PROGRAMMING AT A HIGH-
LEVEL ON MULTI-CORES

What is a compiler to do?
Arun Chauhan

Indiana University

i,
——

-L:‘.'-:"
-
——

’ower consumption

oore’s Law”

Software Productivity: 'The Real Crisis

* New software development
* Programming models
* Programming techniques
* Programming languages
* Porting legacy code
* Starting point: sequential or parallel?
* Port optimized code

* Source vs binary

Arun Chauhan, Indiana University HP Research, July 29, 2008

Possible Solutions

* Novel languages
* DARPA HPCS

* Extending traditional languages

* Co-Array Fortran
* UPC

¢ [ibraries
* ScalaPACK, MATAB*P

* High-level “scripting” languages

Arun Chauhan, Indiana University HP Research, July 29, 2008

High-Level Scripting LLanguages

e Available and in use

* Modern

* Support modern software engineering practices

® More powerful and general than libraries

* Programmers available

Arun Chauhan, Indiana University HP Research, July 29, 2008

High-Level Scripting LLanguages

e Available and in use

* Modern

* Support modern software engineering practices

® More powerful and general than libraries

* Programmers available

Can they solve the multi-core programming crisis?

Arun Chauhan, Indiana University HP Research, July 29, 2008

Example: NASMG in MATLAB

m=f(1 *(n(c,c,c)) +
(c,c,u)+n
(Cc,u,u)+n
n(d,c,u)+n(d,
f(4)."(n(u,u,u)+n(
n(d,d,u)+n(

*(n (c C d)+n(c u,c)+n(c,d,c)+n(u,c,c)+n(d,c,c)) + .

*(n (c,u,d)+n(c,d,u)+n(c,d,d)+n(u,c,u)+n(u,c,)+

c,d)+n(u,u,c)+n(u,d,c)+n(d,u,c)+n(d,d,c)) + .
u,d)+n(u,d,u)+n(u,d,d)+n(d,u,u)+n(d,u,d)+
d

u)+n(u,u,d
u)+n(d,d,d));

Arun Chauhan, Indiana University HP Research, July 29, 2008

E ffects of Memory Optimizations on NASMG

O

B Loop fusion
... I Loop fusion + subscript opt.|

oo
|

N w = (&) (@) ~
! ! ! ! ! !

Speedup over MATLAB interpreter

b
I

0
Core 2 Duo Pentium IV

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation 1s Unnecessary

* Most of the computation takes place in libraries

* Interpretive overheads insignificant with byte-code

* Just-in-time compilation does a good job

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation 1s Unnecessary

®* Most of the computation takes place in libraries
* True for some applications, but not for many others

* Parallelization on heterogeneous platforms

* Interpretive overheads insignificant with byte-code

* Just-in-time compilation does a good job

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation 1s Unnecessary

®* Most of the computation takes place in libraries
* ‘True for some applications, but not for many others

* Parallelization on heterogeneous platforms

* Interpretive overheads insignificant with byte-code

* Byte-code does not eliminate library call overheads

* Just-in-time compilation does a good job

Arun Chauhan, Indiana University HP Research, July 29, 2008

Why Compilation 1s Unnecessary

®* Most of the computation takes place in libraries
* ‘True for some applications, but not for many others

* Parallelization on heterogeneous platforms

* Interpretive overheads insignificant with byte-code

* Byte-code does not eliminate library call overheads

* Just-in-time compilation does a good job
* JI'T compiler operates at byte-code level, missing many
opportunities at high-level

Arun Chauhan, Indiana University HP Research, July 29, 2008

- N
—— = -

g
e

)

it

h:__.m }

e Rl e et
s e PRk e 1oL e v T tien it

Benefits of Source-level Compilation

* Specialization

* Type-based specialization can reduce or eliminate function
call overheads

® Library function selection

* Sequences of operations can be implemented efficiently

* Memory footprint reduction

* Intermediate arrays and array computations can be
eliminated

® Parallelization

* Macro-operations provide naturally coarse granularity

Arun Chauhan, Indiana University HP Research, July 29, 2008

i ""\
n«
&

emory footprint reduction

‘ o — - ———
e S P L

-n)\

'.i—’:‘E

» .P't

Vlemory footprint reduction

e Intermediate arrays and array computations can be
 eliminated

Specialization: ARPACK Dense Matrix Kernel
" . Matlab

ARPACK

. LibGen

Running Time (in seconds)

Dense Symmetric Dense Nonsymmetric
Matrix Type

Arun Chauhan, Indiana University HP Research, July 29, 2008

~ Specialization: ARPACK Sparse Matrix Kernel

400

o

n

-
I

N

o

o
I

—k
n
-

—
o
o

Running Time (milliseconds)

N
-
|

T

Sparse Symmetric Sparse Nonsymmetric
Matrix Type

Arun Chauhan, Indiana University HP Research, July 29, 2008

lype-based Specialization: DSP

jakes: Type-specialized FORTRAN vs MATLAB

Bl MATLAB 6.x
MATLAB 5.3 |
FORTRAN

15

time (seconds)

Sun SPARC 336MHz SGI Origin Apple PowerBook G4 667MHz
Arun Chauhan, Indiana University HP Research, July 29, 2008

i ""\
n«
&

emory footprint reduction

‘ o — - ———
e S P L

-‘"v -

Call overheads

-n)\

'.i—’:‘E

» .P't

Vlemory footprint reduction

e Intermediate arrays and array computations can be
 eliminated

Library Function Selection: Vector Outer-product

Implementing Vector Outer Product (x™y + A)

1 6 ...
—O6— AMD Opteron
—#— PowerPC 970 (Apple G5)
Intel Xeon
15 ... Intel Itar"um 2

0.9 ! ! ! ! ! ! ! ! ! |
2 3 4 5 6 7 8 9 10 11 12

Vector size (thousands of double elements)

Arun Chauhan, Indiana University HP Research, July 29, 2008

mplementing Scaled Vector Addition (alpha*x + beta*y)
1.7

—&— AMD Opteron
—*— PowerPC 970 (Apple G5)
—+— Intel Xeon

Intel Itanium 2

1.6

1.5

S
S
L
O
Q
)
=
j .
<
O
0p
a
+
>_
al
>
<
a
)
=

12 14 16 18
Vector size (millions of double elements)

i ""\
n«
&

emory footprint reduction

‘ S - ———
e S P L

-"-.y -

Call overheads

-n)\

'.i—’:‘E

» .P't

Temporary Arrays: Matrix Expressions

A+A=«B’ + 2« (A+B)' <A + (X+y) =X’

OR

A+ A«B" +2:A"«xA+ 2+«B"«A + XxX' + yxX’

Arun Chauhan, Indiana University HP Research, July 29, 2008

Implementing A Big Expression

w
~

—6— AMD Opteron
—#— PowerPC 970 (Apple G5)
—+— Intel Xeon

Intel Itanium 2

)

w

(ol

©
O
e
-]
o)
S
-
kE
SJ
)
E
fd
~~
)
)
N
(7p]
)
L
fd
-
)
S
Qv
=t
)
E
e

Vector size (thousands of double elements)

Absolute T1me Difference

Absolute Time Differences on Iltanium 2
1400 I I I I I I I I

1200

1000
800
600 |
400 F

200 -

0 I I I
-200 - | ‘ -
-400 - -
| | |

_600 | | | | |
S} 6 7 8 9 10 11 12 13 14

Vector size (thousands of double elements)

Arun Chauhan, Indiana University HP Research, July 29, 2008

Temporary Arrays: Matrix Expressions

A+A=«B’ + 2« (A+B)' <A + (X+y) =X’

OR

A+ A«B" +2:A"«xA+ 2+«B"«A + XxX' + yxX’

Arun Chauhan, Indiana University HP Research, July 29, 2008

Temporary Arrays: Matrix Expressions

A+A«B’ + 2+ (A+B)" A + (X+Y) =X’

copy(A,tmp0);
gemm(1,A,B,1,tmp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);
copy(x,tmp1);

axpy(1,y,1,tmp1);
ger(1,tmp1,x,tmp0);

A+A:B" +2:«A"xA+ 2«B'«A + XxX" + yxX’

copy(A,tmp0);
gemm(1,A,B,1,timp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);

Arun Chauhan, Indiana University HP Research, July 29, 2008

Function Selection Algorithm

Arun Chauhan, Indiana University

algorithm basic-block-function-selector
inputs: P = Octave source code (as AST)
S = SSA graph of P
L = target library
outputs: R = Modified version of P with operations
mapped to the function calls in L
whenever possible

set R to an empty AST
for each simple statement, s, in P, do
if (s does not have an operation implemented by L)
add s unchanged to R
else
let ® be the operation in s
let w be the optimal choice of function in L
implementing ® based on the current context
if (w 1s a multi-op function and
® 1s a candidate operation)
for each operand u

let d be the statement defining u, obtained from S
if (d can be subsumed in w)
add the operands of d to w

endif
endfor
endif
add the call to w to R
endif
endfor

HP Research, July 29, 2008

- N
—— = -

g
e

)

Motivation

The traditional theoretical approach to analysis involves
counting basic operations performed on an abstract
computer. These operations are generic abstractions of
CPU instructions, each assumed to have some unit cost.
However, on modern architectures, instructions have
varying costs; in particular, a memory access can be
several orders of magnitude more time consuming than
any single machine instruction, depending on where the
operands are |located. New abstract models are needed to
describe these new types of costs.

Catherine C. McGeoch,

Experimental Algorithmics,
Communications of the ACM volume 50, Number 11 (2007), Pages 27-31

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse Distance

- Reuse distance of an access to data d
- the volume of data between this and
the previous access to d
- Reuse signature of an execution
- the distribution of all reuse distances

- gives the miss rate of fully
associative cache of all sizes

~
S
(=)

O I 2
a cb

% reterences
\“
S

S

Mattson, Gecseli,

Slutz, Traiger

IBM Systems
Journal, vol. 9(2),
1970, pp. 78-117

Source-level Reuse Distance

The source-level reuse distance between

two memory references (to the same location)
is the wolume of the source-level data accessed
between the two memory references.

X = a + b;
c = a + d[1]*100;
X;

e
|l

Distance = 6 = Five variables (a, b, ¢, d, i) + one constant (100)

Arun Chauhan, Indiana University HP Research, July 29, 2008

Complex Expressions

@
|

X = ftoo(1;,) B 1E; FoE];
PaEET) P

4

O
|

=1+ 3J;

foo(1,]);

=t 2 * B[t 1, 10];
x + t 3;

= bar(i, J);

t 4 + x;

==t_5 -+ -y

W N -
|

(O Y=
|l

O & c QQ &
|

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse from Dependence Information

* Dependence for code transformations

* Between two references to the same memory location

* One of the references is a write

* Dependence for reuse: drop the write requirement

* True dependence (0)

* Anti-dependence (§")
* Output dependence (d)
* Input dependence (3)

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse within a Simple Statement

dist = S(s_func,...)

X, u, x] = s_func(u, vy, w, W)

dist = 0 dist = 0

Arun Chauhan, Indiana University HP Research, July 29, 2008

Computing Reuse within a Basic Block

Algorithm Compute R _simple

Input: basic block B,
dependence graph D restricted to B
Output: R, ,, V pairs of ref. points p; and p; in
B that are successive accesses of the same
memory location

begin
let N, be the unique number associated
with the vertex v in D induced naturally
by the total ordering of ref. points in B
let the length of an edge, e = vi — v, be
defined as N,, — N,
1 foreach edge e =v|; — v, in D sorted by length
2 if (either v; or v, 1S unexamined)
3 mark v{ and v, as “examined”
4 Ry, v, = N,, —N,, — number of edges
lying wholly between vy and v,
end
end
end

Arun Chauhan, Indiana University HP Research, July 29, 2008

Reuse with Forward Control Flow

Arun Chauhan, Indiana University HP Research, July 29, 2008

Computing Reuse with Forward Control Flow

Arun Chauhan, Indiana University

Algorithm Compute_R_With_Branches

Input: control flow graph G with weighted
edges, dependence graph D
Output: R, ,, V pairs of ref. points p; and p; in
B that are successive accesses of the same
memory location
begin
1 restrict D to cross-block edges such that only
the first incoming and the last outgoing edge
1s retained for each sequence of dependence
edges
2 foreach block, b, in G
3 (U|b],D|b]) = Exposed_Data_Volumes(b, D)
end
4 foreach connected component, C, of D
5 foreach pair of vertices v and v, in C
6 P = set of control-flow nodes that lie on
any path between v1 and v; that does
not go through any control-flow node
containing any other vertex in C

7 if (P 1s not empty)
8 Ry, v, = Weighted_Dist(vy,v2,P,U,D,G)
end
end
end
end

HP Research, July 29, 2008

Reuse with Reverse Control Flow (Loops)

These dependence edges reduce the unique memory access count

BHO OO0 0®

Arun Chauhan, Indiana University HP Research, July 29, 2008

Challenges

* Correlation between source-level and binary reuse
distances

e Efficient estimation of source-level reuse distances
* Composition
* Bottom up computation

* Empirical methods for “black box” libraries

e Effective and efficient summarization

* Code optimization using the source-level reuse
distance information

Arun Chauhan, Indiana University HP Research, July 29, 2008

Ruby on One Shde

* Fully object oriented

* Derived from Smalltalk

* Everything is an object, including classes

* No standard operators

* Powerful meta-programming support

* Classes and objects may

be redefined

* Methods may be (re/un)c

efined

* Advanced language features

* Co-routines

* Continuations

* Blocks (generalized anonymous functions)

Arun Chauhan, Indiana University

HP Research, July 29, 2008

Ruby 15 Slow!

Total execution time Geometric mean of the ratios
Rubinius Rubinius
s XRuby XRuby
> S
§- JRuby 3 JRuby
& =]
Ruby 1.9 (3 Ruby 1.9
Ruby 1.8.6
Ruby 1.8.6
0 100 200 300 400 500
e 0.00 1.00 2.00 3.00 4.00
1%;’ Ruby 1.9| JRuby | XRuby |Rubinius e
S Y |Ruby 1.9| JRuby | XRuby |Rubinius
Total| 284.713[71.7655[177.319 | 193.74 [386.971 1.8.6
Total in Seconds Geo. Mean 1.00 3.32 1.32 1.43 0.73

Courtesy: Zen and the Art of Programming
By Antonio Cangiano, Software Engineer & Technical Evangelist at IBM
http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/

Arun Chauhan, Indiana University HP Research, July 29, 2008

http://antoniocangiano.com/
http://antoniocangiano.com/
http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/
http://antoniocangiano.com/2007/12/03/the-great-ruby-shootout/

Current Efforts on Ruby

* Ruby 1.8: The current stable implementation, also known as
the MRI (Matz Ruby Interpreter)

* Ruby 1.9: The YARYV based implementation of Ruby, faster

with language improvements, |

but Incom

* JRuby: Ruby on the Java VM,
to Java bytecode (Ruby 1.8)

vatible with 1.8

both inter;

breter and compiler

e XRuby: Ruby to Java bytecode compiler (Ruby 1.8)
* [ronRuby: Ruby on the Microsoft CLR (Ruby 1.8)

® Rubinius: Ruby compiler based on the Smalltalk §o compiler

(Ruby 1.8)

e MacRuby: MacRuby, port of Ruby 1.9 to Objective-C, using
Objective-C objects to implement Ruby and the Objective-C
2.0 garbage collector (Ruby 1.9)

Arun Chauhan, Indiana University

HP Research, July 29, 2008

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/news/2007/12/25/ruby-1-9-0-released/
http://www.ruby-lang.org/en/news/2007/12/25/ruby-1-9-0-released/
http://jruby.codehaus.org/
http://jruby.codehaus.org/
http://xruby.com/default.aspx
http://xruby.com/default.aspx
http://www.ironruby.net/
http://www.ironruby.net/
http://rubini.us/
http://rubini.us/
http://trac.macosforge.org/projects/ruby/wiki/MacRuby
http://trac.macosforge.org/projects/ruby/wiki/MacRuby

Partially Evaluating Ruby

* Bottom-up approach

* Tabulate the “safe” primitives

* Most are written in C

* Partial

* Partiall

y eval

uate include libraries

y eval

uate the user code

* Target applications
* Ruby on Rails

* Home-grown graduate student database management

® Does not work for libraries

® Too much redundant effort

* Can we partially evaluate libraries conditionally?

Arun Chauhan, Indiana University

HP Research, July 29, 2008

Current Status

* Ruby front-end

* C front-end for semi-automatically classitying
primitives as “safe” for partial evaluation

* Software infrastructure for partial evaluation by
interfacing with Ruby interpreter

Arun Chauhan, Indiana University HP Research, July 29, 2008

Other Projects

* Declarative approach to parallel programming
* Let users specify parallelism

* Separate computation from communication

* Funded by NSF two days ago!

* MPI-aware compilation

* Optimizing legacy MPI code for multicore clusters

* Distributed VM for Ruby

* Parallelizing for heterogeneous targets

Arun Chauhan, Indiana University HP Research, July 29, 2008

THANK YOU!

http://www.cs.indiana.edu/~achauhan/
http://phi.cs.indiana.edu/

Arun Chauhan, Indiana University HP Research, July 29, 2008

http://www.cs.indiana.edu/~achauhan/
http://www.cs.indiana.edu/~achauhan/
http://phi.cs.indiana.edu
http://phi.cs.indiana.edu

