R. Kent Dybvig. Three Implementation Models for Scheme. University of North Carolina Computer Science Technical Report 87-011 [Ph.D. Dissertation], April 1987 (bibtex).

This dissertation presents three implementation models for the Scheme Programming Language. The first is a heap-based model used in some form in most Scheme implementations to date; the second is a new stack-based model that is considerably more efficient than the heap-based model at executing most programs; and the third is a new string-based model intended for use in a multiple-processor implementation of Scheme. The heap-based model allocates several important data structures in a heap, including actual parameter lists, binding environments, and call frames. The stack-based model allocates these same structures on a stack whenever possible. This results in less heap allocation, fewer memory references, shorter instruction sequences, less garbage collection, and more efficient use of memory. The string-based model allocates versions of these structures right in the program text, which is represented as a string of symbols. In the string-based model, Scheme programs are translated into an FFP language designed specifically to support Scheme. Programs in this language are directly executed by the FFP machine, a multiple-processor string-reduction computer. The stack-based model is of immediate practical benefit; it is the model used by the author's Chez Scheme system, a high-performance implementation of Scheme. The string-based model will be useful for providing Scheme as a high-level alternative to FFP on the FFP machine once the machine is realized.