The Role of the Study of Programming Languages
in the Education of a Programmer
Daniel P. Friedman
Indiana University

I want to thank the Universidad Nacional Autonoma de
México and especially Dr. Luis Alberto Pineda Cortés, Jefe del
Departamento de Ciencias de la Computaciéon for inviting me
to speak at your seminar.

The role of the study of programming languages is two-
fold. First, the study of programming languages should teach
you how to avoid bad ideas. I demonstrate these with a little
history of dynamic scope, some small discussion of types, and
a disaster in the making concerning proper implementation of
tail calls. Second, the study of programming languages should
teach you how to embrace good ideas in a representationally-
independent fashion. I show you how that is done by resolving
the issue of tail calls until something better comes along. These
issues require some small amount of formalism, but for the most
part are intuitive and only require that the person who studies
programming languages do so with an open mind. Of course,
there are other roles, but they become clearer from the three
long quotes from my former graduate students.

Jon Rossie describes the life of a programming languages
expert in a world that does not know what one is and does not
understand what one does. His knowledge is first-hand.

When a significant software project requires a database,
database specialists are called in; when networking
solutions are needed, networking specialists are called
in; when special demands are placed on the operat-
ing system, operating systems specialists are called in.

1

But the one thing on which every significant project
makes special demands is programming languages. Ev-
ery successful significant project I have seen has called
in a languages specialist to address these special needs.

Programming languages are the box outside of which
most programmers, architects, and managers cannot
think. Languages, for them, are things you choose,
not things you build. Where language specialists see
simple solutions, the untrained see costly problems
that will likely remain unaddressed. Where the un-
trained see “policies” and “standards,” the languages
specialist sees detection and enforcement. Problems
that cut menacingly across the project are our spe-
cial domain. Done well, the language expert’s work
becomes the unnoticed context in which other work
is done. We put power back in the hands of archi-
tects by letting them build needed assumptions into
the language and the development tools. We reduce
entropy and error in software systems.

I work as a software systems analyst with two other
languages people. Our group’s technical expertise in
languages has repeatedly demonstrated its value. Our
system analyses have often revealed problems that are
best addressed by the formal manipulation of pro-
grams. This kind of solution is so foreign to project
managers that we are often forced to defend the prac-
tice. Several experienced and bright software project
managers responded to our offerings by accusing us
of claiming to solve the Halting Problem. They were
not unreasonable people, just under-educated. Their

2

long experience with programs was that they cannot
usefully be treated as data. Our long experience is
just the opposite. When we explained that our ap-
proach was essentially a variation on the front end
of a compiler, they slowly warmed to it, but it was
clearly with skepticism. Then we proved our ideas
with prototype implementations, which we produced
quickly and accurately because they were only minor
variations on the well-learned lessons of a good train-
ing in programming languages.

It’s a simple insight: “Programs are data.” This is
never more evident than with software porting projects,
but we have seen major porting projects undertaken
by managers who lack this insight. By luck, we found
them and were able to offer our expertise, but they
would never have thought to look for us.

I wish, but I don’t expect, that every programmer
and architect could see the solutions we see because
of our training in languages. It’s as if all the world
were color-blind, and I wish they could see the colors
with us. But I do think I can expect every program-
mer to at least know that colors exist and that some
people can see them. A good undergraduate course in
programming languages is all they need. It’s enough
to let them see the possibilities and think outside the
language box. Later, when they see a problem that
cuts across the system in a way that languages are
uniquely suited to solve, they might recognize it and
go find a languages expert. Thinking like this has
saved projects.

Jon says that all programs are data. I agree, but I think
that all data are programs. Every program that we write in
some sense is an interpreter. The argument is simple, the hard-
ware 1s an interpreter. But, what does that really mean? Ev-
ery program processes data; the processor of the data is an
interpreter. Even a compiler is an interpreter. The data it pro-
cesses is a program and the output that this interpreter pro-
cesses is another program. A type checker (or inferencer) is also
an interpreter. It interprets programs and produces types. A
program that produces code in monadic style or continuation-
passing style is an interpreter, too. If I write a program whose
input is the numeral 5, that numeral must be interpreted as
a number if I am thinking about it as a number. But, what
if the input is “V?” That could be interpreted as a character,
or perhaps it could be interpreted as the Roman Numeral for
the number 5. We have no way of knowing. If I write a func-
tion whose input is “XIV” and its output is “XV,” would you
know that this is the “successor” function? If you did not know
anything about Roman Numerals, wouldn’t you guess this was
the “predecessor” function, since its output is shorter than its
input? The data must be interpreted.

Most programmers are comfortable with several program-
ming languages and some are upset that some things are very
difficult to do in their favorite language. The study of pro-
gramming languages to some extent alleviates this problem. In
today’s world, learning a new language is one of the expected
activities a programmer must do. There are certain language
design issues such that identifying how a language approaches
each of them can make learning that language relatively easy.
One of our goals is to learn enough about these issues so that
when the time comes to program in the latest language, it is

1

usually no more trouble than identifying various characteris-
tics, which we call “essentials,” and piecing that language’s
essentials together.

I want to tell you a little bit about my background. When I
was just starting out in computer science in the Spring of 1964,
one of my goals as an undergraduate was to learn at least one
new language per semester. This may seem tame compared to
today’s standards, but you must understand that there were
very few languages and access to these languages was through
the equivalant of “man” pages. There were no texts, so if you
did not know why the language was designed in the first place,
it was nearly impossible to determine what the designer’s man-
page writer meant. Often it was necessary to find the published
paper and try to understand the “abstract” notions put forth
in the paper and then try to correlate the “man” pages. 1
can tell you this was not easy, particularly because languages
were not as well designed then. (As we observe later, today’s
languages can still use some improvement.) When I went to
graduate school, I chose to ratchet up my personal expectations
a bit. Now, instead of understanding a language per semester,
I wanted to be able to implement a language per semester.
Later, I wanted to be able to implement a language per week.

This meant that I had to have much better tools than I
had been using. About this time, Denotational Semantics was
coming into popularity and we could see that from Denota-
tional Semantics it was possible to obtain a high-level under-
standing of the essentials of a programming language, simply
by abstracting away some of the tedious, inessential details.

Denotational Semantics studies languages, but does not
implement them. We were not aware how to close the gap
between Denotational Semantics and LISP, which was the best

5

alternative at that time. They both had A’s, didn’t they? But
the ones in the LISP I was using were ill-conceived, since they
did not close over free variables. It was in December of 1975,
when Mitchell Wand brought home a satchel of papers from
his alma mater, MIT, and plucked one out and said, “Dan, I
think that you are going to like this.”

Rarely have I heard such understatement. That paper (the
very first Scheme paper) changed my research life overnight
and it got the A’s right. The craziness of dreaming up strange
variables (a direct consequence of dynamic scope) was about
to be over. The ability to take the equations that existed in
Denotational Semantics and use them in this new implementa-
tion of LISP solved all my problems at once. Just as I need a
particular tool, it emerges. What luck!

But, I am digressing from the main topic, which is why you
should care as a programmer about the study of programming
languages. I find programming languages fascinating and thus
have spent from 1964 to the present studying them; but that
may not be enough of a reason for you to study them.

Anurag Mendhekar characterizes what he used from 311,
my programming languages course, that led to success in his
start-up company. (Warning this is a long letter.)

I, like all good computer scientists, believe in the
power of abstraction in software development. The
irony to me, always, was that the tools that I used
for programming (i.e., the programming languages),
with a few exceptions, provided such poor tools for
building abstractions, that the full power of abstrac-
tion could hardly be realized. You ended up breaking
your abstractions in order to optimize your programs
and hence needlessly complicating programs.

6

311-style programming opened my eyes to a whole
new way of programming (which I still use)—build
the abstractions you need. This, as opposed to forcing
concepts from software architecture onto a small set of
inadequate abstractions, ends up being a much better
style of programming for complex applications, as I
hope to demonstrate from my professional experience.

Based on this key idea about software development, I
embarked on the task of building a software platform
for Online Anywhere (now part of Yahoo!) that would
enable the publication of internet content on devices
other than desktop PCs; devices such as cell-phones,
PDAs, and televisions.

I very quickly settled on a set of abstractions that I
thought would be necessary. We then used Java and
meta-programming tools around Java to implement
these abstractions. The result of this effort was a
system that very quickly helped us build transducers
for transforming HT'ML content for non-PC devices.
The abstractions technically formed an extension to
Java, which we called Blue.

As we gained more experience building these trans-
ducers, we began to notice other abstractions that
were even better to use in building certain kinds of
transducers that were very frequently used. This led
to the development of a language called Teal, which is
used today to support a very large portion of Yahoo!’s
non-pc internet traffic.

The other key challenge in building this software plat-
form was to glue numerous transducers together in or-
der to handle multiple different devices from the same
platform. Guess what our solution was! We came up
with another language, called Green, to specify how
to do it.

The result of a combination of these languages is a
very easy to maintain, highly efficient and extensible
system that supports all of Yahoo!’s non-pc internet
traffic. I attribute the elegant architecture of what’s
in there to key learnings in the construction and im-
plementation of programming languages that I have
gained from 311.

Obviously, not all programming languages are suit-
able for this style of programming. 311 also exposed
me to Scheme, and from there to Common Lisp, both
of which are excellent in supporting this style of pro-
gramming. A fair number of programming languages
(such as Java and C) have certain fundamental char-
acteristics that will enable this style of programming,
but require more work in order to build the abstrac-
tions that are needed.

The beauty of building abstractions as extensions to
languages is that you have the added benefit of not vi-
olating your abstractions for the sake of efficiency—all
you do is make the implementation of your abstrac-
tions smarter. This could be harder to do in some
cases (especially if you haven’t taken 311), but will
overall lead to a much more uniform way of optimizing

8

performance, and code that is much easier to main-
tain (because the optimizations now occupy a module
of their own!)

Anurag’s perspective on separating what you want to do
with how you are going to do it is critical. Why should we
burden with details those who are thinking abstractly about
solving a problem. The details can be the implementation of
the language design or the implementation of the language,
itself. Details are for later, after the ideas are developed and
prototyped. We see this view re-iterated by Jonathan Sobel in
another guise a bit later.

Let’s get back to the topic at hand. First, we must ask
ourselves, “What do we mean by the study of any topic?” By
the study we mean “The application of one’s mental faculties
to the acquisition of knowledge in a particular field or to a
specific subject.” How does one acquire such knowledge? One
should not acquire such knowledge by memorizing a bunch of
facts; looking at a bunch of instances, etc. One acquires such
knowledge by developing a firm foundation of concepts upon
which one can absorb knowledge. And, in my opinion, that
knowledge should be learned by modelling the actual artifact
that one is studying! That is how I have been teaching pro-
gramming languages for a long time.

For example, knowing that a language passes its parame-
ters by value tells me a lot more than a description that explains
call-by-value. Since I consider the call-by-value A-calculus as
my model of call-by-value, I do not need to see any further
description, but I do need to know what items in the language
are values. As the set of values changes, so does my percep-
tion of the language. Both ML and C are purported to be
call-by-value languages, but their values differ considerably.

9

And, we must ask ourselves, “What do we mean by the
study of programming languages?” We mean a semi-formal
analysis of the programming language concepts that have lasted
well beyond a decade of their discovery. I don’t just mean the
concepts in languages, but I mean the collection of the concepts
plus their underlying principles

Most texts teach the features of many languages and ask
students to write programs in these languages, demonstrating
an understanding of the syntax and some features. That is not
what I mean. I want the student to be able to implement (per-
haps crudely) every language that they study; and I certainly
would not burden them with concerns about the syntax of these
languages. I am not saying that syntax is unimportant, it just
does not matter in the study of programming languages, as I
see it.

For example, the concept of lexical scope has been around
in programming languages since at least Algol 60, but of course,
the logicians have used lexical scope for much longer. Their
quantifiers, V and d, relied on lexical scope. In fact, logicians
had a hard time getting substitution right because they were
not used to the subtleties of lexical scope.

Here are some naive relational database system operators,
where a relation is a set of tuples.

(V x E Tuple*) == (andmap (A (x) E) Tuplex)

and

(4 x E Tuple*) == (ormap (A (x) E) Tuplex)

Our goal here is not to capture the cleverness of the implemen-
tation of database systems, but just to allow us to run simple
database programs Our goal is to get the abstraction com-
pletely understood. Look how powerful A is; it simply captures
the notion of binding for the V and 3 quantifiers.

10

Let’s consider another scoping mechanism: dynamic scope.
When you first study scoping, you cannot fail to learn about
dynamic scope. Why? Well, there are two reasons. The first
one is that you are likely to discover dynamic scope first, as
many language designers did, and regrettably still do. The
second reason is that you need to know why dynamic scope is
a mistake. Before you study that, however, you need to know
that the choice of the name of your bound variables should
be up to you. In A-calculus terms a-substitution should be
supported. For example:

(A (x) x) = (O (y) y)

Of course, you cannot always just change the x to y, but
you can use any name that is not used in the expression. For
example,

A () A (y x)))

(A (z) (A (x) (z x)))

We could argue that the study of programming languages
must include at some level this notion of renaming. Anyone
who programs subconsciously knows the a-rule, but it is essen-
tial that the rule be explained. Watch what happens to the
a-rule as we work with map, below.

(define map
(A (f 1s)
(if (null? 1s)
()
(cons (f (car 1ls))
(map £ (cdr 1s))))))

Clearly this is a correct program. We assume that f:a — 3 and
1s = list of o, so we know that the result of this computation
must be of type list of 3. Here is a use of map:

11

(let ((1s ’(1 2 3 4)))
(map (A (x) (cons x 1ls)) 1s))
> ((1 123 4)
(212 3 4)
(312 3 4)
(412 3 4))
This is what we would expect, since Scheme is lexically scoped.
What does this return if let and A are dynamically scoped?
Remarkably, it starts out the same.
((1 123 4)
But, on the second recursion, 1s gets smaller, so it affects the
1s inside the definition of map! Isn’t that a surprise! Should any
language designer be allowed to inflict such horrifying thoughts
on a language user?
((1 123 4)
(2 2 3 4)
(3 3 4)
(4 4))

Look at the defining equations, below. The first one is for
dynamic binding and the second one is for static (or lexical)
binding. When you are not comparing them, the static binding
equation can be simpler.

E[(A (x) M)]env = (A (arg) (A (env) E[M]env|x«arg]))
Versus
= (A (arg) (A (enw) E[M]env[x«arg)))

It is no wonder that we have had some confusion. These
equations differ by exactly one character. That character is
used to distinguish two names: env and enw. I have made my
point about one scope at least being better than another.

12

Here is something else to ponder. What is wrong with this
Scheme program?
(if (=n 0)
(+ n 5)
(not (= (length 1s) 4)))
Nothing. Should we be content with this state of affairs? How
about this one?

((if (= n 0)

5

A (x) (+x7)))
6)

Nothing. Should we be content with this state of affairs?

We should not be happy with either. Why? In the first
case, we see that the value of the conditional is either a num-
ber or a boolean. In the second case, we see that the value of
the conditional is either a number or a function. We should
be uncomfortable thinking about applying 5 to a number. In a
language without types, such as Scheme, this is certainly pos-
sible. In a language, like ML, it is not possible. But, ML still
gives you enough rope to hang yourself. You can design a data
type that says it holds either a number or a function and then
this code can be rewritten with some tagging and untagging,
but at least ML makes it possible. So, it is clear that we must
study types on some level in order to be proficient in under-
standing languages. Languages such as ML and Haskell allow
you to specify or infer types. Java, on the other hand, requires
that the user specify types. That’s an essential distinction.

We don’t want to be bothered with design flaws that have
been dropped into languages by well-meaning designers or im-
plementors. Some examples of this are TEX’s dynamically-
scoped macros, LISP’s dynamic-scope and shallow binding, and

13

Java’s lack of support for tail calls. There are likely very well-
intentioned reasons for these mistakes, but mistakes they are,
nonetheless. We have talked about dynamic scope, and I could
write volumes about problems with macros, so we’ll focus on
the implementation flaw in Java. Those of you who do not
think it is a flaw should take heed that the people at Microsoft
have assured the programming languages research community
that its Intermediate Language for .Net will properly handle
tail calls.

There are lots of good features in Java, so I don’t want you
to think that I am here just to criticize it. Java is being used all
over the world, so it has at least some popularity. In the second
edition of “Essentials,” which has eight chapters, two of them
are devoted to object-oriented concepts, so we feel that under-
standing them is essential. But, there is something wrong with
Java that does not relate directly to object-oriented program-
ming. Guy Steele, one of the two authors of the 1975 paper I
referred to earlier and a co-author of ‘The Java Language Spec-
ification” now works for SUN and he has communicated with
me that he was promised back in 1997 that this flaw would be
fixed. Here it is 2001 and there is still no resolution of this
problem on the horizon.

But, if you study programming languages, you discover
that although there is a problem, through a small number
of correctness-preserving transformations, this problem can be
averted. And by being aware of the problem, you can better
appreciate the merits of languages that manage to avoid it.

We consider this kind of reasoning about one language in
terms of another language to be very much in keeping with the
essense of learning the essentials of a programming language.

14

Most implementations of Java (and C) do not handle tail
calls properly. The problem is not just one of recursive calls,
but method calls, in general, since in object-oriented program-
ming they are one of the primary operations. What you must
do in Java to make recursive programs work does not encourage
the programmer to use recursion, which in principle is rampant
in every method table. When you consider programs such as
operating systems that are designed not to terminate, this is-
sue of efficiency becomes an issue of correctness. But, with the
tools I present today, Java can be okay even if you need to
write recursive programs.

Let’s for the moment assume that the Scheme code that I
write can easily be converted to similarly-structured Java code.
It can; we demonstrate this in Chapter 5 of “Essentials” and
in “A Little Java, A Few Patterns.”

For much of the talk, you will see correctness-preserving
transformations and I will make every attempt to make it clear
how they work, but I have made this lecture public, so that
you can read it at your leisure. The most important thing I
want you to take away from this talk is that these transfor-
mations are simple and logical, that you could use them when
the opportunity presents itself, and that they solve an existing
problem in language implementations that do not handle tail
calls properly as in most implementations of Java and C.

Consider the sum program below.

(define sum
(A (n)
(if (= n 0)
0
(+ n (sum (- n 1))))))
> (sum 1000000)

15

It is simple but contains the necessary attributes. It takes the
non-negative integer n and returns the sum of the integers from
0 to n. This program has an embedded call, referred to as a
nontail call.

Of course, you know that we could implement this partic-
ular program, using an accumulator so that it would contain
no nontail calls. Such programs are said to be in ta:l form.

(define sum

(A (n acc)
(if (= n 0)
acc

(sum (- n 1) (+ n acc)))))
> (sum 1000000 0)

I have chosen rather simple programs that we would likely
not even bother to write, since these are just sums and there
are nice theorems (n? 4+ n)/2 about sums. I only want to show
you the idea and this simple program suffices for our purposes.

If you were to run either of these programs in Java, I can
almost guarantee that they will not produce the right answer.
Why? The problem is that we are relying on the control stack
on each procedure call and the control stack is not very deep.
The presumption by the designers and implementors is that
you are heavily into writing programs with while loops and
assignment statements. But, some programs don’t naturally
take on that shape! The two Java programs will produce the
same result: an exception will be thrown.

I say “almost” guarantee that they will not produce the
right answer, because some Java implementation might work.
Some Java implementation might produce an answer when oth-
ers might fail. So much for portability, but let us not digress.

16

Let’s review. We have written a program in Java that will
not work. Our next goal will be to transform it so that it will.
I want to show you that the seeds of the right answer to
this problem are sitting in the code ready to be sown. The first
procedure is not in tail form, whereas the second one is. This

allows us to rewrite the tail form one in register form.
(define n)

(define acc)
(define sum
A O
(if (=n 0)
acc
{(+~ acc (+ n acc)) ;; (begin (set!
(«+—n (-n 1))
(sum) })))
> {(+ acc 0)

(+ n 1000000)

(sum) }

When we run this program in Java, it still blows up. But,
we are getting closer to our goal. Intending to replace proce-
dure calls with gotos, as a first step we removed all arguments
from calls and passed the arguments through global variables
(or registers), setting them before going to the procedure.

Now, we make a little change that will break our program
by putting it into suspended-goto form.

17

(define sum
(A O
(if (= n 0)
acc
{(+~ acc (+ n acc))
(«<—n (-n 1))
(A O (sum))}
> {(«~ acc 0)

(+ n 1000000)

(A O (sum))}

Instead of invoking the goto label, we freeze and return
it. We observe, however, that (A () (f)) = f, a variant of
the A-calculus n-rule restricted to variables. This results in the
n-suspended-goto form.

(define sum
(A O
(if (= n 0)
acc
{(+~ acc (+ n acc))
(«<—n (-n 1))
sum})))
> {(«~ acc 0)
(+ n 1000000)
sum}

But, now we must invoke the label after it is returned. We
do this in a while loop, which is built into Java and does not
grow the stack. We use false as the return value instead of
acc to force the termination of the while loop. Instead, the
accumulator is dereferenced at the end of the computation.
Labels count as true.

18

(define sum
(A O
(if (= n 0)
false
{(+~ acc (+ n acc))
(«<—n (-n 1))
sum})))
(define run
(A O
{(while (sum) ’no-op) acc}))
> {(+ acc 0)
(+ n 1000000)
(run)}
We introduce another register, which we call action, which al-
lows us to avoid any reliance on the “return” facility of the
language. We simply set the action at each return point. We
place the value returned by sum in the action register, thus
neither relying on the arguments being passed nor the value
being returned, leading to trampoline form.
(define action)
(define sum
(A O
(if (= n 0)
(+ action false)
{(+~ acc (+ n acc))
(«<n (-n 1))
(<« action sum)})))
(define run
(A O
{(while action (action)) acc}))

19

> {(+ acc 0)

(+ n 1000000)

(«~— action sum)

(run)}

We can model the assignment to action in Java by creating an
instance o of a class that contains the sum method and using
it like this: («+ action o). Modelling the setting of action to
false can be accomplished in several obvious ways.

We are relying on fewer and fewer facets of the underlying
runtime architecture. By so doing, we are able to guarantee
that we will not be surprised by it.

We have a correct program that implements tail calls, so
we no longer have the problem alluded to above. But, we should
not have to live in the world of the designer of the language.
We would have preferred that our language already handled
this problem. The designer’s mistakes should not become our
nightmares.

For most programs, it is not always evident that it is pos-
sible to take the program as it is and rewrite it in tail form,
but that is okay, because I am going to show how to do it, in
general.

If you look carefully at the two programs for “sum,” you
will notice that the tail form version has the property that
it should produce the same result as the nontail form ver-
sion. However, the first two numbers “added” in the conven-
tional sum program are 1 and 0, whereas the first two numbers
“added” in the tail form version are n and 0. How is it that
we were able to use the tail-form program? Clearly they are
not the same. We took advantage of the fact that the order of
“additions” in a sequence of numbers does not matter. That
is, we used both the associative and commutative properties of

20

addition. Not every problem is open to such analysis. In fact,
most are not!

So, we need a general way of doing this. Furthermore, we
need a way of doing this that does not rely on anything very
powerful that sits in the host language, in our case, Java or C.

In Chapter 7 of “Essentials,” we warm you up by show-
ing that the interpreter of Chapter 3 can be put into tail form
by just thinking hard about what is going on and following
some guidelines. We also show you how to put the interpreter
into register form. This enables any tail-form program to run
through the interpreter to exhibit iterative control behavior.
But, to be a useful tool in the programmer’s toolbox, we would
hope to be able to transform any program to one that can
be written (and run) in some host language. Such an algo-
rithm exists, and has existed since 1975, with the publication
of the seminal paper by Gordon Plotkin, “Call-by-value, call-
by-name, and the lambda calculus.”

There is a problem with this paper: the result of applying
the algorithm produces unbearably ugly code. It is so bad that
papers have been published on how to remove so-called “ad-
ministrative redexes.” In the earlier edition of “Essentials,”
we took a new approach, which was to think harder about the
nature of the process and less about the mathematics and we
produced a transformation whose output was more readable.
But we found that our algorithm and its explanation were com-
plicated enough that most people ignored that chapter. This
had to change in the later edition. Knowing how to put pro-
grams in tail form is such a fundamental tool.

But, fate lent a hand. My student, Matthias Felleisen,
challenged his student, now my colleague Amr Sabry, to find a
better way to characterize our algorithm. That effort succeeded

21

admirably and now Chapter 8 of the later edition uses Amr’s
and Matthias’s CPS Algorithm.

Now, let’s transform the first sum into preregister-tail form
without taking advantage of the aforementioned properties of
addition. Once in that form, we can transform it to trampoline
form, as above.

We say that the tail-form code resulting from this process
has been written in continuation-passing style. This is an easy
style to learn, but you may also use the algorithm that is given
in “Essentials.”

Let’s take another look at the code:

(define sum
(A (n)
(if (= n 0)
0
(+ n (sum (- n 1))))))
> (sum 1000000)

The first thing we do is take every A-expression and add an
additional argument representing what to do next. In our case,
there is only one such expression, so we add a cont parameter
to sum and apply it to the A-expression’s body. We pass in the
identity function, ¢d, in the outer and inner calls of sum.

Let’s see where we are.

(define id (A (acc) acc))
(define sum
(A (n cont)
(cont
(if (= n 0)
0
(+ n (sum (- n 1) 2d))))))
> (sum 1000000 :id)

22

All the A-expressions have been handled, but we have in-
troduced a new A-expression. Do we have to deal with it, too?
No, since it is just our representation of continuations.

Let’s try to push the continuation through the branches
of the if expression. If the computation in the test part is
simple (loosely “obviously terminates”), then we can push the
continuation into both the consequent and the alternative of
the conditional expression, like this:

(define sum
(A (n cont)
(if (=n 0)
(cont 0)
(cont (+ n (sum (- n 1) 2d))))))
Next, we must deal with the last resulting expression, since it
contains an embedded call (sum (- n 1) :d).
(define sum
(A (n cont)
(if (=n 0)
(cont 0)
(sum (- n 1)
(A (acc)
(cont (+ n acc)))))))

What we did is mostly routine. We made the nontail call
into a tail call by creating a continuation that was responsible
for doing what was left over. In our case, what was left over
was to add n to the accumulator and invoke the continuation.
Now the code is in tail form.

In order to prepare this code to be in register form, we
must dereference every free variable used in the continuation.
This is just a bit subtle. In our case, the one continuation with
free variables is

23

(A (acc)
(cont (+ n acc)))
Its two free variables are n and cont, so we replace the entire
expression by
(let ((n n) (cont cont))
(A (acc)
(cont (+ n acc))))
leading to the preregister-tail form, below. From here we are
free to follow the path to trampoline form.
(define sum
(A (n cont)
(if (= n 0)
(cont 0)
(sum (- n 1)
(let ((n n) (cont cont))
(A (acc)
(cont (+ n acc))))))))
We might be in a language that does not directly support
higher-order functions, such as
(A (acc) ace)
or
(A (acc)
(cont (+ n acc)))
When this happens, we can still use continuation-passing style,
but change the representation of continuations. When you have
put something into continuation-passing style, you know where
the continuations get invoked. We find all the calls of the form
(cont s) and replace them with (apply-cont cont s).

24

(define sum
(A (n cont)
(if (= n 0)
(apply-cont cont 0)
(sum (- n 1)
(let ((n n) (cont cont))
(A (acc)
(apply-cont cont (+ n acc))))))))
(define apply-cont
(A (cont acc)
(cont acc)))
We then replace all the A’s that represent continuations by
datatype constructions. The datatypes contain the free vari-
ables of the A-expressions. In “Essentials,” we use an ML-style
datatype facility that we highly recommend, but for the pur-
pose of this talk, we use an empty list and “cons,” since we
only have two variants and one of them has zero free variables
and the other one has two free variables. The first is the empty
continuation and the second is the continuation that “adds n
to the argument coming in and applies the prior continuation,
cont” leading to the representation-independent-preregister-tail
form.
(define id ’())
(define sum
(A (n cont)
(if (= n 0)
(apply-cont cont 0)
(sum (- n 1) (cons n cont)))))

25

(define apply-cont
(A (cont acc)
(if (null? cont)
acc

(apply-cont (cdr cont) (+ (car cont) acc)))))

> (sum 1000000 :2d)

Now all calls are tails calls, the derefencing of the free
variables happens automatically when cons is invoked, and we
have no higher-order procedures. So, we can proceed following
the same steps we used in the tail form definition of sum leading

to trampoline form.
(define sum
A O
(if (= n 0)
{(+~ cont cont)
(< acc 0)
(<« action apply-cont)}
{(+ cont (cons n cont))
(—n (-n 1))
(<« action sum)})))
(define apply-cont
A O
(if (null? cont)
(< action false)
{(+~ acc (+ (car cont) acc))
(<« cont (cdr cont))
(<« action apply-cont)})))
> {(+ cont id)
(+ n 1000000)
(< action sum)

(run)}

26

We can model the apply-cont dispatch using an abstract method
apply-cont by inheriting from the associated abstract class of
continuation types in the style of Chapter 1 of “A Little Java,
a Few Patterns.” In this example, there will be exactly two
subclasses, one for the continuation modeled by the empty list
and one for the continuation modeled by cons.

Alternatively, we can go back to the version with contin-
uations represented as procedures. If we do that, we can also
treat those procedures as actions.

(define id
(A O

(+ action false)))

(define sum

A O
(if (= n 0)
{(<— acc 0)

(<« action cont)}
{(+~ cont (let ((n n) (cont cont))
(A O
{(~ acc (+ n acc))
(<« action cont)})))
(«<n (-n 1))
(<« action sum)})))

So, we see that when we have a problem because of poor
implementation technology, it is possible to get around this
problem with good correctness-preserving transformations. Our
approach to programming languages relies heavily on such trans-
formations. You may not learn the exact attributes of every
language with our approach, but you will learn to develop your
own perspectives on how to implement things elegantly. When

27

the implementation falls short of expectations, you will be in a
position to live with its shortcomings.

Jonathan Sobel’s comments, below, are as relevant today
as they were when they were written in 1994. Interestingly, the
derivation to trampoline form (work done with Steve Ganz, a
current student) had its beginnings in 1999. (Last warning:
this is even longer than the previous two quotes.)

During my first term of graduate school at Indiana
University, I had the good fortune to be taking the
analysis of algorithms and programming languages
courses at the same time. One of the assignments
in the algorithms course was a major term project in
which we were to implement and optimize the Fast
Multiplication algorithm. Fast Multiplication is a re-
cursive, divide-and-conquer algorithm for multiplying
two numbers, especially large numbers: hundreds or
thousands of digits. (It is also used at the hardware
level, where the units are bits, instead of digits.)

Part of our grade for this project was based on how
fast the program ran. Everyone else started writing in
C, immediately, and even some in assembly language.
Of course, they all spent hours upon hours debugging
as they tried to get their highly optimized programs
running. Modify, re-compile, test; modify, re-compile,
test; on and on....

To everyone’s amazement and surprise, I started writ-
ing in Scheme. I had only seen Scheme for the first
time two months before, in my programming languages
course, but its simplicity made it attractive. Even
more importantly, I had discovered the joy of incre-

28

mental compilation: make a change or an addition
without recompiling everything. I wonder how many
hours I saved.... On the other hand, the speed of
the program was the most important factor, and even
though Chez Scheme (the Scheme implementation we
use here at Indiana University) is amazingly fast, it
can’t quite keep up with C in most cases. So why
choose Scheme?

Each call to fast-multiply produces three recursive
calls to fast-multiply (or to a simple multiply rou-
tine, once you reach small enough numbers). What
I noticed was that each of those three recursive calls
had nearly the same control context. In a simple-
minded implementation in C, that context would be
saved and restored three times, being destroyed after
the return of each call. I thought to myself: If only
I had explicit control over the flow of my program, I
could speed it up significantly by creating that con-
text only once and using it three times, destroying it
only after the return of the third recursive call. Func-
tion calls are so costly! But I would never want to
attempt such a thing from scratch in C.

What I had been learning in my programming lan-
guages course, however, was that I really could man-
age my own control flow if I wanted. Furthermore, I
could start with a simpler, more naive program and
basically derive the sophisticated one by a series of
correctness-preserving program transformations. This
is where Scheme really won. Because of its extremely
algorithmic—almost mathematical—nature, Scheme

29

can be easily manipulated in a sort of algebraic style.
One can follow a series of rewrite rules (just about
blindly) to transform a program into another form
with some desirable property. This was exactly what

I needed.

I started by implementing the algorithm very directly,
following the steps given in our analysis of algorithms
textbook line by line. (I definitely did not spend
much time debugging in this phase.) Then I converted
the program to continuation-passing style. Next I
made the continuations into explicit record structures,
rather than Scheme procedures. Finally, I transformed
all the procedures to pass information via registers,
instead of calling each other with arguments. At this
stage, a procedure call is merely a simple goto, quite
a cheap operation. I completed the entire transforma-
tion in a few hours.

With the Scheme program in its final form, it was a
simple matter to translate it into C. The C program
contained no function calls whatsoever; I really did
use goto. I had never had the courage to use a goto in
C before; it was just too dangerous a tool. It was kind
of fun to use them now, knowing that I was completely
safe in doing so. That was the amazing part: I had
produced a program that I could not have written,
and in any case would not have wanted to write.

Of course, you might be asking yourself, as I was,
“But does it run fast?” Speed was, after all, my main
goal. The answer is a very resounding “Yes!” Out of
a class of about 15 students, only one person beat me

30

(and only barely), and he wrote significant portions of
his program directly in assembly language. The next
fastest after me took nearly twice as long to do the
same work.

Now I know of several more transformations that I
could have applied to my Scheme program before I
translated it into C, which would have put mine in
first place. A runtime profile of my program revealed
that the majority of time was spent in the C rou-
tines malloc and free. I could have eliminated that
heap usage by transforming my program into a form
in which all data allocation and control management
would have been completely stack-based, with an ex-
plicitly managed stack. I could have pushed onto the
stack exactly that control information that I deemed
necessary. There were places where I could have mod-
ified the existing stack record, rather than popping it
off and creating a (similar) new one in its place. These
transformations were also presented in my program-
ming languages course. Unfortunately, at the time
that I did my algorithms project, I did not yet grasp
them well enough to use them.

What I learned from this experience was the impor-
tance of a structured, systematic approach to pro-
gramming. I have found that it is better to write
a simple, direct program to solve a problem, hav-
ing become convinced through experience that radical
structural transformations can come later; and I can
depend on those transformations to preserve the se-
mantics of my program. I have also learned that I can

31

be free to focus on the nature of whatever problem I
am trying to solve, rather than on how efficient my
solution is. Efficiency comes from elegant solutions,
not optimized programs. Optimization is just a few
correctness-preserving transformations away.

Jonathan’s perception is accurate. The study of program-
ming languages yields general-purpose tools that allow you to
do things that are too hard to do without them. His comment
that “I had produced a program that I could not have writ-
ten, and in any case would not have wanted to write.” tells
the whole story. Learn these tools that are standard fare for
researchers in programming languages, and you will be able to
do things that, for you, may well have been impossible.

I want to close today’s talk with one final quote, a quote
from Christopher Strachey.

I always worked with programming languages because
it seemed to me that until you could understand those,
you really couldn’t understand computers. Under-
standing them doesn’t really mean only being able
to use them. A lot of people can use them without
understanding them.

For those who wish to run this code in Scheme instead of
Java or C, here is the definition of while.
(define-syntax while
(syntax-rules ()

((while exp stmts ...)
(let loop ()
(if exp (begin stmts ... (loop)))))))

32

