS S′′) ∪ {l}
= dom(S) ∪ {l} ∪ dom(S′′)
= dom(S[l 7→ d1 t d2]) ∪ dom(S′′)
= dom(S[l 7→ d1 t d2] tS dom(S′′)).

For the second requirement, we have two cases to consider:

30

∗ l′ 6= l: In this case, bindings for l are irrelevant, so

((S tS S′′)[l 7→ d1 t d′2])(l′) = (S tS S′′)(l′)
= (S[l 7→ d1 t d2] tS S′′)(l′),

as required.
∗ l′ = l: In this case, we have ((S tS S′′)[l 7→ d1 t d′2])(l) = d1 t d′2.

We show that (S[l 7→ d1 t d2] tS S′′)(l) is also equal to d1 t d′2, as follows:

(S[l 7→ d1 t d2] tS S′′)(l) = (S[l 7→ d1 t d2])(l) t S′′(l)
= d1 t d2 t S′′(l)
= d1 t S(l) t S′′(l)
= d1 t S(l) t S′′(l)
= d1 t (S tS S′′)(l)
= d1 t d′2

Therefore we have that 〈S tS S′′; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2] tS S′′; {}〉, as required.

• Case E-GETVAL:

Given: 〈S; get l Q〉 ↪−→ 〈S; {d1}〉, and S tS S′′ 6= >S .

To show: 〈S tS S′′; get l Q〉 ↪−→ 〈S tS S′′; {d1}〉.
Since S(l) = d2 (from the premises of E-GETVAL), we know that (S tS S′′)(l) = d′2, where d2 v d′2.

From the premises of E-GETVAL, we also have that d1 ∈ Q and that d1 v d2. Since d2 v d′2, we have that
d1 v d′2. Therefore, by E-GETVAL, we have that 〈StSS′′; get l Q〉 ↪−→ 〈StSS′′; {d1}〉, as we were required
to show.

(Intuitively, get l Q is asking if the value of S(l) is at least the value of d1. Once that is true, it will remain so
under increasing S, since the value of S(l) can only increase as S increases.)

• Case E-CONVERTVAL:

Given: 〈S; convert Q〉 ↪−→ 〈S; δ(Q)〉, and S tS S′′ 6= >S .

To show: 〈S tS S′′; convert Q〉 ↪−→ 〈S tS S′′; δ(Q)〉.
Immediate by E-CONVERTVAL.

A.4 Clash
Lemma 4 (Clash). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error), then for all S′′ such that S′′ is non-conflicting
with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ = >S:
〈S tS S′′; e〉 ↪−→ error.

Proof. Consider arbitrary S′′ such that S′′ is non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ 6= >S . To show:
〈S tS S′′; e〉 ↪−→ error.

The proof is by induction on the derivation of 〈S; e〉 ↪−→ 〈S′; e′〉, by cases on the last rule in the derivation. Since
〈S′; e′〉 6= error, we only need to consider rules that step to non-error configurations.

• Case E-REFL:

Given: 〈S; e〉 ↪−→ 〈S; e〉 and S tS S′′ = >S .

To show: 〈S tS S′′; e〉 ↪−→ error.

Immediate by E-REFLERR since 〈>S ; e〉 = error.

31

• Case E-PARAPP:

Given: 〈S; e1 e2〉 ↪−→ 〈Sr1 tS S2; e′r1 e′2〉, S′′ is non-conflicting with 〈S; e1 e2〉 ↪−→ 〈Sr1 tS S2; e′r1 e′2〉, and
(Sr1 tS S2) tS S′′ = >S .

To show: 〈S tS S′′; e1 e2〉 ↪−→ error.

From the premises of E-PARAPP, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉, 〈S; e2〉 ↪−→ 〈S2; e′2〉, and 〈Sr1 ; e′r1 〉 =
rename(〈S1; e′1〉, S2, S).

At least one of the following situations must occur:

– S1 tS S′′ = >S . Then, by IH, 〈S tS S′′; e1〉 ↪−→ error. Therefore, by E-APPERR-1, we have that
〈S tS S′′; e1 e2〉 ↪−→ error, as required.

– S2 tS S′′ = >S . Then, by IH, 〈S tS S′′; e2〉 ↪−→ error. Therefore, by E-APPERR-2, we have that
〈S tS S′′; e1 e2〉 ↪−→ error, as required.

– S1 tS S′′ 6= >S and S2 tS S′′ 6= >S .
In this case, since S2 tS S′′ 6= >S , we have that S2 6= >S . Therefore, since 〈S; e1〉 ↪−→ 〈S1; e′1〉, by
Lemma 2, we have that 〈S; e1〉 ↪−→ rename(〈S1; e′1〉, S2, S). Since 〈Sr1 ; e′r1 〉 = rename(〈S1; e′1〉, S2, S),
we have that 〈S; e1〉 ↪−→ 〈Sr1 ; e′r1 〉.
We have from premises that S′′ is non-conflicting with 〈S; e1 e2〉 ↪−→ 〈Sr1 tS S2; e′r1 e′2〉, so, by Defini-
tion 5, (dom(Sr1tSS2)−dom(S))∩dom(S′′) = ∅. Therefore (dom(Sr1)−dom(S))∩dom(S′′) = ∅, and
so S′′ is non-conflicting with 〈S; e1〉 ↪−→ 〈Sr1 ; e′r1 〉. Likewise, (dom(S2) − dom(S)) ∩ dom(S′′) = ∅,
and so S′′ is non-conflicting with 〈S; e2〉 ↪−→ 〈S2; e′2〉.
Therefore, by Lemma 3, we have that 〈S tS S′′; e1〉 ↪−→ 〈Sr1 tS S′′; e′r1 〉 and that 〈S tS S′′; e2〉 ↪−→
〈S2 tS S′′; e′2〉.
Since (Sr1tSS2)tSS′′ = >S , we have that (Sr1tSS′′)tS(S2tSS′′) = >S . Therefore, by E-PARAPPERR,
we have that 〈S tS S′′; e1 e2〉 ↪−→ error, as required.

• Case E-PUT-1:

Given: 〈S; put e1 e2〉 ↪−→ 〈S1; put e′1 e2〉, and S1 tS S′′ = >S .

To show: 〈S tS S′′; put e1 e2〉 ↪−→ error.

From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉.
Since S1 tS S′′ = >S , by IH, we have that 〈S tS S′′; e1〉 ↪−→ error.

Therefore, by E-PUTERR-1 we have that 〈S tS S′′; put e1 e2〉 ↪−→ error, as required.

• Case E-PUT-2:

Given: 〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e′2〉, and S2 tS S′′ = >S .

To show: 〈S tS S′′; put e1 e2〉 ↪−→ error.

From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉.
Since S2 tS S′′ = >S , by IH, we have that 〈S tS S′′; e2〉 ↪−→ error.

Therefore, by E-PUTERR-2 we have that 〈S tS S′′; put e1 e2〉 ↪−→ error, as required.

• Case E-GET-1: Analogous to E-PUT-1.

• Case E-GET-2: Analogous to E-PUT-2.

• Case E-CONVERT:

Given: 〈S; convert e〉 ↪−→ 〈S′; convert e′〉 and S′ tS S′′ = >S .

To show: 〈S tS S′′; convert e〉 ↪−→ error.

From the premise of E-CONVERT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉.

32

Since S′ tS S′′ = >S , by IH, we have that 〈S tS S′′; e〉 ↪−→ error.

Therefore, by E-CONVERTERR we have that 〈S tS S′′; convert e〉 ↪−→ error, as required.

• Case E-BETA:

Given: 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉 and S tS S′′ = >S .

To show: 〈S tS S′′; (λx. e) v〉 ↪−→ error.

Immediate by E-REFLERR since 〈>S ; (λx. e) v〉 = error.

• Case E-NEW:

Given: 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉 (where l /∈ dom(S)), S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→
⊥]; l〉, and S[l 7→ ⊥] tS S′′ = >S .

To show: 〈S tS S′′; new〉 ↪−→ error.

By E-NEW, 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′ 7→ ⊥]; l′〉, where l′ /∈ dom(S tS S′′). One of the following
two possibilities must hold:

– l′ = l.
In this case, we immediately have that 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l 7→ ⊥]; l〉.

– l′ 6= l.
In this case, we apply Lemma 1 to 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′ 7→ ⊥]; l′〉 and {l′}. Therefore, for
all l′′ such that l′′ /∈ dom((S tS S′′)[l′ 7→ ⊥]),

〈S tS S′′; new〉 ↪−→ 〈Soldlocs[l′′ 7→ ((S tS S′′)[l′ 7→ ⊥])(l′)]; l′[l′ := l′′]〉
= 〈Soldlocs[l′′ 7→ ⊥]; l′′〉,

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S tS S′′), and for all l ∈ dom(Soldlocs),
Soldlocs(l) = ((S tS S′′)[l′ 7→ ⊥])(l).
Note that since l′ /∈ dom(S tS S′′), Soldlocs(l) = (S tS S′′)(l) for all l ∈ dom(Soldlocs). Therefore, since
dom(Soldlocs) = dom(S tS S′′) and Soldlocs(l) = (S tS S′′)(l) for all l ∈ dom(Soldlocs), the conditions of
Definition 9 are satisfied, and Soldlocs = S tS S′′.
Therefore, we have that for all l′′ such that l′′ /∈ dom((S tS S′′)[l′ 7→ ⊥]),

〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′′ 7→ ⊥]; l′′〉.

Instantiate the above with l. Since S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉, we know that
l /∈ dom(S′′), and we have from the side condition of E-NEW that l /∈ dom(S). Therefore l /∈ dom(S tS
S′′), and since l 6= l′, we have that l /∈ dom((StS S′′)[l′ 7→ ⊥]). Therefore, 〈StS S′′; new〉 ↪−→ 〈(StS
S′′)[l 7→ ⊥]; l〉.

So, regardless of whether l′ = l or l′ 6= l, we can conclude 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l 7→ ⊥]; l〉. Then,
since S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉, we have that l /∈ dom(S′′), and we have from
the side condition of E-NEW that l /∈ dom(S). Therefore, we have:

(S tS S′′)[l 7→ ⊥] = S[l 7→ ⊥] tS S′′[l 7→ ⊥]
= S tS [l 7→ ⊥] tS S′′ tS [l 7→ ⊥]
= S tS [l 7→ ⊥] tS S′′

= S[l 7→ ⊥] tS S′′

= >S .

Therefore, since 〈>S ; l〉 = error, we have that 〈S tS S′′; new〉 ↪−→ error, as we were required to show.

33

• Case E-PUTVAL:

Given: 〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉 and S[l 7→ d1 t d2] tS S′′ = >S .

To show: 〈S tS S′′; put l {d1}〉 ↪−→ error.

One of the following must be the case:

– S tS S′′ = >S . In this case, the proof is immediate by E-REFLERR, since 〈>S ; put l {d1}〉 = error.

– S tS S′′ 6= >S . In this case, we proceed as follows:
Since S(l) = d2 (from the premises of E-PUTVAL), we know that (S tS S′′)(l) = d′2, where d2 v d′2.
We show that d1 t d′2 = >, as follows:

∗ Since S[l 7→ d1 t d2] tS S′′ = >S , we know that there exists some l′ ∈ dom(S[l 7→ d1 t d2]) ∩
dom(S′′) such that (S[l 7→ d1 t d2])(l′) t S′′(l′) = >.

∗ If l′ 6= l, then (S[l 7→ d1 t d2])(l′) would be equal to S(l′), because the binding for l would be
irrelevant. We would then have (S[l 7→ d1 t d2])(l′) t S′′(l′) = S(l′) t S′′(l′) = >, a contradiction
since S tS S′′ 6= >S . Therefore it must be the case that l′ = l, so we have that (S[l 7→ d1 t d2])(l) t
S′′(l) = >.
∗ Therefore, we have:

> = (S[l 7→ d1 t d2])(l) t S′′(l)
= d1 t d2 t S′′(l) (since (S[l 7→ d1 t d2])(l) = d1 t d2)
= d1 t S(l) t S′′(l) (since S(l) = d2)
= d1 t S(l) t S′′(l)
= d1 t (S tS S′′)(l)
= d1 t d′2

Therefore, since (StSS′′)(l) = d′2 and d1td′2 = >, by E-PUTVALERR we have that 〈StSS′′; put l {d1}〉 ↪−→
error, as required.

• Case E-GETVAL:

Given: 〈S; get l Q〉 ↪−→ 〈S; {d1}〉 and S tS S′′ = >S .

To show: 〈S tS S′′; get l Q〉 ↪−→ error.

Immediate by E-REFLERR since 〈>S ; get l Q〉 = error.

• Case E-CONVERTVAL:

Given: 〈S; convert Q〉 ↪−→ 〈S; δ(Q)〉 and S tS S′′ = >S .

To show: 〈S tS S′′; convert Q〉 ↪−→ error.

Immediate by E-REFLERR since 〈>S ; convert Q〉 = error.

A.5 Error Preservation
Lemma 5 (Error Preservation). If 〈S; e〉 ↪−→ error and S vS S′, then 〈S′; e〉 ↪−→ error.

Proof. Let S vS S′ and proceed by induction on the derivation of 〈S; e〉 ↪−→ error. We only need to consider the
reduction rules that step to error.

34

• Case E-APPERR-1:

Given: 〈S; e1 e2〉 ↪−→ error.

To show: 〈S′; e1 e2〉 ↪−→ error.

From the premise of E-APPERR-1 we have that 〈S; e1〉 ↪−→ error. Since S vS S′, we have by the induction
hypothesis that 〈S′; e1〉 ↪−→ error. Therefore, by E-APPERR-1, we have that 〈S′; e1 e2〉 ↪−→ error, as
required.

• Case E-APPERR-2: Analogous to E-APPERR-1.

• Case E-PARAPPERR:

(NB: For simplicity, we elide renaming throughout this case and assume that configurations can be renamed to
meet non-conflicting requirements.)

Given: 〈S; e1 e2〉 ↪−→ error.

To show: 〈S′; e1 e2〉 ↪−→ error.

From the premises of E-PARAPPERR, we have that:

– 〈S; e1〉 ↪−→ 〈S1; e′1〉,
– 〈S; e2〉 ↪−→ 〈S2; e′2〉, and

– S1 tS S2 = >S .

At least one of the following situations must occur:

– S1 tS S′ = >S .
In this case, since 〈S; e1〉 ↪−→ 〈S1; e′1〉, and S1 tS S′ = >S , we have from Lemma 4 that 〈S tS
S′; e1〉 ↪−→ error. Since S vS S′, S tS S′ = S′, so we have that 〈S′; e1〉 ↪−→ error. Therefore, by
E-APPERR-1, we have that 〈S′; e1 e2〉 ↪−→ error, as required.

– S2 tS S′ = >S .
In this case, since 〈S; e2〉 ↪−→ 〈S2; e′2〉, and S2 tS S′ = >S , we have from Lemma 4 that 〈S tS
S′; e2〉 ↪−→ error. Since S vS S′, S tS S′ = S′, so we have that 〈S′; e2〉 ↪−→ error. Therefore, by
E-APPERR-2, we have that 〈S′; e1 e2〉 ↪−→ error, as required.

– S1 tS S′ 6= >S and S2 tS S′ 6= >S .
In this case, since 〈S; e1〉 ↪−→ 〈S1; e′1〉 and S1tSS′ 6= >S , we have from Lemma 3 that 〈StSS′; e1〉 ↪−→
〈S1 tS S′; e′1〉. Likewise, since 〈S; e2〉 ↪−→ 〈S2; e′2〉 and S2 tS S′ 6= >S , we have from Lemma 3 that
〈S tS S′; e2〉 ↪−→ 〈S2 tS S′; e′2〉.
Since S vS S′, S tS S′ = S′, so we have that 〈S′; e1〉 ↪−→ 〈S1 tS S′; e′1〉 and 〈S′; e2〉 ↪−→ 〈S2 tS
S′; e′2〉.
Since S1 tS S2 = >S , we have that S1 tS S′ tS S2 tS S′ = >S . Therefore, by E-PARAPPERR, we have
that 〈S′; e1 e2〉 ↪−→ error, as desired.

• Case E-PUTERR-1: Analogous to E-APPERR-1.

• Case E-PUTERR-2: Analogous to E-APPERR-1.

• Case E-GETERR-1: Analogous to E-APPERR-1.

• Case E-GETERR-2: Analogous to E-APPERR-1.

• Case E-CONVERTERR:

Given: 〈S; convert e〉 ↪−→ error.

To show: 〈S′; convert e〉 ↪−→ error.

35

From the premise of E-CONVERTERR we have that 〈S; e〉 ↪−→ error. Since S vS S′, we have by the induction
hypothesis that 〈S′; e〉 ↪−→ error. Therefore, by E-CONVERTERR, we have that 〈S′; convert e〉 ↪−→ error, as
required.

• Case E-PUTVALERR:

Given: 〈S; put l {d1}〉 ↪−→ error.

To show: 〈S′; put l {d1}〉 ↪−→ error.

Since S(l) = d2 (from the first premise of E-PUTVALERR), we know that S′(l) = d′2, where d2 v d′2. Since
d1td2 = >, we have that d1td′2 = >. Therefore, by E-PUTVALERR, 〈S′; put l {d1}〉 ↪−→ error, as required.

A.6 Diamond
Lemma 6 (Diamond). If σ ↪−→ σa and σ ↪−→ σb, then there exists σc such that either:

• σa ↪−→ σc and σb ↪−→ σc, or

• there exists a safe renaming σ′b of σb with respect to σ ↪−→ σb, such that σa ↪−→ σc and σ′b ↪−→ σc.

Proof. By induction on the derivation of σ ↪−→ σa, by cases on the last rule in the derivation. For all cases except the
E-NEW case, we prove the first disjunct; in the E-NEW case, we prove the second disjunct.

Where necessary, we use a “left/right” naming convention for subcases of the proof. For instance, the subcase
E-PARAPP/E-REFL is the case where the last rule in the derivation of σ ↪−→ σa (the “left” side of the diamond) is
E-PARAPP and the last rule in the derivation of σ ↪−→ σb (the “right” side of the diamond) is E-REFL.

A.6.1 E-REFL

• E-REFL: σ = 〈S; e〉, and σa = 〈S; e〉.
Given:

– 〈S; e〉 ↪−→ 〈S; e〉, and

– 〈S; e〉 ↪−→ σb.

To show: There exists σc such that

– 〈S; e〉 ↪−→ σc, and

– σb ↪−→ σc.

For all subcases E-REFL/*, choose σc = σb.

To show:

– 〈S; e〉 ↪−→ σb, which is immediate from our assumptions, above, and

– σb ↪−→ σb, which follows from either E-REFL or E-REFLERR.

A.6.2 E-PARAPP

• E-PARAPP: σ = 〈S; e1 e2〉, and σa = 〈S1 tS S2; e′1 e
′
2〉.

(NB: For simplicity, we elide renaming throughout this case and assume that configurations can be renamed to
meet non-conflicting requirements.)

Given:

36

– 〈S; e1 e2〉 ↪−→ 〈S1 tS S2; e′1 e
′
2〉, and

– 〈S; e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premises of E-PARAPP, we have the following facts:

– 〈S; e1〉 ↪−→ 〈S1; e′1〉;
– 〈S; e2〉 ↪−→ 〈S2; e′2〉; and

– S1 tS S2 6= >S .

We proceed by subcases, on the last rule in the derivation of 〈S; e1 e2〉 ↪−→ σb. By the operational semantics,
there are six possibilities: E-PARAPP/E-REFL, E-PARAPP/E-PARAPP, E-PARAPP/E-BETA, E-PARAPP/E-
APPERR-1, E-PARAPP/E-APPERR-2, and E-PARAPP/E-PARAPPERR.

– E-PARAPP/E-REFL:
Analogous to the E-REFL/E-PARAPP case, with σa and σb reversed.

– E-PARAPP/E-PARAPP:
In this case, we have the following facts:

∗ σb = 〈Sb1 tS Sb2 ; eb1 eb2〉,
∗ 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉,
∗ 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉, and
∗ Sb1 tS Sb2 6= >S .

Since 〈S; e1〉 ↪−→ 〈S1; e′1〉 and 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉 (from above), we have by IH that there exists
σc1 such that 〈S1; e′1〉 ↪−→ σc1 and 〈Sb1 ; eb1〉 ↪−→ σc1 . Either σc1 is error, or it is some non-error
configuration 〈Sc1 ; ec1〉.
Similarly, since 〈S; e2〉 ↪−→ 〈S2; e′2〉 and 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉, we have by IH that there exists σc2 such
that 〈S2; e′2〉 ↪−→ σc2 and 〈Sb2 ; eb2〉 ↪−→ σc2 . Either σc2 is error, or it is some non-error configuration
〈Sc2 ; ec2〉.
We’re required to show that there exists σc such that

∗ 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

∗ 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ σc.

We consider possibilities 1, 2, and 3, at least one of which must hold. We will show that in 1, 2, 3a, 3b,
and 3c, σc = error, and in 3d, σc = 〈Sc1 tS Sc2 ; ec1 ec2〉.

1. σc1 = error.
Then, since 〈S1; e′1〉 ↪−→ error, we have by E-APPERR-1 that 〈S1; e′1 e

′
2〉 ↪−→ error. Then, by

Lemma 5, 〈S1 tS S2; e′1 e
′
2〉 ↪−→ error. Likewise, since 〈Sb1 ; eb1〉 ↪−→ error, we have by E-

APPERR-1 that 〈Sb1 ; eb1 eb2〉 ↪−→ error, and again by Lemma 5, we have that 〈Sb1tSSb2 ; eb1 eb2〉 ↪−→
error. Therefore σc = error.

2. σc2 = error.
An argument analogous to the above applies, this time appealing to E-APPERR-2. Therefore σc =
error.

3. σc1 6= error and σc2 6= error.
Then σc1 = 〈Sc1 ; ec1〉, and σc2 = 〈Sc2 ; ec2〉.
At least one of the following four possibilities must hold:

37

(a) Sc1 tS S2 = >S .
Then, since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉, by Lemma 4 we have that 〈S1 tS S2; e′1〉 ↪−→ error.
Therefore, by E-APPERR-1, 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error.

Next, we show that 〈Sb1 tS Sb2 ; eb1 eb2〉must step to error, as well. At least one of the following
three possibilities must hold:
i. Sc1 tS Sb2 = >S .

Then, since 〈Sb1 ; eb1〉 ↪−→ 〈Sc1 ; ec1〉, by Lemma 4 we have that 〈Sb1 tS Sb2 ; eb1〉 ↪−→ error.
Therefore, by E-APPERR-1, 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error.

ii. Sb1 tS Sc2 = >S .
Then, since 〈Sb2 ; eb2〉 ↪−→ 〈Sc2 ; ec2〉, by Lemma 4 we have that 〈Sb1 tS Sb2 ; eb2〉 ↪−→ error.
Therefore, by E-APPERR-2, 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error.

iii. Sc1 tS Sb2 6= >S and Sb1 tS Sc2 6= >S .
Then, since 〈Sb1 ; eb1〉 ↪−→ 〈Sc1 ; ec1〉 and 〈Sb2 ; eb2〉 ↪−→ 〈Sc2 ; ec2〉, we have by Lemma 3
that 〈Sb1 tS Sb2 ; eb1〉 ↪−→ 〈Sc1 tS Sb2 ; ec1〉 and 〈Sb1 tS Sb2 ; eb2〉 ↪−→ 〈Sb1 tS Sc2 ; ec2〉.
But since Sc1 tS S2 = >S , we have that Sc1 tS Sc2 = >S , since S2 vS Sc2 .
And since Sc1 tS Sc2 = >S , we have that:

(Sc1 tS Sb2) tS (Sb1 tS Sc2) = Sc1 tS Sc2 tS Sb1 tS Sb2
= >S tS Sb1 tS Sb2
= >S .

Therefore, E-PARAPPERR applies, and 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error.
Therefore, in this case, σc = error.

(b) S1 tS Sc2 = >S .
Then, since 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉, by Lemma 4 we have that 〈S1 tS S2; e′2〉 ↪−→ error.
Therefore, by E-APPERR-2, 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error.

Next, we show that 〈Sb1 tS Sb2 ; eb1 eb2〉must step to error, as well. At least one of the following
three possibilities must hold:
i. Sc1 tS Sb2 = >S .

Then 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error by the same argument as 3(a)i.
ii. Sb1 tS Sc2 = >S .

Then 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error by the same argument as 3(a)ii.
iii. Sc1 tS Sb2 6= >S and Sb1 tS Sc2 6= >S .

Then the argument of 3(a)iii applies, with the modification that, since S1 tS Sc2 = >S , we
have that Sc1 tS Sc2 = >S , since S1 vS Sc1 .
So, 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error.

Therefore, in this case, σc = error.
(c) Sc1 tS S2 6= >S , S1 tS Sc2 6= >S , and (Sc1 tS S2) tS (S1 tS Sc2) = >S .

Then, since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉 and 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉, we have by Lemma 3 that
〈S1 tS S2; e′1〉 ↪−→ 〈Sc1 tS S2; ec1〉 and 〈S1 tS S2; e′2〉 ↪−→ 〈S1 tS Sc2 ; ec2〉. But since
(Sc1 tS S2)tS (S1tS Sc2) = >S , we have by E-PARAPPERR that 〈S1tS S2; e′1 e

′
2〉 ↪−→ error.

Next, we show that 〈Sb1 tS Sb2 ; eb1 eb2〉must step to error, as well. At least one of the following
three possibilities must hold:
i. Sc1 tS Sb2 = >S .

Then 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error by the same argument as 3(a)i.
ii. Sb1 tS Sc2 = >S .

Then 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error by the same argument as 3(a)ii.
iii. Sc1 tS Sb2 6= >S and Sb1 tS Sc2 6= >S .

Then the argument of 3(a)iii applies, with the modification that, since (Sc1 tS S2) tS (S1 tS
Sc2) = >S , we have that Sc1 tS Sc2 = >S , since S1 vS Sc1 and S2 vS Sc2 .
So, 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ error.

38

Therefore, in this case, σc = error.
(d) Sc1 tS S2 6= >S , S1 tS Sc2 6= >S , and (Sc1 tS S2) tS (S1 tS Sc2) 6= >S .

Then, since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉 and 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉, we have by Lemma 3 that
〈S1 tS S2; e′1〉 ↪−→ 〈Sc1 tS S2; ec1〉 and 〈S1 tS S2; e′2〉 ↪−→ 〈S1 tS Sc2 ; ec2〉.
So, by E-PARAPP, we have that 〈S1 tS S2; e′1 e

′
2〉 ↪−→ 〈(Sc1 tS S2) tS (S1 tS Sc2); ec1 ec2〉.

Since S1 vS Sc1 and S2 vS Sc2 , we can simplify (Sc1 tS S2)tS (S1 tS Sc2) to Sc1 tS Sc2 , so
we have that Sc1 tS Sc2 6= >S , and 〈S1 tS S2; e′1 e

′
2〉 ↪−→ 〈Sc1 tS Sc2 ; ec1 ec2〉.

Next, we show that 〈Sb1 tS Sb2 ; eb1 eb2〉must step to 〈Sc1 tS Sc2 ; ec1 ec2〉, as well. At least one
of the following possibilities must hold:
i. Sc1 tS Sb2 = >S .

Can’t happen, because if it were true, we would have Sc1 tS Sc2 = >S (since Sb2 vS Sc2),
which would contradict Sc1 tS Sc2 6= >S , above.

ii. Sb1 tS Sc2 = >S .
Can’t happen, because if it were true, we would have Sc1 tS Sc2 = >S (since Sb1 vS Sc1),
which would contradict Sc1 tS Sc2 6= >S , above.

iii. Sc1 tS Sb2 6= >S and Sb1 tS Sc2 6= >S .
Then, since 〈Sb1 ; eb1〉 ↪−→ 〈Sc1 ; ec1〉 and 〈Sb2 ; eb2〉 ↪−→ 〈Sc2 ; ec2〉, we have by Lemma 3
that 〈Sb1 tS Sb2 ; eb1〉 ↪−→ 〈Sc1 tS Sb2 ; ec1〉 and 〈Sb1 tS Sb2 ; eb2〉 ↪−→ 〈Sb1 tS Sc2 ; ec2〉.
Then, since Sc1 tS Sc2 6= >S and Sb1 vS Sc1 and Sb2 vS Sc2 , we have that (Sc1 tS Sb2) tS
(Sb1tS Sc2) 6= >S . Therefore, E-PARAPP applies, and we have that 〈Sb1tS Sb2 ; eb1 eb2〉 ↪−→
〈(Sc1 tS Sb2) tS (Sb1 tS Sc2); ec1 ec2〉. Since (Sc1 tS Sb2) tS (Sb1 tS Sc2) simplifies to
Sc1 tS Sc2 , we have that 〈Sb1 tS Sb2 ; eb1 eb2〉 ↪−→ 〈Sc1 tS Sc2 ; ec1 ec2〉.

Therefore, in this case, σc = 〈Sc1 tS Sc2 ; ec1 ec2〉.
– E-PARAPP/E-BETA:

In this case, we have the following facts:

∗ 〈S; e1 e2〉 = 〈S; λx. e11 v〉 for some e11 and some value v; and
∗ σb = 〈S; e11[x := v]〉.

We’re required to show that there exists σc such that

∗ 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

∗ 〈S; e11[x := v]〉 ↪−→ σc.

Choose σc = 〈S; e11[x := v]〉. We have from E-REFL that 〈S; e11[x := v]〉 ↪−→ 〈S; e11[x := v]〉, so it
remains to show that 〈S1 tS S2; e′1 e

′
2〉 ↪−→ 〈S; e11[x := v]〉.

From the premises of E-PARAPP, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉 and 〈S; e2〉 ↪−→ 〈S2; e′2〉. But
e1 = λx. e11, a value, and e2 = v, a value. So it must be the case that e1 = e′1, e2 = e′2, and S = S1 = S2.
Therefore, 〈S1tS S2; e′1 e

′
2〉 = 〈S; λx. e11 v〉, so we have only to show that 〈S; e1 e2〉 ↪−→ 〈S; e11[x :=

v]〉, which is immediate by E-BETA.

– E-PARAPP/E-APPERR-1:
In this case, we have the following facts:

∗ σb = error;
∗ 〈S; e1〉 ↪−→ error (from the premise of E-APPERR-1).

We’re required to show that there exists σc such that

∗ 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error.

39

Since 〈S; e1〉 ↪−→ error and 〈S; e1〉 ↪−→ 〈S1; e′1〉 (from the premises of E-PARAPP, above), we have by
IH that there exists σc1 such that error ↪−→ σc1 and 〈S1; e′1〉 ↪−→ σc1 . Since error can only step to error,
σc1 = error.
Therefore, 〈S1; e′1〉 ↪−→ error, so we have that 〈S1; e′1 e

′
2〉 ↪−→ error by E-APPERR-1, and therefore

〈S1 tS S2; e′1 e
′
2〉 ↪−→ error by Lemma 5, as we were required to show.

– E-PARAPP/E-APPERR-2:
In this case, we have the following facts:

∗ σb = error;
∗ 〈S; e2〉 ↪−→ error (from the premise of E-APPERR-2).

We’re required to show that there exists σc such that

∗ 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error.

Since 〈S; e2〉 ↪−→ error and 〈S; e2〉 ↪−→ 〈S2; e′2〉 (from the premises of E-PARAPP, above), we have by
IH that there exists σc2 such that error ↪−→ σc2 and 〈S2; e′2〉 ↪−→ σc2 . Since error can only step to error,
σc2 = error.
Therefore, 〈S2; e′2〉 ↪−→ error, so we have that 〈S2; e′1 e

′
2〉 ↪−→ error by E-APPERR-2, and therefore

〈S1 tS S2; e′1 e
′
2〉 ↪−→ error by Lemma 5, as we were required to show.

– E-PARAPP/E-PARAPPERR:
In this case, we have the following facts:

∗ σb = error;
∗ 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉 for some Sb1 and eb1 (from the first premise of E-PARAPPERR);
∗ 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉 for some Sb2 and eb2 (from the second premise of E-PARAPPERR);
∗ Sb1 tS Sb2 = >S (from the third premise of E-PARAPPERR).

We’re required to show that there exists σc such that

∗ 〈S1 tS S2; e′1 e
′
2〉 ↪−→ σc, and

∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error.

Since 〈S; e1〉 ↪−→ 〈S1; e′1〉 (from the first premise of E-PARAPP) and 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉, and since
〈S; e2〉 ↪−→ 〈S2; e′2〉 (from the second premise of E-PARAPP) and 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉, we have by IH
that there exist σc1 and σc2 such that 〈S1; e′1〉 ↪−→ σc1 and 〈Sb1 ; eb1〉 ↪−→ σc1 , and that 〈S2; e′2〉 ↪−→ σc2
and 〈Sb2 ; eb2〉 ↪−→ σc2 .
We consider the following possibilities, at least one of which must hold:

∗ σc1 = error.
In this case, since 〈S1; e′1〉 ↪−→ error, we have by E-APPERR-1 that 〈S1; e′1 e

′
2〉 ↪−→ error. There-

fore, by Lemma 5, we have that 〈S1 tS S2; e′1 e
′
2〉 ↪−→ error, as we were required to show.

∗ σc2 = error.
In this case, since 〈S2; e′2〉 ↪−→ error, we have by E-APPERR-2 that 〈S2; e′1 e

′
2〉 ↪−→ error. There-

fore, by Lemma 5, we have that 〈S1 tS S2; e′1 e
′
2〉 ↪−→ error, as we were required to show.

∗ σc1 = 〈Sc1 ; ec1〉 6= error and σc2 = 〈Sc2 ; ec2〉 6= error.
In this case, at least one of the following three possibilities must hold:
1. Sc1 tS S2 = >S .

Since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉 and Sc1tSS2 = >S , we have by Lemma 4 that 〈S1tSS2; e′1〉 ↪−→
error. Therefore, by E-APPERR-1, 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error, as we were required to show.

40

2. S1 tS Sc2 = >S .
Since 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉 and S1tSSc2 = >S , we have by Lemma 4 that 〈S1tSS2; e′2〉 ↪−→
error. Therefore, by E-APPERR-2, 〈S1 tS S2; e′1 e

′
2〉 ↪−→ error, as we were required to show.

3. Sc1 tS S2 6= >S and S1 tS Sc2 6= >S .
In this case, since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉 and Sc1 tS S2 6= >S , we have by Lemma 3 that
〈S1 tS S2; e′1〉 ↪−→ 〈Sc1 tS S2; ec1〉.
Likewise, since 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉 and S1 tS Sc2 6= >S , we have by Lemma 3 that 〈S1 tS
S2; e′2〉 ↪−→ 〈S1 tS Sc2 ; ec2〉.
But since Sb1 vS Sc1 and Sb2 vS Sc2 and Sb1 tS Sb2 = >S , it must be the case that Sc1 tS
Sc2 = >S . Therefore we have that
(Sc1 tS S2)tS (S1 tS Sc2) = Sc1 tS Sc2 = >S . So, by E-PARAPPERR, 〈S1 tS S2; e′1 e

′
2〉 ↪−→

error, as we were required to show.

A.6.3 E-PUT-1

• E-PUT-1: σ = 〈S; put e1 e2〉, and σa = 〈S1; put e′1 e2〉.
Given:

– 〈S; put e1 e2〉 ↪−→ 〈S1; put e′1 e2〉, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– 〈S1; put e′1 e2〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉.
We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational
semantics, there are seven possibilities: E-PUT-1/E-REFL, E-PUT-1/E-PUT-1, E-PUT-1/E-PUT-2, E-PUT-
1/E-PUTVAL, E-PUT-1/E-PUTERR-1, E-PUT-1/E-PUTERR-2, and E-PUT-1/E-PUTVALERR.

– E-PUT-1/E-REFL:
Analogous to the E-REFL/E-PUT-1 case, with σa and σb reversed.

– E-PUT-1/E-PUT-1:
In this case, we have the following facts:

∗ σb = 〈Sb1 ; put eb1 e2〉, and
∗ 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉.

Since 〈S; e1〉 ↪−→ 〈S1; e′1〉 and 〈S; e1〉 ↪−→ 〈Sb1 ; eb1〉, we have by IH that there exists σc1 such that
〈S1; e′1〉 ↪−→ σc1 and 〈Sb1 ; eb1〉 ↪−→ σc1 . Either σc1 is error, or it is some non-error configuration
〈Sc1 ; ec1〉.
We’re required to show that there exists σc such that

∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ 〈Sb1 ; put eb1 e2〉 ↪−→ σc.

We consider the following possibilities, one of which must hold.

1. σc1 = error.
Then, since 〈S1; e′1〉 ↪−→ error, we have by E-PUTERR-1 that 〈S1; put e′1 e2〉 ↪−→ error. Likewise,
since 〈Sb1 ; eb1〉 ↪−→ error, we have by E-PUTERR-1 that 〈Sb1 ; put eb1 e2〉 ↪−→ error. Therefore
σc = error.

41

2. σc1 = 〈Sc1 ; ec1〉.
Then, since 〈S1; e′1〉 ↪−→ 〈Sc1 ; ec1〉, we have by E-PUT-1 that 〈S1; put e′1 e2〉 ↪−→ 〈Sc1 ; put ec1 e2〉.
Likewise, since 〈Sb1 ; eb1〉 ↪−→ 〈Sc1 ; ec1〉, we have by E-PUT-1 that 〈Sb1 ; put eb1 e2〉 ↪−→ 〈Sc1 ; put ec1 e2〉.
Therefore σc = 〈Sc1 ; put ec1 e2〉.

– E-PUT-1/E-PUT-2:
(NB: In this case we assume that configurations are renamed as necessary to meet non-conflicting require-
ments.)
In this case, we have the following facts:

∗ σb = 〈Sb2 ; put e1 eb2〉, and
∗ 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉.

We’re required to show that there exists σc such that
∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ 〈Sb2 ; put e1 eb2〉 ↪−→ σc.

We consider the following two possibilities, one of which must hold:
1. S1 tS Sb2 = >S .

Since 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉 (from above), and since S1 tS Sb2 = Sb2 tS S1 = >S , we have by
Lemma 4 that 〈S tS S1; e2〉 ↪−→ error.
Since S vS S1, we have that S tS S1 = S1, so 〈S1; e2〉 ↪−→ error.
Therefore, by E-PUTERR-2, 〈S1; put e′1 e2〉 ↪−→ error.
Similarly, since 〈S; e1〉 ↪−→ 〈S1; e′1〉 (from the premise of E-PUT-1), and since S1 tS Sb2 = >S , we
have by Lemma 4 that 〈S tS Sb2 ; e1〉 ↪−→ error.
Since S vS Sb2 , we have that S tS Sb2 = Sb2 , so 〈Sb2 ; e1〉 ↪−→ error.
Therefore, by E-PUTERR-1, 〈Sb2 ; put e1 eb2〉 ↪−→ error.
Therefore σc = error.

2. S1 tS Sb2 6= >S .
Since 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉 (from above), and since S1 tS Sb2 = Sb2 tS S1 6= >S , we have by
Lemma 3 that 〈S tS S1; e2〉 ↪−→ 〈Sb2 tS S1; eb2〉.
Since S vS S1, we have that S tS S1 = S1, so 〈S1; e2〉 ↪−→ 〈Sb2 tS S1; eb2〉.
Therefore, by E-PUT-2, 〈S1; put e′1 e2〉 ↪−→ 〈Sb2 tS S1; put e′1 eb2〉.
Similarly, since 〈S; e1〉 ↪−→ 〈S1; e′1〉 (from the premise of E-PUT-1), and since S1 tS Sb2 6= >S , we
have by Lemma 3 that 〈S tS Sb2 ; e1〉 ↪−→ 〈S1 tS Sb2 ; e′1〉.
Since S vS Sb2 , we have that S tS Sb2 = Sb2 , so 〈Sb2 ; e1〉 ↪−→ 〈S1 tS Sb2 ; e′1〉.
Therefore, by E-PUT-1, 〈Sb2 ; put e1 eb2〉 ↪−→ 〈S1 tS Sb2 ; put e′1 eb2〉.
Therefore σc = 〈S1 tS Sb2 ; put e′1 eb2〉.

– E-PUT-1/E-PUTVAL:
In this case, we have the following facts:

∗ 〈S; put e1 e2〉 = 〈S; put l {d1}〉,
∗ σb = 〈S[l 7→ d1 t d2]; {}〉, and
∗ S(l) = d2 ∧ d1 ∈ D ∧ d1 t d2 6= > (from the premises of E-PUTVAL).

We’re required to show that there exists σc such that
∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ 〈S[l 7→ d1 t d2]; {}〉 ↪−→ σc.

Choose σc = 〈S[l 7→ d1 t d2]; {}〉. We have from E-REFL that 〈S[l 7→ d1 t d2]; {}〉 ↪−→ 〈S[l 7→ d1 t
d2]; {}〉, so it remains to show that 〈S1; put e′1 e2〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉.
From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉. But e1 = l, a value, so it must be the
case that e1 = e′1 and S = S1. Therefore, 〈S1; put e′1 e2〉 = 〈S; put e1 e2〉. Further, since e1 = l and
e2 = {d1}, 〈S1; put e′1 e2〉 = 〈S; put l {d1}〉. So we have only to show that 〈S; put l {d1}〉 ↪−→ 〈S[l 7→
d1 t d2]; {}〉, which is immediate by E-PUTVAL, since all of the premises hold.

42

– E-PUT-1/E-PUTERR-1:
In this case, we have the following facts:

∗ σb = error, and
∗ 〈S; e1〉 ↪−→ error (from the premise of E-PUTERR-1).

We’re required to show that there exists σc such that

∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S1; put e′1 e2〉 ↪−→ error.
Since 〈S; e1〉 ↪−→ error and 〈S; e1〉 ↪−→ 〈S1; e′1〉 (from the premise of E-PUT-1, above), we have by IH
that there exists σc1 such that error ↪−→ σc1 and 〈S1; e′1〉 ↪−→ σc1 . Since error can only step to error,
σc1 = error.
Therefore, 〈S1; e′1〉 ↪−→ error, so we have that 〈S1; put e′1 e2〉 ↪−→ error by E-PUTERR-1, as we were
required to show.

– E-PUT-1/E-PUTERR-2:
In this case, we have the following facts:

∗ σb = error, and
∗ 〈S; e2〉 ↪−→ error (from the premise of E-PUTERR-2).

We’re required to show that there exists σc such that

∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S1; put e′1 e2〉 ↪−→ error.
Since 〈S; e2〉 ↪−→ error, we have by E-PUTERR-2 that 〈S; put e′1 e2〉 ↪−→ error. So, since S vS S1, we
have by Lemma 5 that 〈S1; put e′1 e2〉 ↪−→ error, as we were required to show.

– E-PUT-1/E-PUTVALERR:
In this case, we have the following facts:

∗ 〈S; put e1 e2〉 = 〈S; put l {d1}〉,
∗ σb = error, and
∗ S(l) = d2 ∧ d1 ∈ D ∧ d1 t d2 = > (from the premises of E-PUTVALERR).

We’re required to show that there exists σc such that

∗ 〈S1; put e′1 e2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have from E-REFL-ERR that error ↪−→ error, so it remains to show that
〈S1; put e′1 e2〉 ↪−→ error.
From the premise of E-PUT-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉. But e1 = l, a value, so it must be the
case that e1 = e′1 and S = S1. Therefore, 〈S1; put e′1 e2〉 = 〈S; put e1 e2〉. Further, since e1 = l and
e2 = {d1}, 〈S1; put e′1 e2〉 = 〈S; put l {d1}〉. So we have only to show that 〈S; put l {d1}〉 ↪−→ error,
which is immediate by E-PUTVALERR, since all of the premises hold.

A.6.4 E-PUT-2

• E-PUT-2: σ = 〈S; put e1 e2〉, and σa = 〈S1; put e1 e′2〉.
Given:

43

– 〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e′2〉, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– 〈S2; put e1 e′2〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉.
We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational
semantics, there are seven possibilities: E-PUT-2/E-REFL, E-PUT-2/E-PUT-1, E-PUT-2/E-PUT-2, E-PUT-
2/E-PUTVAL, E-PUT-2/E-PUTERR-1, E-PUT-2/E-PUTERR-2, and E-PUT-2/E-PUTVALERR.

– E-PUT-2/E-REFL:
Analogous to the E-REFL/E-PUT-2 case, with σa and σb reversed.

– E-PUT-2/E-PUT-1:
Analogous to the E-PUT-1/E-PUT-2 case, with σa and σb reversed.

– E-PUT-2/E-PUT-2:
In this case, we have the following facts:

∗ σb = 〈Sb2 ; put e1 eb2〉, and
∗ 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉.

Since 〈S; e2〉 ↪−→ 〈S2; e′2〉 and 〈S; e2〉 ↪−→ 〈Sb2 ; eb2〉, we have by IH that there exists σc2 such that
〈S2; e′2〉 ↪−→ σc2 and 〈Sb2 ; eb2〉 ↪−→ σc2 . Either σc2 is error, or it is some non-error configuration
〈Sc2 ; ec2〉.
We’re required to show that there exists σc such that

∗ 〈S2; put e1 e′2〉 ↪−→ σc, and
∗ 〈Sb2 ; put e1 eb2〉 ↪−→ σc.

We consider the following possibilities, one of which must hold.

1. σc2 = error.
Then, since 〈S2; e′2〉 ↪−→ error, we have by E-PUTERR-2 that 〈S2; put e1 e′2〉 ↪−→ error. Likewise,
since 〈Sb2 ; eb2〉 ↪−→ error, we have by E-PUTERR-2 that 〈Sb2 ; put e1 eb2〉 ↪−→ error. Therefore
σc = error.

2. σc2 = 〈Sc2 ; ec2〉.
Then, since 〈S2; e′2〉 ↪−→ 〈Sc2 ; ec2〉, we have by E-PUT-2 that 〈S2; put e1 e′2〉 ↪−→ 〈Sc2 ; put e1 ec2〉.
Likewise, since 〈Sb2 ; eb2〉 ↪−→ 〈Sc2 ; ec2〉, we have by E-PUT-2 that 〈Sb2 ; put e1 eb2〉 ↪−→ 〈Sc2 ; put e1 ec2〉.
Therefore σc = 〈Sc2 ; put e1 ec2〉.

– E-PUT-2/E-PUTVAL:
In this case, we have the following facts:

∗ 〈S; put e1 e2〉 = 〈S; put l {d1}〉,
∗ σb = 〈S[l 7→ d1 t d2]; {}〉, and
∗ S(l) = d2 ∧ d1 ∈ D ∧ d1 t d2 6= > (from the premises of E-PUTVAL).

We’re required to show that there exists σc such that

∗ 〈S2; put e1 e′2〉 ↪−→ σc, and
∗ 〈S[l 7→ d1 t d2]; {}〉 ↪−→ σc.

44

Choose σc = 〈S[l 7→ d1 t d2]; {}〉. We have from E-REFL that 〈S[l 7→ d1 t d2]; {}〉 ↪−→ 〈S[l 7→ d1 t
d2]; {}〉, so it remains to show that 〈S2; put e1 e′2〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉.
From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉. But e2 = {d1}, a value, so it must be
the case that e2 = e′2 and S = S2. Therefore, 〈S2; put e1 e′2〉 = 〈S; put e1 e2〉. Further, since e1 = l and
e2 = {d1}, 〈S2; put e1 e′2〉 = 〈S; put l {d1}〉. So we have only to show that 〈S; put l {d1}〉 ↪−→ 〈S[l 7→
d1 t d2]; {}〉, which is immediate by E-PUTVAL, since all of the premises hold.

– E-PUT-2/E-PUTERR-1:
In this case, we have the following facts:

∗ σb = error, and
∗ 〈S; e1〉 ↪−→ error (from the premise of E-PUTERR-1).

We’re required to show that there exists σc such that

∗ 〈S2; put e1 e′2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S2; put e1 e′2〉 ↪−→ error.
Since 〈S; e1〉 ↪−→ error, we have by E-PUTERR-1 that 〈S; put e1 e′2〉 ↪−→ error. So, since S vS S2, we
have by Lemma 5 that 〈S2; put e1 e′2〉 ↪−→ error, as we were required to show.

– E-PUT-2/E-PUTERR-2:
In this case, we have the following facts:

∗ σb = error, and
∗ 〈S; e2〉 ↪−→ error (from the premise of E-PUTERR-2).

We’re required to show that there exists σc such that

∗ 〈S2; put e1 e′2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S2; put e1 e′2〉 ↪−→ error.
Since 〈S; e2〉 ↪−→ error and 〈S; e2〉 ↪−→ 〈S2; e′2〉 (from the premise of E-PUT-2, above), we have by IH
that there exists σc2 such that error ↪−→ σc2 and 〈S2; e′2〉 ↪−→ σc2 . Since error can only step to error,
σc2 = error.
Therefore, 〈S2; e′2〉 ↪−→ error, so we have that 〈S2; put e1 e′2〉 ↪−→ error by E-PUTERR-2, as we were
required to show.

– E-PUT-2/E-PUTVALERR:
In this case, we have the following facts:

∗ 〈S; put e1 e2〉 = 〈S; put l {d1}〉,
∗ σb = error, and
∗ S(l) = d2 ∧ d1 ∈ D ∧ d1 t d2 = > (from the premises of E-PUTVALERR).

We’re required to show that there exists σc such that

∗ 〈S2; put e1 e′2〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have from E-REFL-ERR that error ↪−→ error, so it remains to show that
〈S2; put e1 e′2〉 ↪−→ error.
From the premise of E-PUT-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉. But e2 = {d1}, a value, so it must be
the case that e2 = e′2 and S = S2. Therefore, 〈S2; put e1 e′2〉 = 〈S; put e1 e2〉. Further, since e1 = l and
e2 = {d1}, 〈S2; put e1 e′2〉 = 〈S; put l {d1}〉. So we have only to show that 〈S; put l {d1}〉 ↪−→ error,
which is immediate by E-PUTVALERR, since all of the premises hold.

45

A.6.5 E-GET-1

• E-GET-1: σ = 〈S; get e1 e2〉, and σa = 〈S1; get e′1 e2〉.
Given:

– 〈S; get e1 e2〉 ↪−→ 〈S1; get e′1 e2〉, and

– 〈S; get e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– 〈S1; get e′1 e2〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premise of E-GET-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉.
We proceed by subcases, on the last rule in the derivation of 〈S; get e1 e2〉 ↪−→ σb. By the operational
semantics, there are six possibilities: E-GET-1/E-REFL, E-GET-1/E-GET-1, E-GET-1/E-GET-2, E-GET-1/E-
GETVAL, E-GET-1/E-GETERR-1, and E-GET-1/E-GETERR-2.

– E-GET-1/E-REFL:
Analogous to the E-REFL/E-GET-1 case, with σa and σb reversed.

– E-GET-1/E-GET-1:
Analogous to E-PUT-1/E-PUT-1.

– E-GET-1/E-GET-2:
Analogous to E-PUT-1/E-PUT-2.

– E-GET-1/E-GETVAL:
In this case, we have the following facts:

∗ 〈S; get e1 e2〉 = 〈S; get l Q〉,
∗ σb = 〈S; {d1}〉, and
∗ S(l) = d2 ∧ incomp(Q) ∧Q ⊆ D ∧ d1 ∈ Q ∧ d1 v d2 (from the premises of E-GETVAL).

We’re required to show that there exists σc such that

∗ 〈S1; get e′1 e2〉 ↪−→ σc, and
∗ 〈S; {d1}〉 ↪−→ σc.

Choose σc = 〈S; {d1}〉. We have from E-REFL that 〈S; {d1}〉 ↪−→ 〈S; {d1}〉, so it remains to show that
〈S1; get e′1 e2〉 ↪−→ 〈S; {d1}〉.
From the premise of E-GET-1, we have that 〈S; e1〉 ↪−→ 〈S1; e′1〉. But e1 = l, a value, so it must be the
case that e1 = e′1 and S = S1. Therefore, 〈S1; get e′1 e2〉 = 〈S; get e1 e2〉. Further, since e1 = l and
e2 = Q, 〈S1; get e′1 e2〉 = 〈S; get l Q〉. So we have only to show that 〈S; get l Q〉 ↪−→ 〈S; {d1}〉, which
is immediate by E-GETVAL, since all of the premises hold.

– E-GET-1/E-GETERR-1:
Analogous to E-PUT-1/E-PUTERR-1.

– E-GET-1/E-GETERR-2:
Analogous to E-PUT-1/E-PUTERR-2.

46

A.6.6 E-GET-2

• E-GET-2: σ = 〈S; get e1 e2〉, and σa = 〈S1; get e1 e′2〉.
Given:

– 〈S; get e1 e2〉 ↪−→ 〈S2; get e1 e′2〉, and

– 〈S; get e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– 〈S2; get e1 e′2〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premise of E-GET-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉.
We proceed by subcases, on the last rule in the derivation of 〈S; get e1 e2〉 ↪−→ σb. By the operational
semantics, there are six possibilities: E-GET-2/E-REFL, E-GET-2/E-GET-1, E-GET-2/E-GET-2, E-GET-2/E-
GETVAL, E-GET-2/E-GETERR-1 and E-GET-2/E-GETERR-2.

– E-GET-2/E-REFL:
Analogous to the E-REFL/E-GET-2 case, with σa and σb reversed.

– E-GET-2/E-GET-1:
Analogous to E-PUT-2/E-PUT-1.

– E-GET-2/E-GET-2:
Analogous to E-PUT-2/E-PUT-2.

– E-GET-2/E-GETVAL:
In this case, we have the following facts:

∗ 〈S; get e1 e2〉 = 〈S; get l Q〉,
∗ σb = 〈S; {d1}〉, and
∗ S(l) = d2 ∧ incomp(Q) ∧Q ⊆ D ∧ d1 ∈ Q ∧ d1 v d2 (from the premises of E-GETVAL).

We’re required to show that there exists σc such that

∗ 〈S2; get e1 e′2〉 ↪−→ σc, and
∗ 〈S; {d1}〉 ↪−→ σc.

Choose σc = 〈S; {d1}〉. We have from E-REFL that 〈S; {d1}〉 ↪−→ 〈S; {d1}〉, so it remains to show that
〈S2; get e1 e′2〉 ↪−→ 〈S; {d1}〉.
From the premise of E-GET-2, we have that 〈S; e2〉 ↪−→ 〈S2; e′2〉. But e2 = Q, a value, so it must be the
case that e2 = e′2 and S = S2. Therefore, 〈S2; get e1 e′2〉 = 〈S; get e1 e2〉. Further, since e1 = l and
e2 = Q, 〈S2; get e1 e′2〉 = 〈S; get l Q〉. So we have only to show that 〈S; get l Q〉 ↪−→ 〈S; {d1}〉, which
is immediate by E-GETVAL, since all of the premises hold.

– E-GET-2/E-GETERR-1:
Analogous to E-PUT-2/E-PUTERR-1.

– E-GET-2/E-GETERR-2:
Analogous to E-PUT-2/E-PUTERR-2.

47

A.6.7 E-CONVERT

• E-CONVERT: σ = 〈S; convert e〉, and σa = 〈S′; convert e′〉.
Given:

– 〈S; convert e〉 ↪−→ 〈S′; convert e′〉, and

– 〈S; convert e〉 ↪−→ σb.

To show: There exists σc such that

– 〈S′; convert e′〉 ↪−→ σc, and

– σb ↪−→ σc.

From the premise of E-CONVERT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉.
We proceed by subcases, on the last rule in the derivation of 〈S; convert e〉 ↪−→ σb. By the operational seman-
tics, there are four possibilities: E-CONVERT/E-REFL, E-CONVERT/E-CONVERT, E-CONVERT/E-CONVERTVAL,
and E-CONVERT/E-CONVERTERR.

– E-CONVERT/E-REFL:
Analogous to the E-REFL/E-CONVERT case, with σa and σb reversed.

– E-CONVERT/E-CONVERT:
In this case, we have the following facts:

∗ σb = 〈Sb; convert eb〉, and
∗ 〈S; e〉 ↪−→ 〈Sb; eb〉 (from the premise of E-CONVERT).

Since 〈S; e〉 ↪−→ 〈S′; e′〉 and 〈S; e〉 ↪−→ 〈Sb; eb〉, we have by IH that there exists σ′c such that 〈S′; e′〉 ↪−→
σ′c and 〈Sb; eb〉 ↪−→ σ′c. Either σ′c is error, or it is some non-error configuration 〈S′c; e′c〉.
We’re required to show that there exists σc such that

∗ 〈S′; convert e′〉 ↪−→ σc, and
∗ 〈Sb; convert eb〉 ↪−→ σc.

We consider the following possibilities, one of which must hold.

1. σ′c = error.
Then, since 〈S′; e′〉 ↪−→ error, we have by E-CONVERTERR that 〈S′; convert e′〉 ↪−→ error. Like-
wise, since 〈Sb; eb〉 ↪−→ error, we have by E-CONVERTERR that 〈Sb; convert eb〉 ↪−→ error. There-
fore σc = error.

2. σ′c = 〈S′c; e′c〉.
Then, since 〈S′; e′〉 ↪−→ 〈S′c; e′c〉, we have by E-CONVERT that 〈S′; convert e′〉 ↪−→ 〈S′c; convert e′c〉.
Likewise, since 〈Sb; eb〉 ↪−→ 〈S′c; e′c〉, we have by E-CONVERT that 〈Sb; convert eb〉 ↪−→ 〈S′c; convert e′c〉.
Therefore σc = 〈S′c; convert e′c〉.

– E-CONVERT/E-CONVERTVAL:
In this case, we have the following facts:

∗ 〈S; convert e〉 = 〈S; convert Q〉, and
∗ σb = 〈S; δ(Q)〉.

We’re required to show that there exists σc such that

∗ 〈S′; convert e′〉 ↪−→ σc, and
∗ 〈S; δ(Q)〉 ↪−→ σc.

48

Choose σc = 〈S; δ(Q)〉. We have from E-REFL that 〈S; δ(Q)〉 ↪−→ 〈S; δ(Q)〉, so it remains to show that
〈S′; convert e′〉 ↪−→ 〈S; δ(Q)〉.
From the premise of E-CONVERT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉. But e = Q, a value, so it must be the
case that e = e′ and S = S′. Therefore, 〈S′; convert e′〉 = 〈S; convert Q〉. So we have only to show that
〈S; convert Q〉 ↪−→ 〈S; δ(Q)〉, which is immediate by E-CONVERTVAL.

– E-CONVERT/E-CONVERTERR:
In this case, we have the following facts:

∗ σb = error, and
∗ 〈S; e〉 ↪−→ error (from the premise of E-CONVERTERR).

We’re required to show that there exists σc such that

∗ 〈S′; convert e′〉 ↪−→ σc, and
∗ error ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show
that 〈S′; convert e′〉 ↪−→ error.
Since 〈S; e〉 ↪−→ error and 〈S; e〉 ↪−→ 〈S′; e′〉 (from the premise of E-CONVERT, above), we have by
IH that there exists σ′c such that error ↪−→ σ′c and 〈S′; e′〉 ↪−→ σ′c. Since error can only step to error,
σ′c = error.
Therefore, 〈S′; e′〉 ↪−→ error, so we have that 〈S′; convert e′〉 ↪−→ error by E-CONVERTERR, as we
were required to show.

A.6.8 E-BETA

• E-BETA: σ = 〈S; (λx. e) v〉, and σa = 〈S; e[x := v]〉.
Given:

– 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉, and

– 〈S; (λx. e) v〉 ↪−→ σb.

To show: There exists σc such that

– 〈S; e[x := v]〉 ↪−→ σc, and

– σb ↪−→ σc.

We proceed by subcases, on the last rule in the derivation of 〈S; (λx. e) v〉 ↪−→ σb. By the operational
semantics, there are six possibilities: E-BETA/E-REFL, E-BETA/E-PARAPP, E-BETA/E-BETA, E-BETA/E-
APPERR-1, E-BETA/E-APPERR-2, and E-BETA/E-PARAPPERR.

– E-BETA/E-REFL:
Analogous to the E-REFL/E-BETA case, with σa and σb reversed.

– E-BETA/E-PARAPP:
Analogous to the E-PARAPP/E-BETA case, with σa and σb reversed.

– E-BETA/E-BETA:
In this case, by the operational semantics, σb = 〈S; e[x := v]〉. Since σa = σb = 〈S; e[x := v]〉, choose
σc = 〈S; e[x := v]〉. By E-REFL, both σa and σb step to σc, as we were required to show.

– E-BETA/E-APPERR-1:
For this case to occur, we would need to have 〈S; (λx. e)〉 ↪−→ error (from the premise of E-APPERR-1.
But (λx. e) is a value (and S 6= >S), so 〈S; (λx. e)〉 can only step to 〈S; (λx. e)〉, not error. Therefore,
this case cannot occur.

49

– E-BETA/E-APPERR-2:
For this case to occur, we would need to have 〈S; v〉 ↪−→ error (from the premise of E-APPERR-2. But
v is a value (and S 6= >S), so 〈S; v〉 can only step to 〈S; v〉, not error. Therefore, this case cannot occur.

– E-BETA/E-PARAPPERR:
For this case to occur, then by the premises of E-PARAPPERR, we would need to have 〈S; (λx. e)〉 step to
some configuration 〈S1; e′1〉 and to have 〈S; v〉 step to some configuration 〈S2; e′2〉, where S1tSS2 = >S .
But (λx. e) and v are values (and S 6= >S), so 〈S; (λx. e)〉 can only step to 〈S; (λx. e)〉 and 〈S; v〉 can
only step to 〈S; v〉. Therefore S1 = S2 = S, so S1 tS S2 = S 6= >S , and so this case cannot occur.

A.6.9 E-NEW

• E-NEW: σ = 〈S; new〉, and σa = 〈S[l 7→ ⊥]; l〉.
Given:

– 〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉, and

– 〈S; new〉 ↪−→ σb.

To show: There exists σc such that

– 〈S[l 7→ ⊥]; l〉 ↪−→ σc, and

– σb ↪−→ σc.

We proceed by subcases, on the last rule in the derivation of 〈S; new〉 ↪−→ σb. By the operational semantics,
there are two possibilities: E-NEW/E-REFL and E-NEW/E-NEW.

– E-NEW/E-REFL:
Analogous to the E-REFL/E-NEW case, with σa and σb reversed.

– E-NEW/E-NEW:
In this case, σb = 〈S[l′ 7→ ⊥]; l′〉.
To show: There exists σc such that

∗ 〈S[l 7→ ⊥]; l〉 ↪−→ σc, and
∗ 〈S[l′ 7→ ⊥]; l′〉 ↪−→ σc.

One of the following two possibilities must hold:

∗ l′ = l.
In this case, both 〈S[l 7→ ⊥]; l〉 and 〈S[l′ 7→ ⊥]; l′〉 step to 〈S[l 7→ ⊥]; l〉 by E-REFL. Therefore
σc = 〈S[l 7→ ⊥]; l〉.

∗ l′ 6= l.
In this case, dom(S[l 7→ ⊥])−dom(S) = {l}, and l′ /∈ dom(S[l 7→ ⊥]) (since, by the side condition
of E-NEW, l /∈ dom(S), and since l′ 6= l. Therefore, by Definition 8, 〈S[l 7→ ⊥]; l〉 is a safe renaming
of 〈S[l′ 7→ ⊥]; l′〉. Stepping both configurations by E-REFL, we have that σc = 〈S[l 7→ ⊥]; l〉 or a
safe renaming thereof. Therefore the case holds up to safe renamings of σc.

A.6.10 E-PUTVAL

• E-PUTVAL: σ = 〈S; put l {d1}〉, and σa = 〈S[l 7→ d1 t d2]; {}〉.
Given:

– 〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉, and

50

– 〈S; put l {d1}〉 ↪−→ σb.

To show: There exists σc such that

– 〈S[l 7→ d1 t d2]; {}〉 ↪−→ σc, and

– σb ↪−→ σc.

We proceed by subcases, on the last rule in the derivation of 〈S; put l {d1}〉 ↪−→ σb. By the operational
semantics, there are seven possibilities: E-PUTVAL/E-REFL, E-PUTVAL/E-PUT-1, E-PUTVAL/E-PUT-2, E-
PUTVAL/E-PUTVAL, E-PUTVAL/E-PUTERR-1, E-PUTVAL/E-PUTERR-2, and E-PUTVAL/E-PUTVALERR.

– E-PUTVAL/E-REFL:
Analogous to the E-REFL/E-PUTVAL case, with σa and σb reversed.

– E-PUTVAL/E-PUT-1:
Analogous to the E-PUT-1/E-PUTVAL case, with σa and σb reversed.

– E-PUTVAL/E-PUT-2:
Analogous to the E-PUT-2/E-PUTVAL case, with σa and σb reversed.

– E-PUTVAL/E-PUTVAL:
In this case, by the operational semantics, σb = 〈S[l 7→ d1 t d2]; {}〉. Since σa = σb = 〈S[l 7→ d1 t
d2]; {}〉, choose σc = 〈S[l 7→ d1 t d2]; {}〉. By E-REFL, both σa and σb step to σc, as we were required
to show.

– E-PUTVAL/E-PUTERR-1:
For this case to occur, we would need to have 〈S; l〉 ↪−→ error (from the premise of E-PUTERR-1. But l
is a value (and S 6= >S), so 〈S; l〉 can only step to 〈S; l〉, not error. Therefore, this case cannot occur.

– E-PUTVAL/E-PUTERR-2:
For this case to occur, we would need to have 〈S; {d1}〉 ↪−→ error (from the premise of E-PUTERR-1.
But {d1} is a value (and S 6= >S), so 〈S; {d1}〉 can only step to 〈S; {d2}〉, not error. Therefore, this case
cannot occur.

– E-PUTVAL/E-PUTVALERR:
For this case to occur, we would need to have d1td2 = > (from the last premise of E-PUTVALERR). But
we have that d1 t d2 6= > from the last premise of E-PUTVAL. Therefore, this case cannot occur.

A.6.11 E-GETVAL

• E-GETVAL: σ = 〈S; get l Q〉, and σa = 〈S; {d1}〉.
Given:

– 〈S; get l Q〉 ↪−→ 〈S; {d1}〉, and

– 〈S; get l Q〉 ↪−→ σb.

To show: There exists σc such that

– 〈S; {d1}〉 ↪−→ σc, and

– σb ↪−→ σc.

We proceed by subcases, on the last rule in the derivation of 〈S; get l Q〉 ↪−→ σb. By the operational semantics,
there are six possibilities: E-GETVAL/E-REFL, E-GETVAL/E-GET-1, E-GETVAL/E-GET-2, E-GETVAL/E-
GETVAL, E-GETVAL/E-GETERR-1, and E-GETVAL/E-GETERR-2.

51

– E-GETVAL/E-REFL:
Analogous to the E-REFL/E-GETVAL case, with σa and σb reversed.

– E-GETVAL/E-GET-1:
Analogous to the E-GET-1/E-GETVAL case, with σa and σb reversed.

– E-GETVAL/E-GET-2:
Analogous to the E-GET-2/E-GETVAL case, with σa and σb reversed.

– E-GETVAL/E-GETVAL:
In this case, by the operational semantics, σb = 〈S; {d1}〉. Since σa = σb = 〈S; {d1}〉, choose σc =
〈S; {d1}〉. By E-REFL, both σa and σb step to σc, as we were required to show.

– E-GETVAL/E-GETERR-1:
For this case to occur, we would need to have 〈S; l〉 ↪−→ error (from the premise of E-GETERR-1. But l
is a value (and S 6= >S), so 〈S; l〉 can only step to 〈S; l〉, not error. Therefore, this case cannot occur.

– E-GETVAL/E-GETERR-2:
For this case to occur, we would need to have 〈S; Q〉 ↪−→ error (from the premise of E-GETERR-2. But
Q is a value (and S 6= >S), so 〈S; Q〉 can only step to 〈S; Q〉, not error. Therefore, this case cannot occur.

A.6.12 E-CONVERTVAL

• E-CONVERTVAL: σ = 〈S; convert Q〉, and σa = 〈S; δ(Q)〉.
Given:

– 〈S; convert Q〉 ↪−→ 〈S; δ(Q)〉, and

– 〈S; convert Q〉 ↪−→ σb.

To show: There exists σc such that

– 〈S; δ(Q)〉 ↪−→ σc, and

– σb ↪−→ σc.

We proceed by subcases, on the last rule in the derivation of 〈S; convert Q〉 ↪−→ σb. By the operational seman-
tics, there are four possibilities: E-CONVERTVAL/E-REFL, E-CONVERTVAL/E-CONVERT, E-CONVERTVAL/E-
CONVERTVAL, and E-CONVERTVAL/E-CONVERTERR.

– E-CONVERTVAL/E-REFL:
Analogous to the E-REFL/E-CONVERTVAL case, with σa and σb reversed.

– E-CONVERTVAL/E-CONVERT:
Analogous to the E-CONVERT/E-CONVERTVAL case, with σa and σb reversed.

– E-CONVERTVAL/E-CONVERTVAL:
In this case, by the operational semantics, σb = 〈S; δ(Q)〉. Since σa = σb = 〈S; δ(Q)〉, choose σc =
〈S; δ(Q)〉. By E-REFL, both σa and σb step to σc, as we were required to show.

– E-CONVERTVAL/E-CONVERTERR:
For this case to occur, we would need to have 〈S; Q〉 ↪−→ error (from the premise of E-CONVERTERR.
But Q is a value (and S 6= >S), so 〈S; Q〉 can only step to 〈S; Q〉, not error. Therefore, this case cannot
occur.

52

A.6.13 E-REFLERR

• E-REFLERR: σ = error, and σa = error.

Given:

– error ↪−→ error, and

– error ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

For all subcases E-REFLERR/*, choose σc = error.

To show:

– error ↪−→ error, which is immediate from E-REFLERR, and

– σb ↪−→ error, which follows from the fact that error ↪−→ σb, so since error can only step to error,
σb = error.

A.6.14 E-APPERR-1

• E-APPERR-1: σ = 〈S; e1 e2〉, and σa = error.

Given:

– 〈S; e1 e2〉 ↪−→ error, and

– 〈S; e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are seven possibilities: E-APPERR-1/E-REFL, E-APPERR-1/E-PARAPP, E-APPERR-1/E-BETA,
E-APPERR-1/E-REFLERR, E-APPERR-1/E-APPERR-1, E-APPERR-1/E-APPERR-2, and E-APPERR-1/E-
PARAPPERR.

– E-APPERR-1/E-REFL:
Analogous to the E-REFL/E-APPERR-1 case, with σa and σb reversed.

– E-APPERR-1/E-PARAPP:
Analogous to the E-PARAPP/E-APPERR-1 case, with σa and σb reversed.

– E-APPERR-1/E-BETA:
Analogous to the E-BETA/E-APPERR-1 case, with σa and σb reversed.

– E-APPERR-1/E-REFLERR:
Analogous to the E-REFLERR/E-APPERR-1 case, with σa and σb reversed.

53

– E-APPERR-1/E-APPERR-1:
Choose σc = error. By E-APPERR-1, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-APPERR-1/E-APPERR-2:
Choose σc = error. By E-APPERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-APPERR-1/E-PARAPPERR:
Choose σc = error. By E-PARAPPERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.6.15 E-APPERR-2

• E-APPERR-2: σ = 〈S; e1 e2〉, and σa = error.

Given:

– 〈S; e1 e2〉 ↪−→ error, and

– 〈S; e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are seven possibilities: E-APPERR-2/E-REFL, E-APPERR-2/E-PARAPP, E-APPERR-2/E-BETA,
E-APPERR-2/E-REFLERR, E-APPERR-2/E-APPERR-1, E-APPERR-2/E-APPERR-2, and E-APPERR-2/E-
PARAPPERR.

– E-APPERR-2/E-REFL:
Analogous to the E-REFL/E-APPERR-2 case, with σa and σb reversed.

– E-APPERR-2/E-PARAPP:
Analogous to the E-PARAPP/E-APPERR-2 case, with σa and σb reversed.

– E-APPERR-2/E-BETA:
Analogous to the E-BETA/E-APPERR-2 case, with σa and σb reversed.

– E-APPERR-2/E-REFLERR:
Analogous to the E-REFLERR/E-APPERR-2 case, with σa and σb reversed.

– E-APPERR-2/E-APPERR-1:
Analogous to the E-APPERR-1/E-APPERR-2 case, with σa and σb reversed.

– E-APPERR-2/E-APPERR-2:
Choose σc = error. By E-APPERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-APPERR-2/E-PARAPPERR:
Choose σc = error. By E-PARAPPERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

54

A.6.16 E-PARAPPERR

• E-PARAPPERR: σ = 〈S; e1 e2〉, and σa = error.

Given:

– 〈S; e1 e2〉 ↪−→ error, and

– 〈S; e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are seven possibilities: E-PARAPPERR/E-REFL, E-PARAPPERR/E-PARAPP, E-PARAPPERR/E-
BETA, E-PARAPPERR/E-REFLERR, E-PARAPPERR/E-APPERR-1, E-PARAPPERR/E-APPERR-2, and E-
PARAPPERR/E-PARAPPERR.

– E-PARAPPERR/E-REFL:
Analogous to the E-REFL/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-PARAPP:
Analogous to the E-PARAPP/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-BETA:
Analogous to the E-BETA/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-REFLERR:
Analogous to the E-REFLERR/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-APPERR-1:
Analogous to the E-APPERR-1/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-APPERR-2:
Analogous to the E-APPERR-2/E-PARAPPERR case, with σa and σb reversed.

– E-PARAPPERR/E-PARAPPERR:
Choose σc = error. By E-PARAPPERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.6.17 E-PUTERR-1

• E-PUTERR-1: σ = 〈S; put e1 e2〉, and σa = error.

Given:

– 〈S; put e1 e2〉 ↪−→ error, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

55

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are eight possibilities: E-PUTERR-1/E-REFL, E-PUTERR-1/E-PUT-1, E-PUTERR-1/E-PUT-2, E-
PUTERR-1/E-PUTVAL, E-PUTERR-1/E-REFLERR, E-PUTERR-1/E-PUTERR-1, E-PUTERR-1/E-PUTERR-
2, and E-PUTERR-1/E-PUTVALERR.

– E-PUTERR-1/E-REFL:
Analogous to the E-REFL/E-PUTERR-1 case, with σa and σb reversed.

– E-PUTERR-1/E-PUT-1:
Analogous to the E-PUT-1/E-PUTERR-1 case, with σa and σb reversed.

– E-PUTERR-1/E-PUT-2:
Analogous to the E-PUT-2/E-PUTERR-1 case, with σa and σb reversed.

– E-PUTERR-1/E-PUTVAL:
Analogous to the E-PUTVAL/E-PUTERR-1 case, with σa and σb reversed.

– E-PUTERR-1/E-REFLERR:
Analogous to the E-REFLERR/E-PUTERR-1 case, with σa and σb reversed.

– E-PUTERR-1/E-PUTERR-1:
Choose σc = error. By E-PUTERR-1, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-PUTERR-1/E-PUTERR-2:
Choose σc = error. By E-PUTERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-PUTERR-1/E-PUTVALERR:
Choose σc = error. By E-PUTVALERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.6.18 E-PUTERR-2

• E-PUTERR-2: σ = 〈S; put e1 e2〉, and σa = error.

Given:

– 〈S; put e1 e2〉 ↪−→ error, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are eight possibilities: E-PUTERR-2/E-REFL, E-PUTERR-2/E-PUT-1, E-PUTERR-2/E-PUT-2, E-
PUTERR-2/E-PUTVAL, E-PUTERR-2/E-REFLERR, E-PUTERR-2/E-PUTERR-1, E-PUTERR-2/E-PUTERR-
2, and E-PUTERR-2/E-PUTVALERR.

56

– E-PUTERR-2/E-REFL:
Analogous to the E-REFL/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-PUT-1:
Analogous to the E-PUT-1/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-PUT-2:
Analogous to the E-PUT-2/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-PUTVAL:
Analogous to the E-PUTVAL/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-REFLERR:
Analogous to the E-REFLERR/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-PUTERR-1:
Analogous to the E-PUTERR-1/E-PUTERR-2 case, with σa and σb reversed.

– E-PUTERR-2/E-PUTERR-2:
Choose σc = error. By E-PUTERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-PUTERR-2/E-PUTVALERR:
Choose σc = error. By E-PUTVALERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.6.19 E-GETERR-1

• E-GETERR-1: σ = 〈S; put e1 e2〉, and σa = error.

Given:

– 〈S; put e1 e2〉 ↪−→ error, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational se-
mantics, there are seven possibilities: E-GETERR-1/E-REFL, E-GETERR-1/E-GET-1, E-GETERR-1/E-GET-
2, E-GETERR-1/E-GETVAL, E-GETERR-1/E-REFLERR, E-GETERR-1/E-GETERR-1, and E-GETERR-1/E-
GETERR-2.

– E-GETERR-1/E-REFL:
Analogous to the E-REFL/E-GETERR-1 case, with σa and σb reversed.

– E-GETERR-1/E-GET-1:
Analogous to the E-GET-1/E-GETERR-1 case, with σa and σb reversed.

– E-GETERR-1/E-GET-2:
Analogous to the E-GET-2/E-GETERR-1 case, with σa and σb reversed.

– E-GETERR-1/E-GETVAL:
Analogous to the E-GETVAL/E-GETERR-1 case, with σa and σb reversed.

57

– E-GETERR-1/E-REFLERR:
Analogous to the E-REFLERR/E-GETERR-1 case, with σa and σb reversed.

– E-GETERR-1/E-GETERR-1:
Choose σc = error. By E-GETERR-1, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

– E-GETERR-1/E-GETERR-2:
Choose σc = error. By E-GETERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.6.20 E-GETERR-2

• E-GETERR-2: σ = 〈S; get e1 e2〉, and σa = error.

Given:

– 〈S; get e1 e2〉 ↪−→ error, and

– 〈S; get e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; get e1 e2〉 ↪−→ σb. By the operational se-
mantics, there are seven possibilities: E-GETERR-2/E-REFL, E-GETERR-2/E-GET-1, E-GETERR-2/E-GET-
2, E-GETERR-2/E-GETVAL, E-GETERR-2/E-REFLERR, E-GETERR-2/E-GETERR-1, and E-GETERR-2/E-
GETERR-2.

– E-GETERR-2/E-REFL:
Analogous to the E-REFL/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-GET-1:
Analogous to the E-GET-1/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-GET-2:
Analogous to the E-GET-2/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-GETVAL:
Analogous to the E-GETVAL/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-REFLERR:
Analogous to the E-REFLERR/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-GETERR-1:
Analogous to the E-GETERR-1/E-GETERR-2 case, with σa and σb reversed.

– E-GETERR-2/E-GETERR-2:
Choose σc = error. By E-GETERR-2, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

58

A.6.21 E-CONVERTERR

• E-CONVERTERR: σ = 〈S; convert e〉, and σa = error.

Given:

– 〈S; convert e〉 ↪−→ error, and

– 〈S; convert e〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; convert e〉 ↪−→ σb. By the operational seman-
tics, there are five possibilities: E-CONVERTERR/E-REFL, E-CONVERTERR/E-CONVERT, E-CONVERTERR/E-
CONVERTVAL, E-CONVERTERR/E-REFLERR, and E-CONVERTERR/E-CONVERTERR.

– E-CONVERTERR/E-REFL:
Analogous to the E-REFL/E-CONVERTERR case, with σa and σb reversed.

– E-CONVERTERR/E-CONVERT:
Analogous to the E-CONVERT/E-CONVERTERR case, with σa and σb reversed.

– E-CONVERTERR/E-CONVERTVAL:
Analogous to the E-CONVERTVAL/E-CONVERTERR case, with σa and σb reversed.

– E-CONVERTERR/E-REFLERR:
Analogous to the E-REFLERR/E-CONVERTERR case, with σa and σb reversed.

– E-CONVERTERR/E-CONVERTERR:
Choose σc = error. By E-CONVERTERR, σb = error, so by E-REFLERR, both σa and σb step to error,
as desired.

A.6.22 E-PUTVALERR

• E-PUTVALERR: σ = 〈S; put e1 e2〉, and σa = error.

Given:

– 〈S; put e1 e2〉 ↪−→ error, and

– 〈S; put e1 e2〉 ↪−→ σb.

To show: There exists σc such that

– error ↪−→ σc, and

– σb ↪−→ σc.

Choose σc = error. We have immediately that error ↪−→ error by E-REFLERR, so it remains to show that
σb ↪−→ error.

We proceed by subcases, on the last rule in the derivation of 〈S; put e1 e2〉 ↪−→ σb. By the operational seman-
tics, there are eight possibilities: E-PUTVALERR/E-REFL, E-PUTVALERR/E-PUT-1, E-PUTVALERR/E-PUT-
2, E-PUTVALERR/E-PUTVAL, E-PUTVALERR/E-REFLERR, E-PUTVALERR/E-PUTVALERR, E-PUTVALERR/E-
PUTERR-2, and E-PUTVALERR/E-PUTVALERR.

59

– E-PUTVALERR/E-REFL:
Analogous to the E-REFL/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUT-1:
Analogous to the E-PUT-1/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUT-2:
Analogous to the E-PUT-2/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUTVAL:
Analogous to the E-PUTVAL/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-REFLERR:
Analogous to the E-REFLERR/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUTERR-1:
Analogous to the E-PUTERR-1/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUTERR-2:
Analogous to the E-PUTERR-2/E-PUTVALERR case, with σa and σb reversed.

– E-PUTVALERR/E-PUTVALERR:
Choose σc = error. By E-PUTVALERR, σb = error, so by E-REFLERR, both σa and σb step to error, as
desired.

A.7 Strong One-Sided Confluence
Lemma 7 (Strong One-Sided Confluence). If σ ↪−→ σ′ and σ ↪−→m σ′′, where 1 ≤ m, then there exist σc, i, j such
that σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ 1.

Proof. We proceed by induction on m. In the base case of m = 1, the result is immediate from Corollary 1. For the
induction step, suppose σ ↪−→m σ′′ ↪−→ σ′′′ and suppose the lemma holds for m. From the induction hypothesis, we
have that there exist σ′c, i

′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ σ′c and i′ ≤ m and j′ ≤ 1. We have two cases:

• If j′ = 0, then σ′′ = σ′c. We can then choose σc = σ′′′ and i = i′ + 1 and j = 0.

• If j′ = 1, then from σ′′ ↪−→ σ′′′ and σ′′ ↪−→j′ σ′c and Corollary 1, we have σ′′c and i′′ and j′′ such that
σ′′′ ↪−→i′′ σ′′c and σ′c ↪−→j′′ σ′′c and i′′ ≤ 1 and j′′ ≤ 1. So we also have σ′ ↪−→i′ σ′c ↪−→j′′ σ′′c . In summary,
we pick σc = σ′′c and i = i′ + j′′ and j = i′′, which is sufficient because i = i′ + j′′ ≤ m+ 1 and j = i′′ ≤ 1.

A.8 Strong Confluence
Lemma 8 (Strong Confluence). If σ ↪−→n σ′ and σ ↪−→m σ′′, where 1 ≤ n and 1 ≤ m, then there exist σc, i, j such
that σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ n.

Proof. We proceed by induction on n. In the base case of n = 1, the result is immediate from Lemma 7. For the
induction step, suppose σ ↪−→n σ′ ↪−→ σ′′′ and suppose the lemma holds for m. From the induction hypothesis, we
have that there exist σ′c, i

′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ σ′c and i′ ≤ m and j′ ≤ n. We have two cases:

• If i′ = 0, then σ′ = σ′c. We can then choose σc = σ′′′ and i = 0 and j = j′ + 1.

• If i′ ≥ 1, then from σ′ ↪−→ σ′′′ and σ′ ↪−→i′ σ′c and Lemma 7, we have σ′′c and i′′ and j′′ such that σ′′′ ↪−→i′′ σ′′c
and σ′c ↪−→j′′ σ′′c and i′′ ≤ i′ and j′′ ≤ 1. So we also have σ′′ ↪−→j′ σ′c ↪−→j′′ σ′′c . In summary, we pick
σc = σ′′c and i = i′′ and j = j′ + j′′, which is sufficient because i = i′′ ≤ i′ ≤ m and j = j′ + j′′ ≤ n+ 1.

60

	Introduction
	Domains, Stores, and Determinism
	Domains
	Stores
	Communication Primitives
	Monotonic Store Growth and Determinism

	LVar: Syntax and Semantics
	Fork-Join Parallelism
	Programming with put and get
	Converting from Threshold Sets to -terms and Back

	Proof of Determinism for LVar
	Framing and Renaming
	Renaming Lemmas
	Supporting Lemmas
	Diamond Lemma
	Confluence Lemmas and Determinism

	Modeling Other Deterministic Parallel Models
	Concurrent Collections
	The monad-par Haskell library
	Kahn Process Networks

	Safe, Limited Nondeterminism
	Syntactic Sugar for Counting

	Related Work
	Conclusion
	 Appendix
	Proof of Determinism
	Renaming of Locations During a Step
	E-Refl
	E-ParApp
	E-Put-1
	E-Put-2
	E-PutVal
	E-Get-1
	E-Get-2
	E-GetVal
	E-Convert
	E-ConvertVal
	E-Beta
	E-New

	Safety of rename
	Independence
	Clash
	Error Preservation
	Diamond
	E-Refl
	E-ParApp
	E-Put-1
	E-Put-2
	E-Get-1
	E-Get-2
	E-Convert
	E-Beta
	E-New
	E-PutVal
	E-GetVal
	E-ConvertVal
	E-ReflErr
	E-AppErr-1
	E-AppErr-2
	E-ParAppErr
	E-PutErr-1
	E-PutErr-2
	E-GetErr-1
	E-GetErr-2
	E-ConvertErr
	E-PutValErr

	Strong One-Sided Confluence
	Strong Confluence

