
Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction:
An Optimizing Strategy

for
Telescoping Languages

Arun Chauhan

and

Ken Kennedy



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Motivation
" High Performance programming is hard

� Increasingly a specialized activity

� Shortage of programmers

" Enable end−users to program
� Language should be high level

� Should provide domain−specific features

� Must have effective and efficient compilers



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Current Scenario
" Object Oriented Languages

� Targeted towards professionals

� Still not sufficiently high−level for end−users

" Functional Programming Languages
� Suffer from performance problems

" Scripting Languages (e.g., Matlab)
� Preferred and used by end−users

� Have domain specific libraries

� But, no fast and effective compilers



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Key Problems
" Libraries treated as black boxes

� no library source code



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Key Problems
" Libraries treated as black boxes

� no library source code

" Translation to conventional languages

� potentially very high compilation times



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Key Problems
" Libraries treated as black boxes

� no library source code

" Translation to conventional languages

� potentially very high compilation times

" Expert knowledge on libraries discounted

� potential optimization opportunities lost



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Telescoping Languages Approach

Domain
Library

Language-
Building
Compiler

Enhanced
Language
Compiler

Script Script
Translator

Optimized
Object

Program



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation

Jump Functions Identities Specialization



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation

Jump Functions Identities Specialization Property Propagation Version Selection



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation

Jump Functions Identities Specialization Property Propagation Version Selection

Smart Run−Time SystemType Inferencing



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Example Codes

" Real DSP codes used by ECE wireless group

" Long Running codes, potential for optimization

" Written in Matlab (even though slow)

" Parts of the codes re−used extensively 
(candidates for domain−specific lib routines)



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Useful Optimizations: Vectorization
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
 

  for j = 1 : Num
     xc(j) = s
     qrt(2) * cos (omega * t_step * j);
     xs(j) = 0;
     for n = 1 : Num_osc
         cosine = cos(omega * cos(2 * pi * n / N) * t_step * j);
         xc(j) = xc(j) + 2 * cos(pi * n / Num_osc) * cosine;
         xs(j) = xs(j) + 2 * sin(pi * n / Num_osc) * cosine;
     end
  end

  ....

end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Useful Optimizations: Vectorization
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
   xc = sqrt(2)*cos(omega*t_step*j’) ...
       + 2*sum(cos(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));
  xs = 2*sum(sin(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));

  %for j = 1 : Num
  %   end
  %   xc(j) = s
  %   qrt(2) * cos (omega * t_step * j);
  %   xs(j) = 0;
  %   for n = 1 : Num_osc
  %       cosine = cos(omega * cos(2 * pi * n / N) * t_step * j);
  %       xc(j) = xc(j) + 2 * cos(pi * n / Num_osc) * cosine;
  %       xs(j) = xs(j) + 2 * sin(pi * n / Num_osc) * cosine;
  %   end
  %end

  ....

end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Useful Optimizations: CSE
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
   xc = sqrt(2)*cos(omega*t_step*j’) ...
       + 2*sum(cos(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));
  xs = 2*sum(sin(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));

  ....

end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Useful Optimizations: Preallocation

function z = mdlOutputs (K, N, L, D, sprd_type, sprd_codes)

....

for ii = 1:L

  ....
   
  U_ii(ii,:,:) = zeros(N, 2*(N+1)*K)
  for user_i = 1:K
      for chip_i = 1:N
          U_ii(ii,:,....) = ....
      end
  end

  ....

end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Useful Optimizations: Preallocation

function z = mdlOutputs (K, N, L, D, sprd_type, sprd_codes)

....

U_ii(:,:,:) = zeros(L, N, 2*(N+1)*K)
for ii = 1:L

  ....
   
  % U_ii(ii,:,:) = zeros(N, 2*(N+1)*K)
  for user_i = 1:K
      for chip_i = 1:N
          U_ii(ii,:,....) = ....
      end
  end

  ....

end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c1, c2, i, c3)
end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c1, c2, i, c3)
end

f_init (c1, c2, c3)
for i = 1:N
     f_iter (i)
end



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Strength Reduction
....
jakes_mp1_init (16500, 160, num_paths);
for ii = 1:200
  chan = jakes_mp1_iter (ii);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Vectorization
" Procedure called inside a loop

" Loop can be distributed around the call
� interchange loop and call

� vectorize the loop inside the procedure



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Vectorization
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);

  ....

  ....

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Vectorization
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);
end

for ii = 1:200
  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Procedure Vectorization
....

chan = jakes_mp1_vectorized (16500, 160, [1:200], num_paths);

for ii = 1:200
  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

ctss: strength reduction

jakes_mp1 newcodesig codesdhd whole program
0

0.2

0.4

0.6

0.8

1

1.2

op
tim

iz
ed

 e
xe

cu
tio

n 
tim

e

optimized execution times for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd  



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

jakes_mp1: vectorization

original time vectorized time
0

20

40

60

80

100

120

140

160

180

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
) 

fo
r 

10
0 

ite
ra

tio
ns

procedure vectorization of jakes_mp1



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

chan_est: strength reduction

original (per iteration) init call init (with preallocation) iterative call
0

2

4

6

8

10

12

14

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

performance improvement in sML_chan_est



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

outage_lb_fad: strength reduction

original time optimized time
0

5

10

15

20

25

30

35

40

45

50

ex
ec

ut
io

n 
tim

e 
(t

ho
us

an
ds

 o
f s

ec
on

ds
)

performance improvement in outage_lb_fad



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Conclusion
" High pay−off optimizations

� vectorization

� common subexpression elimination

� pre−allocation

� beating and dragging along

" Two new optimizations
� procedure strength reduction (10% − 50% gain)

� procedure vectorization



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Related Work
" Source level transformations

� DeRose’s PhD (UIUC, 1995)

� Menon & Pingali (Cornell, 1999)

" Currying in functional languages

" Automatic Differentiation

� ADIFOR project

" APL

� Abram’s PhD (Stanford, 1970)

" Translation to lower−level languages

� MCC (Mathworks), MAJIC (UIUC), MATCH (NWU), 
Menhir (Irisa, France), CONLAB (Univ of Umea, 
Sweden), Otter (Oregon State Univ)



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

Current and Future Work
" Implementation

� Matlab front−end ready

� Need
" jump fns, dependence, SSA, array section analysis
" high−payoff optimizations
" inter−procedural framework
" variants database creation and lookup

" Theory
� Type inferencing

� Annotation language for library identities


