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Motivation
" High Performance programming is hard

� Increasingly a specialized activity

� Shortage of programmers

" Enable end−users to program
� Language should be high level

� Should provide domain−specific features

� Must have effective and efficient compilers
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Current Scenario
" Object Oriented Languages

� Targeted towards professionals

� Still not sufficiently high−level for end−users

" Functional Programming Languages
� Suffer from performance problems

" Scripting Languages (e.g., Matlab)
� Preferred and used by end−users

� Have domain specific libraries

� But, no fast and effective compilers
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Key Problems
" Libraries treated as black boxes

� no library source code
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Key Problems
" Libraries treated as black boxes

� no library source code

" Translation to conventional languages

� potentially very high compilation times

" Expert knowledge on libraries discounted

� potential optimization opportunities lost
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Telescoping Languages Approach
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Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation
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Compiling Telescoping Languages

Compilation Framework

Library Compilation Script Compilation

Jump Functions Identities Specialization Property Propagation Version Selection

Smart Run−Time SystemType Inferencing
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Example Codes

" Real DSP codes used by ECE wireless group

" Long Running codes, potential for optimization

" Written in Matlab (even though slow)

" Parts of the codes re−used extensively 
(candidates for domain−specific lib routines)
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Useful Optimizations: Vectorization
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
 

  for j = 1 : Num
     xc(j) = s
     qrt(2) * cos (omega * t_step * j);
     xs(j) = 0;
     for n = 1 : Num_osc
         cosine = cos(omega * cos(2 * pi * n / N) * t_step * j);
         xc(j) = xc(j) + 2 * cos(pi * n / Num_osc) * cosine;
         xs(j) = xs(j) + 2 * sin(pi * n / Num_osc) * cosine;
     end
  end

  ....

end
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Useful Optimizations: Vectorization
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
   xc = sqrt(2)*cos(omega*t_step*j’) ...
       + 2*sum(cos(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));
  xs = 2*sum(sin(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));

  %for j = 1 : Num
  %   end
  %   xc(j) = s
  %   qrt(2) * cos (omega * t_step * j);
  %   xs(j) = 0;
  %   for n = 1 : Num_osc
  %       cosine = cos(omega * cos(2 * pi * n / N) * t_step * j);
  %       xc(j) = xc(j) + 2 * cos(pi * n / Num_osc) * cosine;
  %       xs(j) = xs(j) + 2 * sin(pi * n / Num_osc) * cosine;
  %   end
  %end

  ....

end
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Useful Optimizations: CSE
function z = jakes_mp1 (blength, speed, bnumber, N_Paths)

....

for k = 1:N_Paths

  ....
   xc = sqrt(2)*cos(omega*t_step*j’) ...
       + 2*sum(cos(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));
  xs = 2*sum(sin(pi*np/Num_osc).*cos(omega*cos(2*pi*np/N)*t_step.*jp));

  ....

end
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Useful Optimizations: Preallocation

function z = mdlOutputs (K, N, L, D, sprd_type, sprd_codes)

....

for ii = 1:L

  ....
   
  U_ii(ii,:,:) = zeros(N, 2*(N+1)*K)
  for user_i = 1:K
      for chip_i = 1:N
          U_ii(ii,:,....) = ....
      end
  end

  ....

end
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Useful Optimizations: Preallocation

function z = mdlOutputs (K, N, L, D, sprd_type, sprd_codes)

....

U_ii(:,:,:) = zeros(L, N, 2*(N+1)*K)
for ii = 1:L

  ....
   
  % U_ii(ii,:,:) = zeros(N, 2*(N+1)*K)
  for user_i = 1:K
      for chip_i = 1:N
          U_ii(ii,:,....) = ....
      end
  end

  ....

end
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Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop
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Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c1, c2, i, c3)
end

f_init (c1, c2, c3)
for i = 1:N
     f_iter (i)
end
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Procedure Strength Reduction
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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Procedure Strength Reduction
....
jakes_mp1_init (16500, 160, num_paths);
for ii = 1:200
  chan = jakes_mp1_iter (ii);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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Procedure Vectorization
" Procedure called inside a loop

" Loop can be distributed around the call
� interchange loop and call

� vectorize the loop inside the procedure
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Procedure Vectorization
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);

  ....

  ....

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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Procedure Vectorization
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);
end

for ii = 1:200
  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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Procedure Vectorization
....

chan = jakes_mp1_vectorized (16500, 160, [1:200], num_paths);

for ii = 1:200
  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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ctss: strength reduction

jakes_mp1 newcodesig codesdhd whole program
0

0.2

0.4

0.6

0.8

1

1.2

op
tim

iz
ed

 e
xe

cu
tio

n 
tim

e

optimized execution times for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd  



Optimizations for Telescoping LanguagesGroup Presentation, Feb 15th, 2001

jakes_mp1: vectorization

original time vectorized time
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chan_est: strength reduction

original (per iteration) init call init (with preallocation) iterative call
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outage_lb_fad: strength reduction

original time optimized time
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Conclusion
" High pay−off optimizations

� vectorization

� common subexpression elimination

� pre−allocation

� beating and dragging along

" Two new optimizations
� procedure strength reduction (10% − 50% gain)

� procedure vectorization
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Related Work
" Source level transformations

� DeRose’s PhD (UIUC, 1995)

� Menon & Pingali (Cornell, 1999)

" Currying in functional languages

" Automatic Differentiation

� ADIFOR project

" APL

� Abram’s PhD (Stanford, 1970)

" Translation to lower−level languages

� MCC (Mathworks), MAJIC (UIUC), MATCH (NWU), 
Menhir (Irisa, France), CONLAB (Univ of Umea, 
Sweden), Otter (Oregon State Univ)
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Current and Future Work
" Implementation

� Matlab front−end ready

� Need
" jump fns, dependence, SSA, array section analysis
" high−payoff optimizations
" inter−procedural framework
" variants database creation and lookup

" Theory
� Type inferencing

� Annotation language for library identities


