
PROGRAMMING AT A HIGH-
LEVEL ON MULTI-CORES

What is a compiler to do?
Arun Chauhan

Indiana University

Arun Chauhan, Indiana University HP Research, July 29, 2008

The Multi-core crisis

• Physical limitations
★ Transistor sizes
★ Clock skew

• Power consumption
• “Moore’s Law”

Arun Chauhan, Indiana University HP Research, July 29, 2008

Software Productivity: The Real Crisis

• New software development
★ Programming models
★ Programming techniques
★ Programming languages

• Porting legacy code
★ Starting point: sequential or parallel?
★ Port optimized code
★ Source vs binary

Arun Chauhan, Indiana University HP Research, July 29, 2008

Possible Solutions

• Novel languages
★ DARPA HPCS

• Extending traditional languages
★ Co-Array Fortran
★ UPC

• Libraries
★ ScalaPACK, MATAB*P

• High-level “scripting” languages

Arun Chauhan, Indiana University HP Research, July 29, 2008

High-Level Scripting Languages

• Available and in use
• Modern

★ Support modern software engineering practices

• More powerful and general than libraries
• Programmers available

Arun Chauhan, Indiana University HP Research, July 29, 2008

High-Level Scripting Languages

• Available and in use
• Modern

★ Support modern software engineering practices

• More powerful and general than libraries
• Programmers available

Can they solve the multi-core programming crisis?

Arun Chauhan, Indiana University HP Research, July 29, 2008

m = f(1).*(n(c,c,c)) + ...
f(2).*(n(c,c,u)+n(c,c,d)+n(c,u,c)+n(c,d,c)+n(u,c,c)+n(d,c,c)) + ...
f(3).*(n(c,u,u)+n(c,u,d)+n(c,d,u)+n(c,d,d)+n(u,c,u)+n(u,c,d)+ ...

 n(d,c,u)+n(d,c,d)+n(u,u,c)+n(u,d,c)+n(d,u,c)+n(d,d,c)) + ...
f(4).*(n(u,u,u)+n(u,u,d)+n(u,d,u)+n(u,d,d)+n(d,u,u)+n(d,u,d)+ ...

n(d,d,u)+n(d,d,d));

Example: NASMG in MATLAB

Arun Chauhan, Indiana University HP Research, July 29, 2008

C ore 2 D uo P entium IV
0

1

2

3

4

5

6

7

8

9
S

pe
ed

up
 o

ve
r

M
A

T
LA

B
 in

te
rp

re
te

r

E ffects of M emory O ptimizations on N AS M G

Loop fusion
Loop fusion + subscript opt.

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Unnecessary

• Most of the computation takes place in libraries

• Interpretive overheads insignificant with byte-code

• Just-in-time compilation does a good job

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Unnecessary

• Most of the computation takes place in libraries
★ True for some applications, but not for many others
★ Parallelization on heterogeneous platforms

• Interpretive overheads insignificant with byte-code

• Just-in-time compilation does a good job

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Unnecessary

• Most of the computation takes place in libraries
★ True for some applications, but not for many others
★ Parallelization on heterogeneous platforms

• Interpretive overheads insignificant with byte-code

• Just-in-time compilation does a good job

★ Byte-code does not eliminate library call overheads

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Unnecessary

• Most of the computation takes place in libraries
★ True for some applications, but not for many others
★ Parallelization on heterogeneous platforms

• Interpretive overheads insignificant with byte-code

• Just-in-time compilation does a good job

★ Byte-code does not eliminate library call overheads

★ JIT compiler operates at byte-code level, missing many
opportunities at high-level

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Necessary

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation is Necessary

Interprocedural Optimization

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

★ Type-based specialization can reduce or eliminate function
call overheads

Arun Chauhan, Indiana University HP Research, July 29, 2008

Specialization: ARPACK Dense Matrix Kernel

Fig. 10. LibGen versus hand-coded ARPACK
on dense symmetric matrices.

Fig. 11. LibGen versus hand-coded ARPACK
on sparse symmetric matrices.

“ARPACK” represent the running times for the hand-coded
Fortran, while the bars labeled “LibGen” are for the Fortran
versions generated by our system. The LibGen-generated
versions perform slightly better than ARPACK because the
hand translation introduced overheads in the library interface
that are not present in the original MATLAB version.

These results make it clear that, with the complete Palomar
framework, we should be able to make hand translation com-
pletely unnecessary. However, Palomar would also make it
possible to produce a script compiler that would serve as an
integration system for the library: a kind of component in-
tegration system. The result would be a powerful tool that
could be applied to libraries in many other domains. The use
of Palomar as a component integration system will be dis-
cussed in Section V-E.

C. Computationally Intensive Statistics

Computationally intensive statistical methods, such as
Bayesian analysis, are required for many emerging prob-
lems; for instance, the analysis of very large data sets. For
many such analyses, a new statistical application specifying
the precise statistical model and computation required
must be developed. S is the language preferred by many
statisticians for developing new statistical models and
methodologies, partly because it includes native support
for vector and matrix data and operations, and intrinsic
high-level, complex statistical operations. S is also popular

because there is a very large, widely available collection of
external libraries and packages, many written in S itself,
for computing an extensive range of complex statistical
functions. Consequently, S greatly facilitates the rapid de-
velopment of new statistical models and methodologies.

For computation-intensive applications, however, S pro-
grams are far too slow for direct use. When presented with
a computation-intensive problem, many statisticians who
prefer S nevertheless abandon it for a lower level language,
such as C or Fortran, that is known to be more efficient. A
substantial drawback of this approach is that while a newly
conceived statistical method is being transformed into a
program, considerable time passes before even a preliminary
numerical evaluation of the new method can occur. Another
common approach is to develop a prototype in S and then
rewrite, or employ professional programmers to rewrite, the
S programs in an efficient, low-level language. As well as
being extremely time consuming, this rewriting step intro-
duces new possibilities for error. Both approaches require
staff versed in statistics, programming, and often high-per-
formance computing. Thus, there is no ideal language in
which to rapidly design, prototype, and perform full-scale
evaluation of computation-intensive statistical methods,
creating a fundamental bottleneck retarding the ability of
statisticians to solve many emerging statistical problems.

For many applications, time to solution is critical. For
instance, before a trial of a new cancer drug can begin,
cancer researchers must conduct an experiment to assess the
efficacy of the treatment and to maximize the accuracy of
estimation of confidence intervals for the relevant param-
eters associated with the trial’s results. These experiments
must be designed to minimize the risks and maximize the
benefits to all individuals participating in the trial. Since each
trial schema is different, a new experimental design must
be created and evaluated for each trial. Usually the exact
efficacy for specific cohorts undergoing the new treatment
is unknown, so extensive simulations of the experimental
design must be used to determine the design’s operating
characteristics under different assumptions about the new
treatment’s actual efficacy. These operating characteristics
can then be used to select the optimal design. Similarly,
new methodologies [25], [26], [59], [60], [61], such as
the analysis of gene expression microarray data and the
inclusion of such data into a clinical trial, must also often
be evaluated by extensive simulation. Clearly, it is highly
desirable to obtain the results of these computation-intensive
simulations as quickly as possible, to enable new clinical
trials to commence as soon as possible.

Currently, our collaborators at the M. D. Anderson
Cancer Center—K.-A. Do, P. Mueller, and P. Thall—de-
velop models of new experimental trial designs and new
statistical methodologies in S and employ programmers to
rewrite the S programs in a low-level language. As well as
considerably delaying the commencement of new trials, this
process also effectively excludes, for all except very small
trials, the possibility of adaptive designs in which interim
results can be used to guide subsequent redesigns in the
latter part of a trial.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 403

Arun Chauhan, Indiana University HP Research, July 29, 2008

Specialization: ARPACK Sparse Matrix Kernel

Fig. 10. LibGen versus hand-coded ARPACK
on dense symmetric matrices.

Fig. 11. LibGen versus hand-coded ARPACK
on sparse symmetric matrices.

“ARPACK” represent the running times for the hand-coded
Fortran, while the bars labeled “LibGen” are for the Fortran
versions generated by our system. The LibGen-generated
versions perform slightly better than ARPACK because the
hand translation introduced overheads in the library interface
that are not present in the original MATLAB version.

These results make it clear that, with the complete Palomar
framework, we should be able to make hand translation com-
pletely unnecessary. However, Palomar would also make it
possible to produce a script compiler that would serve as an
integration system for the library: a kind of component in-
tegration system. The result would be a powerful tool that
could be applied to libraries in many other domains. The use
of Palomar as a component integration system will be dis-
cussed in Section V-E.

C. Computationally Intensive Statistics

Computationally intensive statistical methods, such as
Bayesian analysis, are required for many emerging prob-
lems; for instance, the analysis of very large data sets. For
many such analyses, a new statistical application specifying
the precise statistical model and computation required
must be developed. S is the language preferred by many
statisticians for developing new statistical models and
methodologies, partly because it includes native support
for vector and matrix data and operations, and intrinsic
high-level, complex statistical operations. S is also popular

because there is a very large, widely available collection of
external libraries and packages, many written in S itself,
for computing an extensive range of complex statistical
functions. Consequently, S greatly facilitates the rapid de-
velopment of new statistical models and methodologies.

For computation-intensive applications, however, S pro-
grams are far too slow for direct use. When presented with
a computation-intensive problem, many statisticians who
prefer S nevertheless abandon it for a lower level language,
such as C or Fortran, that is known to be more efficient. A
substantial drawback of this approach is that while a newly
conceived statistical method is being transformed into a
program, considerable time passes before even a preliminary
numerical evaluation of the new method can occur. Another
common approach is to develop a prototype in S and then
rewrite, or employ professional programmers to rewrite, the
S programs in an efficient, low-level language. As well as
being extremely time consuming, this rewriting step intro-
duces new possibilities for error. Both approaches require
staff versed in statistics, programming, and often high-per-
formance computing. Thus, there is no ideal language in
which to rapidly design, prototype, and perform full-scale
evaluation of computation-intensive statistical methods,
creating a fundamental bottleneck retarding the ability of
statisticians to solve many emerging statistical problems.

For many applications, time to solution is critical. For
instance, before a trial of a new cancer drug can begin,
cancer researchers must conduct an experiment to assess the
efficacy of the treatment and to maximize the accuracy of
estimation of confidence intervals for the relevant param-
eters associated with the trial’s results. These experiments
must be designed to minimize the risks and maximize the
benefits to all individuals participating in the trial. Since each
trial schema is different, a new experimental design must
be created and evaluated for each trial. Usually the exact
efficacy for specific cohorts undergoing the new treatment
is unknown, so extensive simulations of the experimental
design must be used to determine the design’s operating
characteristics under different assumptions about the new
treatment’s actual efficacy. These operating characteristics
can then be used to select the optimal design. Similarly,
new methodologies [25], [26], [59], [60], [61], such as
the analysis of gene expression microarray data and the
inclusion of such data into a clinical trial, must also often
be evaluated by extensive simulation. Clearly, it is highly
desirable to obtain the results of these computation-intensive
simulations as quickly as possible, to enable new clinical
trials to commence as soon as possible.

Currently, our collaborators at the M. D. Anderson
Cancer Center—K.-A. Do, P. Mueller, and P. Thall—de-
velop models of new experimental trial designs and new
statistical methodologies in S and employ programmers to
rewrite the S programs in a low-level language. As well as
considerably delaying the commencement of new trials, this
process also effectively excludes, for all except very small
trials, the possibility of adaptive designs in which interim
results can be used to guide subsequent redesigns in the
latter part of a trial.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 403

Arun Chauhan, Indiana University HP Research, July 29, 2008

Type-based Specialization: DSP

!"#$!%&'($))*+,- !./$01232# &4456$%7861977:$.;$**<+,-

=

>

)

;

?

*

<

@

A

=B

==

=>

=)

=;

=?
C2
D
6
$E
F
6
G
7
#
H
F
I

JK:6FL$MN46!F46G2K52-6H$O0'M'&PQF+&MR&9

+&MR&9$*ST
+&MR&9$?S)
O0'M'&P

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

★ Sequences of operations can be implemented efficiently

Arun Chauhan, Indiana University HP Research, July 29, 2008

Library Function Selection: Vector Outer-product

2 3 4 5 6 7 8 9 10 11 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Vector size (thousands of double elements)

tim
e
(D

G
E

M
M

)
/
tim

e
(D

G
E

R
)

Implementing Vector Outer Product (x’*y + A)

AMD Opteron
PowerPC 970 (Apple G5)
Intel Xeon
Intel Itanium 2

Arun Chauhan, Indiana University HP Research, July 29, 2008

Library Function Selection: Scaled Vector Add

0 2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Vector size (millions of double elements)

tim
e

(D
A

X
P

Y
+

D
S

C
A

L
)

/
tim

e
(D

G
E

M
M

)
Implementing Scaled Vector Addition (alpha*x + beta*y)

AMD Opteron

PowerPC 970 (Apple G5)

Intel Xeon

Intel Itanium 2

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

Arun Chauhan, Indiana University HP Research, July 29, 2008

Benefits of Source-level Compilation

• Specialization
★ Type-based specialization can reduce or eliminate function

call overheads

• Library function selection
★ Sequences of operations can be implemented efficiently

• Memory footprint reduction
★ Intermediate arrays and array computations can be

eliminated

• Parallelization
★ Macro-operations provide naturally coarse granularity

★ Intermediate arrays and array computations can be
eliminated

Arun Chauhan, Indiana University HP Research, July 29, 2008

Temporary Arrays: Matrix Expressions

A+A∗B′ + 2∗(A+B)′∗A + (x+y)∗x′

A + A∗B′ + 2∗A′∗A + 2∗B′∗A + x∗x′ + y∗x′

OR

Arun Chauhan, Indiana University HP Research, July 29, 2008

Parenthesized vs Distributed

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Vector size (thousands of double elements)

tim
e
(p

a
re

n
th

e
si

ze
d
)

/
tim

e
(d

is
tr

ib
u
te

d
)

Implementing A Big Expression

AMD Opteron
PowerPC 970 (Apple G5)
Intel Xeon
Intel Itanium 2

Arun Chauhan, Indiana University HP Research, July 29, 2008

Absolute Time Difference

5 6 7 8 9 10 11 12 13 14
−600

−400

−200

0

200

400

600

800

1000

1200

1400
tim

e
(d

is
tr

ib
u
te

d
)
−

 t
im

e
(p

a
re

n
th

e
si

ze
d
)

in
 s

e
co

n
d
s

Vector size (thousands of double elements)

Absolute Time Differences on Itanium 2

Arun Chauhan, Indiana University HP Research, July 29, 2008

Temporary Arrays: Matrix Expressions

A+A∗B′ + 2∗(A+B)′∗A + (x+y)∗x′

A + A∗B′ + 2∗A′∗A + 2∗B′∗A + x∗x′ + y∗x′

OR

Arun Chauhan, Indiana University HP Research, July 29, 2008

Temporary Arrays: Matrix Expressions

A+A∗B′ + 2∗(A+B)′∗A + (x+y)∗x′

A + A∗B′ + 2∗A′∗A + 2∗B′∗A + x∗x′ + y∗x′

copy(A,tmp0);
gemm(1,A,B,1,tmp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);
copy(x,tmp1);
axpy(1,y,1,tmp1);
ger(1,tmp1,x,tmp0);

copy(A,tmp0);
gemm(1,A,B,1,tmp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);

Arun Chauhan, Indiana University HP Research, July 29, 2008

Function Selection Algorithm

defined in a φ-function then its value could be defined in mul-
tiple ways depending on the control-flow. If any operand of
a candidate operation comes from a φ-function, the control-
flow structure causing the φ-function is replicated around the
statement involving the candidate operation and the algorithm
recursively invoked on the new construct. Figure 4(b) outlines
the changes that must be made to the text that appears on grey
background in Figure 4(a) to get the final algorithm and Fig-
ure 5 illustrates it with an example.

algorithm basic-block-function-selector
inputs: P = Octave source code (as AST)

S = SSA graph of P
L = target library

outputs: R = Modified version of P with operations
mapped to the function calls in L
whenever possible

set R to an empty AST
for each simple statement, s, in P, do
if (s does not have an operation implemented by L)

add s unchanged to R
else

let ⊗ be the operation in s
let ω be the optimal choice of function in L

implementing ⊗ based on the current context
if (ω is a multi-op function and

⊗ is a candidate operation)
for each operand u

let d be the statement defining u, obtained from S

if (d can be subsumed in ω)
add the operands of d to ω

endif
endfor

endif
add the call to ω to R

endif
endfor

(a) Function selector for basic blocks.

let d be the statement defining u, obtained from S
if (d is defined by a φ-function and

the φ-function has no incoming back-edges)
replicate s into the control structure for φ (see Figure 5)
rename the left hand sides of s uniquely
insert a φ-function at the end of the new construct
call function-selector on the new construct

else if (d can be subsumed in ω)
add the operands of d to ω

endif

(b) Changes to the basic-block version to obtain the global function
selector.

Figure 4. The function-selector algorithm.

The global algorithm follows the SSA graph and is linear in
the size of the SSA graph and the source program. However,

each candidate operation can lead to replication. The number
of times a statement is replicated is bounded by the arity of the
multi-op library function being considered. In the worst case
each operand, a, for a candidate operation could potentially
come from a φ-function, φa, causing replication of the state-
ment s by a factor of |φa|, the number of arguments to φa.
Therefore, the total time to process a statement with candi-
date operation is bounded by

∏
a∈operands(s) |φa|. These steps

are repeated for each simple statement, s, in the program (in-
cluding those enclosed within compound statements), result-
ing in the total algorithmic complexity given by the following
expression:

∑

s∈simple-stmt(P)

∏

a∈operands(s)

|φa| (3)

There is one final factor, which is the result of consider-
ing all permutations of the operands for forward substitution
(assuming the operation is commutative, as is the case with
many linear algebra operations). Fortunately, this only results
in a small constant factor in most cases. The BLAS routine
gemm, which has the highest arity, has six operands, resulting
in an upper limit of 128 on the factor. However, only a small
fraction of those 128 permutations are viable.

Notice that cascaded code replication, caused by nested re-
cursive calls, is avoided as long as a multi-op function is it-
self not a candidate for absorption into another multi-op func-
tion. The above expression for time complexity looks large,
but is really almost always linear in the size of the program
for two reasons: The in-degree of φ-functions is bounded by
a small constant for structured flow graphs such as those en-
countered in Octave programs, and the SSA graphs are usu-
ally quite sparse [6]. In all our experiments the running time
of the algorithm was insignificant, and often immeasurably
small, relative to the running times of the applications.

6. Experimental Evaluation

We evaluated the algorithm on five different linear alge-
bra application kernels written in Octave, on three different
platforms. Wherever applicable, the programs were compiled
to 64-bit binaries. Vendor-optimized compilers and BLAS li-
braries were used on all platforms. All compilers were in-
voked with the -O3 optimization flag. All test programs were
written in C. Timing was captured by surrounding the BLAS
routines with gettimeofday calls. Code outside the main
loop was not included in the timing measurement, because it
contributed insignificantly to the total running time. Timing
results were obtained from 100 runs using arithmetic mean,
which was not significantly different from the median. Fig-
ure 6 compares the performance with straightforward transla-
tion that performs no forward substitution, but does minimize
array allocation and deallocation across loop iterations by re-
using space whenever possible. The graphs are plotted for the
entire range of data sizes that could fit in memory, but the data
sizes have been normalized to bring out the trends clearly.

Arun Chauhan, Indiana University HP Research, July 29, 2008

MEMORY BEHAVIOR MODELING

Arun Chauhan, Indiana University HP Research, July 29, 2008

Motivation

The traditional theoretical approach to analysis involves
counting basic operations performed on an abstract
computer. These operations are generic abstractions of
CPU instructions, each assumed to have some unit cost.
However, on modern architectures, instructions have
varying costs; in particular, a memory access can be
several orders of magnitude more time consuming than
any single machine instruction, depending on where the
operands are located. New abstract models are needed to
describe these new types of costs.

Catherine C. McGeoch,
Experimental Algorithmics,

Communications of the ACM Volume 50, Number 11 (2007), Pages 27-31

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse Distance (courtesy: Chen Ding @ Rochester)

long

• Reuse distance of an access to data d

• the volume of data between this and
the previous access to d

• Reuse signature of an execution

• the distribution of all reuse distances

• gives the miss rate of fully
associative cache of all sizes

a b c a a c b

2

Reuse Distance

Mattson, Gecsei,
Slutz, Traiger
IBM Systems

Journal, vol. 9(2),

1970, pp. 78-117

0

50

100

0 1 2 3

!
 r

ef
er

en
ce

s

" " " 2 0 1

Arun Chauhan, Indiana University HP Research, July 29, 2008

Source-level Reuse Distance

The source-level reuse distance between
two memory references (to the same location)
is the volume of the source-level data accessed
between the two memory references.

x = a + b;
c = a + d[i]*100;
y = x;

Distance = 6 = Five variables (a, b, c, d, i) + one constant (100)

Arun Chauhan, Indiana University HP Research, July 29, 2008

Complex Expressions
C = x + foo(i,j)*B[i+j,10];
D = bar(i,j) + x + y;

t_1 = i + j;
t_2 = foo(i,j);
t_3 = t_2 * B[t_1, 10];
C = x + t_3;
t_4 = bar(i, j);
t_5 = t_4 + x;
D = t_5 + y;

⬇

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse from Dependence Information

• Dependence for code transformations
★ Between two references to the same memory location
★ One of the references is a write

• Dependence for reuse: drop the write requirement
★ True dependence (δ)
★ Anti-dependence (δ)
★ Output dependence (δ)
★ Input dependence (δ)

-1

o

i

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse within a Simple Statement

[x, u, x] = s func(u, y, w, w)

dist = 0 dist = 0

dist = S(s func, . . .)

Figure 2. Three cases of reuses within a single
s-statement.

Notice that self-loops are also possible due to loop-
carried dependences. Henceforth, we will loosely use
the term dependence graph to always refer to an en-
hanced data dependence multidigraph that includes in-
put dependences. Even though edges run between refer-
ence points we will sometimes find it more convenient
to pretend that the edges run between statements.

A single s-function call may also have reuses. For
instance, multiple input or output arguments with the
same name. There are three cases for a function f with
input arguments I f and output arguments O f to have a
repeated argument x.
x ∈ I f , x ∈ I f ⇒ reuse distance = 0;
x ∈ O f , x ∈ O f ⇒ reuse distance = 0; and
x ∈ I f , x ∈ O f ⇒ reuse distance = S(f , I f ,O f ,τI f ,τO f)

(as defined in Section 3.3).
Figure 2 illustrates the three cases.

Finally, the reference points in each s-function will
be ordered as all the input arguments left-to-right fol-
lowed by all the output arguments left-to-right. Ac-
cesses to the input arguments clearly comes before ac-
cesses to output arguments. However, the ordering of
input and output arguments by themselves is only for
convenience. A later section will illustrate how this or-
dering can be changed to refine the analysis.

To compute the source-level reuse distance, Rp1,p2
for all pairs of reference points p1 and p2 within a basic
block, we need only examine the edges in the depen-
dence graph for the basic block. Since edges in the de-
pendence graph exactly capture references to the same
memory location(s), the reference point pairs connected
by the edges are exactly the reference pairs of interest.
In fact, only a subset of the edges are relevant. Consider
a sequence of statements A; B; C. If A→ B, B→C,
and A→C are dependence edges pertaining to the same
memory reference then A→C does not lead to a reuse
distance computation. Figure 3 outlines an algorithm to
compute R values from a given dependence graph for a
basic block, B.

To count the number of unique memory accesses
between any two reference points, p1 and p2, the al-
gorithm works by counting all the intermediate refer-

Algorithm Compute R simple
Input: basic block B,

dependence graph D restricted to B
Output: Rp1.p2 ∀ pairs of ref. points p1 and p2 in

B that are successive accesses of the same
memory location

begin
let Nv be the unique number associated

with the vertex v in D induced naturally
by the total ordering of ref. points in B

let the length of an edge, e = v1 → v2 be
defined as Nv2 −Nv1

1 foreach edge e = v1 → v2 in D sorted by length
2 if (either v1 or v2 is unexamined)
3 mark v1 and v2 as “examined”
4 Rv1,v2 = Nv2 −Nv1− number of edges

lying wholly between v1 and v2
end

end
end

Figure 3. Computing R

ence points and then subtracting the number of depen-
dence edges that lie wholly between p1 and p2. No-
tice that all the reference points within a basic block
are totally ordered, and that there cannot be any de-
pendence edge from p1 to another reference point be-
fore p2. Similarly, there cannot be any dependence
edge from a reference point after p1 to p2. Thus, it
makes sense to talk about edges that lie wholly between
p1 and p2. Each edge lying wholly between p1 and
p2 represents a repeated reference to a memory loca-
tion, hence should be subtracted to count the number
of unique memory references. The raw count of ref-
erence points between p1 and p2 is easily obtained by
subtracting the order of p1 from the order of p2. The
algorithm Compute R simple takes O(|ED|2) time
where ED is the set of edges in the graph D. The count-
ing step in line 4 may take O(ED) steps, although dy-
namic programming techniques may be able to reduce
the worst case complexity. Since many edges will never
contribute to reuse distance computations the expected
running time should be much lower than this worst case
limit. Going through the edges in sorted order of their
length is important to ensure that only valid pairs of ref-
erence points are considered, as the example in the pre-
vious paragraph illustrated.

4.2. Forward Control Flow

The algorithm Compute R simple is useful by
itself. It can be used, for example, to guide reordering

Arun Chauhan, Indiana University HP Research, July 29, 2008

Computing Reuse within a Basic Block

[x, u, x] = s func(u, y, w, w)

dist = 0 dist = 0

dist = S(s func, . . .)

Figure 2. Three cases of reuses within a single
s-statement.

Notice that self-loops are also possible due to loop-
carried dependences. Henceforth, we will loosely use
the term dependence graph to always refer to an en-
hanced data dependence multidigraph that includes in-
put dependences. Even though edges run between refer-
ence points we will sometimes find it more convenient
to pretend that the edges run between statements.

A single s-function call may also have reuses. For
instance, multiple input or output arguments with the
same name. There are three cases for a function f with
input arguments I f and output arguments O f to have a
repeated argument x.
x ∈ I f , x ∈ I f ⇒ reuse distance = 0;
x ∈ O f , x ∈ O f ⇒ reuse distance = 0; and
x ∈ I f , x ∈ O f ⇒ reuse distance = S(f , I f ,O f ,τI f ,τO f)

(as defined in Section 3.3).
Figure 2 illustrates the three cases.

Finally, the reference points in each s-function will
be ordered as all the input arguments left-to-right fol-
lowed by all the output arguments left-to-right. Ac-
cesses to the input arguments clearly comes before ac-
cesses to output arguments. However, the ordering of
input and output arguments by themselves is only for
convenience. A later section will illustrate how this or-
dering can be changed to refine the analysis.

To compute the source-level reuse distance, Rp1,p2
for all pairs of reference points p1 and p2 within a basic
block, we need only examine the edges in the depen-
dence graph for the basic block. Since edges in the de-
pendence graph exactly capture references to the same
memory location(s), the reference point pairs connected
by the edges are exactly the reference pairs of interest.
In fact, only a subset of the edges are relevant. Consider
a sequence of statements A; B; C. If A→ B, B→C,
and A→C are dependence edges pertaining to the same
memory reference then A→C does not lead to a reuse
distance computation. Figure 3 outlines an algorithm to
compute R values from a given dependence graph for a
basic block, B.

To count the number of unique memory accesses
between any two reference points, p1 and p2, the al-
gorithm works by counting all the intermediate refer-

Algorithm Compute R simple
Input: basic block B,

dependence graph D restricted to B
Output: Rp1.p2 ∀ pairs of ref. points p1 and p2 in

B that are successive accesses of the same
memory location

begin
let Nv be the unique number associated

with the vertex v in D induced naturally
by the total ordering of ref. points in B

let the length of an edge, e = v1 → v2 be
defined as Nv2 −Nv1

1 foreach edge e = v1 → v2 in D sorted by length
2 if (either v1 or v2 is unexamined)
3 mark v1 and v2 as “examined”
4 Rv1,v2 = Nv2 −Nv1− number of edges

lying wholly between v1 and v2
end

end
end

Figure 3. Computing R

ence points and then subtracting the number of depen-
dence edges that lie wholly between p1 and p2. No-
tice that all the reference points within a basic block
are totally ordered, and that there cannot be any de-
pendence edge from p1 to another reference point be-
fore p2. Similarly, there cannot be any dependence
edge from a reference point after p1 to p2. Thus, it
makes sense to talk about edges that lie wholly between
p1 and p2. Each edge lying wholly between p1 and
p2 represents a repeated reference to a memory loca-
tion, hence should be subtracted to count the number
of unique memory references. The raw count of ref-
erence points between p1 and p2 is easily obtained by
subtracting the order of p1 from the order of p2. The
algorithm Compute R simple takes O(|ED|2) time
where ED is the set of edges in the graph D. The count-
ing step in line 4 may take O(ED) steps, although dy-
namic programming techniques may be able to reduce
the worst case complexity. Since many edges will never
contribute to reuse distance computations the expected
running time should be much lower than this worst case
limit. Going through the edges in sorted order of their
length is important to ensure that only valid pairs of ref-
erence points are considered, as the example in the pre-
vious paragraph illustrated.

4.2. Forward Control Flow

The algorithm Compute R simple is useful by
itself. It can be used, for example, to guide reordering

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse with Forward Control Flow

A

B C

D E

F

G

e1

e2

e3

e4

e5

Figure 4. Forward control flow

transformations to bring reuses closer. This subsection
extends the algorithm to code regions larger than ba-
sic blocks. Specifically, we allow forward control flow,
e.g., two-way or multi-way branches. Figure 4 shows
an example of a piece of code in the form of a control-
flow graph with only forward control flow edges, i.e.,
without any back edges (loops). Such a control flow
graph forms a Directed Acyclic Graph (DAG). We will
assume that the DAG always has a unique start node. If
not, a dummy start node can always be added. Rectan-
gles in the figure represent basic blocks that have been
labeled A through G.

In extending the simple algorithm to DAGs we will
focus on computing source-level reuse distances be-
tween program points across blocks. As before, reuses
can be found by looking at the edges of the dependence
graph. The dependence graph is now restricted to those
edges that run across basic blocks and that either start
at the last reference or end at the first reference to a
memory location in the block. Suppose that there is
a sequence of dependence edges within a block going
through the reference points p1, p2, . . . pk all within the
same block. If there is a dependence edge that starts
at a point pi and goes to a reference point q in another
block then there must be dependence edges p j → q for
all 1≤ j≤ k. We only want to keep the edge that corre-
sponds to the maximum j when the reference points are
ordered according the scheme in Section 4.1. Incom-
ing edges are similarly pruned to leave only the edge
connecting to the earliest reference point of all that ac-

cess the same memory location. Thus, in Figure 4 the
green (lighter) edges will be ignored. The remaining
edges connect reference points corresponding exactly
to “globals” in the sense of Cooper and Torczon’s al-
gorithm for building the semi-pruned Static Single As-
signment (SSA) form of a program [7].

As before, a subset of dependence edges provide
the pairs of reference points to compute reuse distances.
However, simply examining the dependence edges in
the increasing order of their lengths does not guaran-
tee that the unexamined pairs of points are necessar-
ily the closest ones. For example edges e2 and e3 are
smaller than the edge e4, but e4 is still significant be-
cause it is the shortest edge when the control flows
along C→ E→ F.

Another complication arises due to edges like e5
that connect reference points belonging to blocks that
have multiple paths between them. What should be the
source-level reuse distance between such points? The
flow-insensitive (and less accurate) approach would be
to simply ignore the control flow and add the unique
memory references between the blocks along all paths.
However, with additional information, coming from
profiling or user input, the reuse distances along the dif-

Algorithm Compute R With Branches
Input: control flow graph G with weighted

edges, dependence graph D
Output: Rp1.p2 ∀ pairs of ref. points p1 and p2 in

B that are successive accesses of the same
memory location

begin
1 restrict D to cross-block edges such that only

the first incoming and the last outgoing edge
is retained for each sequence of dependence
edges

2 foreach block, b, in G
3 (U [b],D[b]) = Exposed Data Volumes(b, D)

end
4 foreach connected component, C, of D
5 foreach pair of vertices v1 and v2 in C
6 P = set of control-flow nodes that lie on

any path between v1 and v2 that does
not go through any control-flow node
containing any other vertex in C

7 if (P is not empty)
8 Rv1,v2 = Weighted Dist(v1,v2,P,U,D,G)

end
end

end
end

Figure 5. Computing R with branches

Arun Chauhan, Indiana University HP Research, July 29, 2008

Computing Reuse with Forward Control Flow

A

B C

D E

F

G

e1

e2

e3

e4

e5

Figure 4. Forward control flow

transformations to bring reuses closer. This subsection
extends the algorithm to code regions larger than ba-
sic blocks. Specifically, we allow forward control flow,
e.g., two-way or multi-way branches. Figure 4 shows
an example of a piece of code in the form of a control-
flow graph with only forward control flow edges, i.e.,
without any back edges (loops). Such a control flow
graph forms a Directed Acyclic Graph (DAG). We will
assume that the DAG always has a unique start node. If
not, a dummy start node can always be added. Rectan-
gles in the figure represent basic blocks that have been
labeled A through G.

In extending the simple algorithm to DAGs we will
focus on computing source-level reuse distances be-
tween program points across blocks. As before, reuses
can be found by looking at the edges of the dependence
graph. The dependence graph is now restricted to those
edges that run across basic blocks and that either start
at the last reference or end at the first reference to a
memory location in the block. Suppose that there is
a sequence of dependence edges within a block going
through the reference points p1, p2, . . . pk all within the
same block. If there is a dependence edge that starts
at a point pi and goes to a reference point q in another
block then there must be dependence edges p j → q for
all 1≤ j≤ k. We only want to keep the edge that corre-
sponds to the maximum j when the reference points are
ordered according the scheme in Section 4.1. Incom-
ing edges are similarly pruned to leave only the edge
connecting to the earliest reference point of all that ac-

cess the same memory location. Thus, in Figure 4 the
green (lighter) edges will be ignored. The remaining
edges connect reference points corresponding exactly
to “globals” in the sense of Cooper and Torczon’s al-
gorithm for building the semi-pruned Static Single As-
signment (SSA) form of a program [7].

As before, a subset of dependence edges provide
the pairs of reference points to compute reuse distances.
However, simply examining the dependence edges in
the increasing order of their lengths does not guaran-
tee that the unexamined pairs of points are necessar-
ily the closest ones. For example edges e2 and e3 are
smaller than the edge e4, but e4 is still significant be-
cause it is the shortest edge when the control flows
along C→ E→ F.

Another complication arises due to edges like e5
that connect reference points belonging to blocks that
have multiple paths between them. What should be the
source-level reuse distance between such points? The
flow-insensitive (and less accurate) approach would be
to simply ignore the control flow and add the unique
memory references between the blocks along all paths.
However, with additional information, coming from
profiling or user input, the reuse distances along the dif-

Algorithm Compute R With Branches
Input: control flow graph G with weighted

edges, dependence graph D
Output: Rp1.p2 ∀ pairs of ref. points p1 and p2 in

B that are successive accesses of the same
memory location

begin
1 restrict D to cross-block edges such that only

the first incoming and the last outgoing edge
is retained for each sequence of dependence
edges

2 foreach block, b, in G
3 (U [b],D[b]) = Exposed Data Volumes(b, D)

end
4 foreach connected component, C, of D
5 foreach pair of vertices v1 and v2 in C
6 P = set of control-flow nodes that lie on

any path between v1 and v2 that does
not go through any control-flow node
containing any other vertex in C

7 if (P is not empty)
8 Rv1,v2 = Weighted Dist(v1,v2,P,U,D,G)

end
end

end
end

Figure 5. Computing R with branches

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse with Reverse Control Flow (Loops)

P̄ı Q j̄

These dependence edges reduce the unique memory access count

Figure 7. R with dynamic instances in loops

generating the instance. If there is a loop-carried data
dependence from statement P to statement Q such that
the instance Q j̄ is dependent on the instance P̄ı due to
reference points p1 and p2 then the source-level reuse
distance between the two reference points depends on
the dependence distance j̄− ı̄. The reuse distance is
simply the count of all the memory accesses by all in-
stances of the statements in the loop-nest that lie be-
tween P̄ı and Q j̄ less the number of dependences that
lie wholly between P̄ı and Q j̄. Figure 7 visualizes this.
Notice that P and Q could be the same statement corre-
sponding to a self-loop in the dependence graph.

We will informally outline only the most impor-
tant common case when the dependence distances can
be summarized accurately, at compile time. If all
dependence distances are known for loop-carried de-
pendences, then the number of dependences that are
“wholly contained” within any loop-carried dependence
can be computed. If a loop-carried dependence, γ ,
has the dependence distance ∆ı̄ then any loop-carried
dependence with dependence distance ∆ j̄ such that
|∆ j̄| < |∆ı̄| must lie wholly within γ , where |ı̄| is the
Cartesian length of the vector ı̄. From this infor-
mation, and the loop bounds, the number of inter-
mediate unique memory access can be computed for
any loop-carried dependence. We note that the loop-
independent distances can be handled as before, us-
ing Compute R With Branches. Loops have been
studied extensively for memory behavior in the past [20,
4].

4.4. Recursive Functions

Recursive functions pose a problem similar to
loops in that the number of recursive calls may not be
known in advance. However, there is another complica-
tion with recursive functions—we can no longer assume
that the source-level reuse distance summaries would be
available for all the called functions.

One possible solution is to setup symbolic recur-
rence relations for source-level reuse distances and then
solving them. This works only when there are closed-
form expressions for all other reuse distances within the
function. A second possible solution is to start by as-

suming zero distances for the recursive calls. When
the reuse distances have been summarized through one
pass, the summaries can be plugged back into the recur-
sive calls to refine the estimates. The process is con-
tinued until a fixed-point is reached. Both of these ap-
proaches need further investigation and the details are
left for future work. In particular, the conditions for cor-
rectness and termination of the iterative approach will
need careful examination.

4.5. Non-Local Variables in Functions

Non-local variables could be either in the form of
reference formals or globals. Both can be handled by
similar strategies. Just as we computed the U and D
values for basic blocks, we can compute similar U and
D values for all the non-local variables in a function.
Thus, U [x] for a non-local variable x is the number of
unique memory accesses between the start of the func-
tion and the first reference to x. Similarly, D[x] is the
number of unique memory accesses between the last
reference to x and the end of the function. This becomes
a part of the function’s summary information. Suppose
that v is a non-local variable in function foo. Consider
the following code sequence.

x = ...
...
foo(...)
...
... = x

The source-level reuse distance between the first access
to x and the call to foo is simply the number of unique
memory accesses between the first statement the call to
foo plus U [v]. Similarly, the source-level reuse dis-
tance between the call to foo and the final access to x
will make use of D[v].

4.6. Symbolic Values

Symbolic values can cause inaccuracies in source-
level reuse distance analysis in multiple ways. Sym-
bolic loop bounds make the statement counts symbolic
and hence the exact number of accesses inside the loop
cannot be computed statically. Symbolic values in ar-
ray subscripts can cause the dependence analysis to be-
come less accurate leading to less accurate estimation
of reuses by assuming reuses where there are none, or
vice versa. It may also prevent accurate summarization
of dependence distances. Finally, symbolic values can
interfere with type inference when analyzing languages
where type inference is needed, leading to less accurate
characterization of operations.

Arun Chauhan, Indiana University HP Research, July 29, 2008

Challenges

• Correlation between source-level and binary reuse
distances

• Efficient estimation of source-level reuse distances
• Composition

★ Bottom up computation
★ Empirical methods for “black box” libraries

• Effective and efficient summarization
• Code optimization using the source-level reuse

distance information

Arun Chauhan, Indiana University HP Research, July 29, 2008

RUBY

Arun Chauhan, Indiana University HP Research, July 29, 2008

Ruby on One Slide
• Fully object oriented

★ Derived from Smalltalk
★ Everything is an object, including classes
★ No standard operators

• Powerful meta-programming support
★ Classes and objects may be redefined
★ Methods may be (re/un)defined

• Advanced language features
★ Co-routines
★ Continuations
★ Blocks (generalized anonymous functions)

Arun Chauhan, Indiana University HP Research, July 29, 2008

Ruby is Slow!

Courtesy: Zen and the Art of Programming
By Antonio Cangiano, Software Engineer & Technical Evangelist at IBM

http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/

http://antoniocangiano.com/
http://antoniocangiano.com/
http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/
http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/

Arun Chauhan, Indiana University HP Research, July 29, 2008

Current Efforts on Ruby
• Ruby 1.8: The current stable implementation, also known as

the MRI (Matz Ruby Interpreter)
• Ruby 1.9: The YARV based implementation of Ruby, faster

with language improvements, but incompatible with 1.8
• JRuby: Ruby on the Java VM, both interpreter and compiler

to Java bytecode (Ruby 1.8)
• XRuby: Ruby to Java bytecode compiler (Ruby 1.8)
• IronRuby: Ruby on the Microsoft CLR (Ruby 1.8)
• Rubinius: Ruby compiler based on the Smalltalk 80 compiler
(Ruby 1.8)

• MacRuby: MacRuby, port of Ruby 1.9 to Objective-C, using
Objective-C objects to implement Ruby and the Objective-C
2.0 garbage collector (Ruby 1.9)

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/news/2007/12/25/ruby-1-9-0-released/
http://www.ruby-lang.org/en/news/2007/12/25/ruby-1-9-0-released/
http://jruby.codehaus.org/
http://jruby.codehaus.org/
http://xruby.com/default.aspx
http://xruby.com/default.aspx
http://www.ironruby.net/
http://www.ironruby.net/
http://rubini.us/
http://rubini.us/
http://trac.macosforge.org/projects/ruby/wiki/MacRuby
http://trac.macosforge.org/projects/ruby/wiki/MacRuby

Arun Chauhan, Indiana University HP Research, July 29, 2008

Partially Evaluating Ruby
• Bottom-up approach

★ Tabulate the “safe” primitives
✴ Most are written in C

★ Partially evaluate include libraries
★ Partially evaluate the user code

• Target applications
★ Ruby on Rails
★ Home-grown graduate student database management

• Does not work for libraries
• Too much redundant effort

★ Can we partially evaluate libraries conditionally?

Arun Chauhan, Indiana University HP Research, July 29, 2008

Current Status

• Ruby front-end
• C front-end for semi-automatically classifying

primitives as “safe” for partial evaluation
• Software infrastructure for partial evaluation by

interfacing with Ruby interpreter

Arun Chauhan, Indiana University HP Research, July 29, 2008

Other Projects

• Declarative approach to parallel programming
★ Let users specify parallelism
★ Separate computation from communication
★ Funded by NSF two days ago!

• MPI-aware compilation
★ Optimizing legacy MPI code for multicore clusters

• Distributed VM for Ruby
• Parallelizing for heterogeneous targets

Arun Chauhan, Indiana University HP Research, July 29, 2008

THANK YOU!

http://www.cs.indiana.edu/~achauhan/
http://phi.cs.indiana.edu/

http://www.cs.indiana.edu/~achauhan/
http://www.cs.indiana.edu/~achauhan/
http://phi.cs.indiana.edu
http://phi.cs.indiana.edu

