
Automatic Cross-Library Optimization ∗

Andrew W. Keep
University of Utah
akeep@cs.utah.edu

R. Kent Dybvig
Cisco Systems Inc.
dyb@cisco.com

Abstract

The library construct added to Scheme by the Revised6 Re-
port on Scheme (R6RS) provides a natural boundary for
compilation units, particularly for separate compilation. Un-
fortunately, using the library as the compilation unit for
Scheme programs can interfere with optimizations such as
inlining that are important for good performance of com-
piled programs. Our Scheme system provides a way for
specifying larger compilation units, the library group, which
allows the source code from several libraries and, option-
ally, a program to be compiled as a single compilation unit.
The library group form works well, but is not a good fit for
situations where all of the source code is not available at
compile time, particularly in the case where a library is dis-
tributed in binary form to be used by other library or appli-
cation developers. In order to handle situations like this, we
have introduced a new, automatic, cross-library optimization
mechanism. The automatic cross-library optimization mech-
anism provides some of the benefits of the library group form
without requiring modifications to the program and with-
out requiring libraries to be compiled together. Cross-library
optimization is supported by recording additional informa-
tion in the library binary that can be used when the library
is imported by another library or program. This paper de-
scribes our automatic cross-library optimization and com-
pares it with the existing library group system.

1. Introduction

The Revised6 Report on Scheme (R6RS) [20] introduced
a new way of structuring programs, separating them into
libraries and top-level programs. Each library or top-level
program begins in an empty environment, and the program-
mer is required to import identifiers explicitly. Identifiers
exported from a library are immutable. This means, for in-
stance, that if a library imports the (rnrs) library, the pro-
grammer (and compiler) can be sure that car and cdr re-
fer to built-in primitives and cannot be arbitrarily redefined.
This allows further optimizations, such as open-coding of
primitives, to occur within the library. The closed environ-
ment also makes it easier for the compiler to statically check

∗ Copyright c© 2013 Andrew Keep and R. Kent Dybvig.

that argument counts are correct for primitive calls and for
procedure calls, when the procedure is defined within the li-
brary.

Organizing a program into a set of libraries and a top-level
program makes separate compilation an easier task, since the
libraries and the top-level program each have a closed envi-
ronment with known dependencies. The additional static in-
formation in a library or top-level program allows the com-
piler to perform further optimizations within the library. Un-
fortunately, separating an application into several libraries
and a top-level program interferes with other important op-
timizations, such as inlining, constant propagation, and re-
lated optimizations [10], that could be done if a program
were compiled as a single compilation unit, which are now
effectively stopped at the library boundaries.

The library-group form [14] allows programmers to
combine several libraries and, optionally, a top-level pro-
gram into a single compilation unit. This provides the bene-
fits of cross-library optimization and allows the programmer
to specify which code should be compiled together. A li-
brary group works well when all of the source code the pro-
grammer wishes to combine is available. A library might,
however, be pre-compiled and provided only in binary form
by a third party, or a programmer might wish to use a pre-
compiled binary across several programs.

For this reason, our Scheme compiler now performs cross-
library optimization, when possible, without requiring the
use of a library-group form. It does so automatically,
with no intervention from the programmer. To support this,
when a library is compiled to a file, extra information is
recorded in the resulting binary file, that allows cross-library
optimization to occur when the library is imported into an-
other library or program. Our automatic cross-library opti-
mization applies techniques similar to the approaches used
for cross-module optimization in other functional language
compilers, including the Glasgow Haskell Compiler [1],
Standard ML of New Jersey [23], and OCaml [2], which
provide varying levels of cross-module inlining and related
optimizations. Our contribution is adapting these approaches
to R6RS libraries.

This paper describes the design and implementation of our
automatic cross-library optimization, and how it ties into our

macro expander and source-level optimizer. It describes the
limitations of the automatic cross-library optimization that
result both from our desire to limit optimizations to those
that are likely to be profitable and from the requirements
of the Scheme standard. Finally, it compares the effective-
ness of automatic cross-library optimization with the exist-
ing library-group mechanism.

The remainder of this paper is organized as follows. Sec-
tion 2 provides brief background information on R6RS li-
braries and our implementation of them. Section 3 describes
our automatic cross-library optimization and its limitations.
Section 4 illustrates how our automatic cross-library opti-
mization compares with un-optimized code and code opti-
mized using library groups. Section 5 presents related work,
and Section 6 concludes.

2. Background

The R6RS standard created a new way to organize code for
an application into a set of libraries and a top-level program.
For instance, we could create a new library, (factorial),
that exports the standard factorial function, fact, as follows:

(library (factorial)

(export fact)

(import (rnrs))

(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1)))))))

This simple example illustrates the library form, which
starts with a name, followed by an export clause, followed
by an import clause, followed by the body of the library. The
(factorial) library exports a single identifier, fact, and
imports the standard R6RS library, (rnrs).

Within the body of a library, definitions must precede ex-
pressions. Semantically, variable definitions at the top level
of a library body are treated as being in the same letrec*

form, much like definitions within the body of a lambda.

A top-level program that uses the (factorial) library can
also be defined, as follows:

(import (rnrs) (factorial))

(display "factorial of 5: ")

(write (fact 5))

(newline)

A top-level program starts with an import clause, followed
by the body of the top-level program. Unlike the library

form, the top-level program does not have a syntactic form
that indicates its start and end. Definitions and expres-
sions can also be interleaved in the body of a top-level
program. In this program, the (rnrs) and (factorial)

libraries are imported, and the program writes the string

"factorial of 5: " followed by the calculated factorial
of 5, followed by a newline.

2.1 Library Implementation

The library and top-level program forms are both handled
entirely within the expander of our Scheme compiler. When
a library is compiled, either to a file or in memory, a unique
identifier is assigned to the compilation instance of the li-
brary. The unique identifier is used to ensure that the same
compilation instance of a library is always loaded by a li-
brary or top-level program that depends upon it. This is im-
portant in the presence of procedural macros, where a macro
call in a library could produce different code each time the li-
brary is compiled. Using the incorrect compilation unit could
result in functionality with an inconsistent interface to be im-
ported. For instance, if a macro in a library sometimes uses a
list to implement a tree data structure and sometimes uses a
vector, two compilation instances of the same library might
produce different, and incompatible, results.

As mentioned above, the variable definitions can be seman-
tically expressed using a letrec* form. In our implementa-
tion, each library is expanded into a letrec*, with an entry
for each definition, and the expressions of the library, if there
are any, in the body of the letrec*. In addition to any ex-
pressions in the body, a statement setting a top-level global
corresponding to each exported identifier is set to the local
binding for the definition in the letrec* form. For instance,
our (factorial) example would expand into something
like the following:

(letrec ([fact (lambda (n)

(if (zero? n)

1

(* n (fact (- n 1)))))])

($set-top-level-value! ’fact.7 fact))

where fact .7 is a generated symbol used to represent the
(factorial) library export. The value of the exported
identifier is set using the $set-top-level-value! primi-
tive. This makes the fact procedure available to libraries or
programs that import this library.

In addition to the letrec* that defines the library, the ex-
pander also produces code to install the library in the library
manager. This code also defines a compile-time binding to a
library global for each exported identifier. The library global
contains both the unique identifier for this compilation in-
stance of the library and the name of the identifier. The
expander uses the library global information to determine
when a dependency needs to be loaded and which top-level
global should be referenced for a library global reference.
When a library is imported, the library globals for that li-
brary are made available to the importing library. The library
is also wrapped in a lambda expression that provides an en-
try point in the compiled library. The argument passed into

the lambda expression indicates if the library is being vis-
ited (loaded for its compile-time exports, e.g., macros) or
invoked (loaded for its run-time exports, e.g. procedure def-
initions).

For instance, the (factorial) library expands into code
like the following:

(lambda (tmp)

($sc-put-cte

’fact.7
’(library-global factorial.5 fact.7)
#f)

($install-library ’(factorial) ’() ’factorial.5
’(#[libreq (rnrs) (6) $rnrs]) ’#() ’() ’()

’() void

(lambda ()

(letrec* ([fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1)))))])

($set-top-level-value! ’fact.7 fact)))))

The $sc-put-cte call creates a new library global binding
for the exported fact procedure in the compile-time envi-
ronment. Here, $sc-put-cte adds an entry for the library
export fact .7, the generated symbol that represents the ex-
ported fact function, associating it with the library global,
a list with the library unique identifier, factorial .5, and
the exported symbol fact .7. The library global binding is
an important part of our automatic cross-library optimiza-
tion. The final argument to $sc-put-cte indicates top-level
global information. Since library exports are available when
the library is imported, it is not globally visible, so the final
argument is #f to indicate it is not global.

The $install-library call installs the library into the li-
brary manager and sets up the code to be executed when
the library is visited (for its compile-time exports) or in-
voked (for its run-time exports). The first three arguments
indicate the library name, (factorial), library version, in
this case unspecified, hence (), and the unique identifier
for the library, factorial .5. The next six arguments indi-
cate various types of library dependencies. These include the
original import requirements, listed first and indicating that
the (rnrs) library is imported, and includes the visit de-
pendencies, which must be loaded before the library is vis-
ited, and invoke dependencies, loaded before the library is
invoked. The other dependencies are used internally to de-
termine when libraries should be recompiled, for instance
if an included source file is updated, and to more precisely
specify when each dependency is needed. The last two argu-
ments are the visit code, a thunk called when the library is
visited, and the invoke code, a thunk called when the library
is invoked. In this case, the visit code is simply void because
this library does not export any compile-time identifiers, i.e.,

it does not export macros. The invoke code creates the fact
procedure and sets fact .7 library global export.

3. Automatic Cross-Library Optimization

Naively, one approach to cross-library optimization would
be to include a representation of the source code for the li-
brary so that this source code can be incorporated when the
library is imported. The challenge in this approach is that
any shared-mutable state set up by the library cannot be du-
plicated without changing the semantics, when the same li-
brary is imported into the same session through two different
libraries. The other downside of this approach is that it need-
lessly increases the size of library binaries. Needlessly, be-
cause large procedures would not normally be copied by the
source optimizer [24], which is set up to limit code growth
due to inlining. Hence, source code stored for large proce-
dure would never be used.

Instead, our approach limits the inclusion to a representa-
tion of the source code for exported inlinable procedures
and the constant value for an exported copyable constant.
This information is attached to the exported identifier in the
library global binding. A constant is considered copyable
when copying it will not change the semantics of a program
that uses the constant. The driving decider for this is how
eq? handles the constant. A structured constant, such as a
string, a vector, or a pair, cannot be copied because the con-
stant must be eq? to itself, and copying the constant would
break this property.1 Other Scheme objects, such as symbols,
numbers, characters, or booleans can be copied.2 A proce-
dure is considered inlinable when it contains no free local
variables,3 only copyable constants, and fits within the size
limit when the library is compiled.

The size limit controls the amount of code expansion that the
source inliner will allow when inlining occurs. It is normally
based on the size of the code after inlining but must be based
on the size before inlining here, as we are operating without
knowledge of the call site. The size limit is a parameter
that can be set in the Scheme system to allow the compiler
to keep larger or smaller procedures around for inlining.
Limiting inlinable procedures to those without free variables
both avoids potential problems with referencing an identifier
that is not bound in the context where the source is copied
and any copying of shared mutable state. At this point in

1 Our compiler and linker preserve structure sharing within a single compi-
lation unit, allowing constants to be propagated freely. It does not presently
have any mechanism for preserving structure sharing across compilation
units.
2 A symbol can be copied because our linker preserves sharing of symbols,
a number can be copied because the Scheme standard does not require
numbers to be comparable with eq?, and characters and booleans can be
copied because neither is a heap allocated object.
3 All variables defined in a library are treated as local to allow inlining
within the library, but variables imported from other libraries, including
primitives, are not.

the compiler, variables are specifically local variables, so
references to primitives or globals are not considered free.
The one exception to this is references to imported library
identifiers. Allowing references to library identifiers would
require that library dependencies be updated in libraries that
import the one being compiled. There is currently no facility
for doing this.

3.1 Compiling Libraries

The implementation of automatic cross-library optimization
requires that both the expander and the source optimizer be
aware of the optimization. As described in Section 2.1, def-
initions in a library are bound by a letrec* form, and ex-
ported identifiers are then set in the top-level environment
to the value of the corresponding local variable. To enable
automatic cross-library optimization, the internal represen-
tation of a library global is extended to contain a mutable
field that stores the optimization information for the identi-
fier. For instance, in our (factorial) library example, the
library global binding set in the compile-time environment
is modified to the following:

($sc-put-cte

’fact.7
’(library-global factorial.5 fact.7 . #f)

#f)

the final field in the library global is where cross-library op-
timization information is stored. During expansion of the li-
brary, this field is set to #f, which indicates that no optimiza-
tion information is available.

The expander also generates a node in the internal represen-
tation of the output of the library to indicate to the source op-
timizer that the contained expression is related to the given
library identifier. This changes the assignment of the top-
level identifier from our (factorial) library to the follow-
ing:

($set-top-level-value! ’fact.7
(cte-optimization-loc ’(fact.7 . #f) fact))

where (fact .7 . #f) is the same pair as that included
in the library global binding. This breadcrumb is the only
explicit piece of library information that remains after the
expander finishes expanding the library.

When the source optimizer encounters a cross-library opti-
mization node, it first performs source optimization on the
expression contained in the node and then inspects the re-
sult. If the result is a copyable constant or an inlinable proce-
dure, the optimization field of the associated library export is
modified to contain the internal representation of the expres-
sion. In our example, the cdr of this pair, ’(fact .7 . #f),
would be updated to contain the cross-library optimization
information. This sets up the cross-library optimization, as
the internal representation of a library global is written to

the binary output file for use when the library is imported.
Unfortunately, because the reference to fact is free within
the body of the fact procedure, the fact procedure is not
inlinable. However, we can transform the example, by mov-
ing the loop within the fact procedure as follows:

(library (factorial)

(export fact)

(import (rnrs))

(define fact

(lambda (n)

(let f ([n n])

(if (zero? n)

1

(* n (f (- n 1))))))))

In this case, the library global binding would look something
like the following:

($sc-put-cte

’fact.7
’(library-global factorial.5 fact.7 .

(lambda (n)

((letrec ([f (lambda (n)

(if (zero? n)

1

(* n (f (- n 1)))))])

f)

n)))

#f)

3.2 Importing Libraries

When a library is imported, the expander and source opti-
mizer are responsible for completing the cross-library opti-
mization by replacing references to library globals with the
optimization information, when it is available. Performing
the replacement in the expander, when possible, allows li-
brary dependencies to be more tightly computed, as there
is no dependence on the library if all of the library identi-
fiers used from the library are optimized away. For instance,
when the (factorial) library is imported into the example
program from Section 2, the reference to fact would be re-
placed with the fact procedure code, if we use the inlinable
version of the fact function from the previous section. The
procedure code would be inlined as follows:

(import (rnrs) (factorial))

(display "factorial of 5: ")

(write ((lambda (n)

((letrec ([f (lambda (n)

(if (zero? n)

1

(* n (f (- n 1)))))])

f)

n))

5))

(newline)

Since there is no longer any reference to any exported iden-
tifiers from the (factorial) library, the expander can
discard it as a dependency. The source optimizer can also
(slightly) improve the code by β-reducing the direct appli-
cation of the lambda expression, as follows:

(write ((letrec ([f (lambda (n)

(if (zero? n)

1

(* n (f (- n 1)))))])

f)

5))

When a library global is not in call position in the library
source but is moved into call or test position through inlin-
ing, the source optimizer replaces the library global with the
optimization information. This allows inlining that would
not be possible using only the expander but does not allow
library dependencies, which are fixed by the time source op-
timization occurs, to be dropped.

For example, if we contrive a program like the following,
with the fact procedure in test position:

(import (rnrs) (factorial))

(if fact

(display "factorial")

(display "no factorial"))

(newline)

The source optimizer would produce:

(import (rnrs) (factorial))

(display "factorial")

(newline)

Since the reference to fact is in test position, and a proce-
dure is a non-false value. The import of the (factorial)

library, however, cannot be discarded in this case, since the
source optimizer is performing the inlining instead of the ex-
pander.

3.3 Constants and correctness

The standard requires that if a library export is referenced in
another library or top-level program at run time, the library
must be invoked before the reference is made. We do not vio-
late the letter of this requirement, since the expanded output
does not in fact contain a reference to a propagated or inlined
variable. While this is just a technicality, based on an ex-
tended and thus nonstandard semantics for the expander, nor
do we violate the spirit of the requirement. Given the possi-
bly multiple times at which libraries might or might not be
invoked at both compile time and run time due to phasing, li-
brary init expressions should not, in our opinion, have exter-
nally visible effects.4 Instead, library init expressions should

4 If a library needs to perform externally visible effects, this should be
accomplished via an exported init procedure.

be used exclusively to create internal structures needed by
exported procedures. So, when all of the references to the
variable exports of a library can be propagated or inlined
away (remembering that inlining does not happen for pro-
cedures with post-optimization free variables), the imported
bindings do not depend on the internal structures created by
the init expressions, and the init code need not be run.

The automatic cross-library optimization is inherently lim-
ited. Constructed constants cannot be copied because, if any
two libraries with the same constructed constant were im-
ported, the constants would no longer be eq? to each other.
Only procedure expressions exported from the library that
contain no free variables and no references to library globals
are eligible for external inlining, as they will be lifted out of
their lexical context and do not carry the set of dependencies
needed for the library globals. These procedures are further
limited by the size of the expression, as the inlining process
would normally count only the size of the procedure after
inlining and other optimizations it enables occur. The size
after inlining can be small enough even when the original
expression is too large.

4. Empirical Evaluation

The goal of cross-library optimization is to enable constant
propagation and procedure inlining across library bound-
aries, with all of the additional optimization this often en-
ables, including constant folding, useless code elimina-
tion, and more constant propagation and procedure inlin-
ing [24]. This section illustrates when cross-library opti-
mization is important and compares the automatic cross-
library optimizations with the optimizations performed by
the library-group form.

Applications with frequent calls across library boundaries
will get the most benefit from both of these optimizations.
One of the particular use cases for the automatic cross-
library optimization is to ensure that record accessors and
mutators can be inlined across library boundaries. This ex-
tends procedural record optimizations [15] across library
boundaries. When a library exports larger procedures or pro-
cedures that contain free variables or library references, the
automatic cross-library optimization will not be able to per-
form inlining, where the library-group form will. While
both of these approaches perform similar tasks, the two are
not mutually exclusive. In particular, even applications that
use the library-group form can benefit from automatic
cross-library optimization, when a pre-compiled library is
also used as part of the application.

To illustrate when performance gains are expected, we
present three example libraries, two written by Eduardo
Cavazos and one written specifically to illustrate the dif-
ferences between automatic cross-library optimization and
library groups. All three programs are tested with Chez
Scheme Version 8.9.6 [10], targeting both 32- and 64-bit in-

32-bit 64-bit
Program LG ACLO Both LG ACLO Both

MPL 27% 22% 25% 19% 16% 19%
Matrix -7% 0% -3% 3% 0% 3%

Maze 18% 7% 18% 13% 7% 14%

Table 1. Speedups when using a library group (LG), au-
tomatic cross-library optimization (ACLO), or both (Both)
when compiling with type-checking enabled.

32-bit 64-bit
Program LG ACLO Both LG ACLO Both

MPL 15% 16% 18% 17% 14% 19%
Matrix 4% 0% 4% -6% 0% 0%

Maze 22% 8% 23% 15% 6% 15%

Table 2. Speedups when using a library group (LG), au-
tomatic cross-library optimization (ACLO), or both (Both)
when compiling without type-checks.

struction sets on an Intel Core i7 3960X 3.30 GHz 12-core,
dual processor machine with 64 GB of RAM. Each bench-
mark is run nine times. Before each run, two maximum-
generation garbage collections are performed to help stabi-
lize the timing measurements. The first run is a warm up and
is not timed. The following eight runs are measured, and the
standard deviation is computed to determine if speedups are
significant.

The first program [6] implements a set of tests for the “Math-
ematical Pseudo Language” [8, 9] (MPL), a symbolic math
library. The second uses a library for indexable sequences [5]
to implement a matrix multiply algorithm [11]. The final
application is an adaptation of the maze benchmark from
the R6RS Benchmarks [7]. In the R6RS benchmarks, this
is a single top-level program, originally composed of several
files (according to the comments). We separated the maze
program into a set of libraries, based on the original file de-
marcations indicated in the comments. A few function def-
initions were moved in order to avoid cycles in the depen-
dency graph.

Many small libraries comprise the MPL library. Each basic
mathematical function, such as +, /, and cos, uses pattern
matching to decompose the mathematical expression passed
to it to select an appropriate simplification, if one exists.
The pattern matcher, provided by another library [12], avoids
cross-library calls, as it is implemented entirely as a macro.
The mathematical libraries, however, make use of operations
defined as procedures in other libraries, which cannot be in-
lined across library boundaries without one of the optimiza-
tions described in this paper. The test library also makes
many cross-library calls to both the math libraries and the
testing support library. Thus, there are many cross-library
calls that can be eliminated by using a library group or auto-
matic cross-library optimization. Using a library group alone

results in between a 15% and 27% speed-ups over the sep-
arately compiled version, depending on machine type and
optimization level, see Tables 1 and 2. Because many pro-
cedures used across library boundaries are inlinable, the au-
tomatic cross-library optimization also optimizes the MPL
tests, though not as well, with speed-ups between 14% and
22%, depending on machine type and optimization level, see
Tables 1 and 2.

The matrix-multiply example uses a vector-for-each

form that provides the loop index to its procedure ar-
gument, from the indexable-sequence library. The li-
brary abstracts standard data structure iteration functions
that provide constructors, accessors, and a length func-
tion. The operations it creates, however, are implemented
as macros, so operations defined by these libraries are
expanded into basic operations at their use sites. Three
nested calls to vector-for-each-with-index are used
in matrix-multiply, which expand into inline loops. A
test program calls matrix-multiply on 50 x 50, 100 x 100,
and 500 x 500 matrices. The calls to the multiply opera-
tion are cross-library calls, but the majority of the work
of performing matrix multiple occurs entirely in the ma-
trix multiple library, so we do not expect much benefit from
cross-library optimizations. Using a library group sometimes
results in a small slowdown (between 7% and 3% slower) or
a small speed-up (at 3%), depending on machine type and
optimize level. The standard deviation for this benchmark
is high, however, at around 5%, so the use of the library
group form has little significant impact. Enabling automatic
cross-library optimization, whether by itself or with a library
group, has no impact on this benchmark’s performance. Ta-
bles 1 and 2 provide the speed-up or slowdown for each
machine type.

The maze example is composed of seven libraries used to
specify and solve mazes. Similar to the MPL library, there
are many calls across library boundaries. Several of the pro-
cedures in these libraries are too large to fit within the de-
fault size limit, so we do not expect them to be automatically
inlinable across library boundaries. Automatic cross-library
optimization shows some benefit in this example, but not as
much as the library group. It is a good example of an ap-
plication where the automatic cross-library optimization can
get us part of the way to our optimization goals, but cannot
provide all of the benefits of a library group. Using a library
group results in between a 13% and 22% speed-ups, while
automatic cross-library optimization results in only between
a 6% and 8% speed-ups, depending on machine type and op-
timize level. Tables 1 and 2 provide the speed-ups for each
machine type and optimize level.

For all three benchmarks, using both a library group and
automatic cross-library optimization together results in no
significant improvement over a library group alone.

In our example programs, the difference in time between
compiling the program as a set of individual libraries with
automatic cross-library optimization enabled and as a single
library group is negligible.

5. Related Work

The Glasgow Haskell Compiler (GHC) [1] provides support
for aggressive cross-module optimization [21], with higher
levels of optimization enabling more extensive cross-library
optimization. Similar to our automatic cross-library opti-
mization, these optimizations happen automatically. Unlike
our automatic cross-library optimization, which stores the
library object code and optimization information in a single
file, GHC uses separate files to store the module object code
and the optimization information. Distributing only the mod-
ule object code is easier in GHC’s model, since it is already
separate from the optimization information, however, if the
two files are not kept in sync, it can lead to problems. We
provide a mechanism for stripping optimization information
from a binary library, if there is a desire to distribute only the
library object code.

The Standard ML of New Jersey (SML/NJ) compiler sup-
ports both separate compilation and cross-module analysis
and optimization through two different approaches [3, 19].
The first approach [3] splits functors and higher-order func-
tions into two parts, an expansive part that cannot be in-
lined and an inlinable part that contains only constants and
side-effect free code. Determining the inlinable code, is sim-
ilar to our Scheme compiler’s determination of copyable
constants and externally inlinable procedures. The second
approach [19] utilizes type-directed compilation techniques
to optimize across higher-order modules. Both approaches
have been fully integrated with the SML/NJ compiler.

The OCaml Compiler [2] allows modules to be compiled
separately and includes extra information with the compiled
modules to allow for cross unit optimizations [18]. Similar
to GHC, the OCaml compiler uses separate files to store the
module object code and the optimization information.

The automatic cross-library optimization uses information
encoded in the binary of a compiled library when compil-
ing a new library. Link-time optimization is a related ap-
proach, where optimization takes place when binary libraries
are linked. In this approach, compilation has already hap-
pened for all of the source code, and it is only the bina-
ries that are used in the optimization. Several different ap-
proaches to this technique exist and are beginning to be used
in compilers such as GCC [22] and compiler frameworks
such as LLVM [17]. Instead of performing procedure inlin-
ing at the source level, these optimizers take object code
produced by the compiler and perform optimization when
the objects are linked. The GOld [4] link-time optimizer ap-
plies similar techniques to optimize cross-module calls when
compiling Gambit-C Scheme code into C.

Dynamically linked libraries can also be optimized at link
time [13]. Similar to other link-time optimizations, extra in-
formation in the shared object file is used to perform some
inlining optimizations. Currently, our system does not sup-
port any link-time optimizations, however, it is possible we
could use similar information to that used for our automatic
cross-library optimization.

6. Conclusion

The automatic cross-library optimizations described in this
paper provide a reasonable compromise between the com-
plete cross-library optimization possible when using a li-
brary group and getting no cross-library optimization when
compiling libraries separately. Automatic cross-library op-
timization does not require any intervention from the pro-
grammer, yet can lead to significant improvements in per-
formance, particularly when an application has many calls
across library boundaries.

Interprocedural optimizations performed after source opti-
mization, such as closure sharing and elimination [16] are
enabled when library groups are used. At present, they are
not enabled by automatic cross-library optimization, except
in effect, when inlining causes two or more procedures to be
combined into one. It would be useful to extend automatic
cross-library optimization to support such optimizations.

The requirement to maintain pointer equivalence for non-
immediate constants, even though they are immutable, cur-
rently prevents propagation of such constants, including
strings, pairs, and vectors, etc., across library boundaries,
and currently also prevents automatic cross-library inlining
of procedures whose bodies, post-optimization, contain such
constants. To remedy this, compiler could associate a glob-
ally unique identifier with each constant that might be propa-
gated, and the linker could use this to maintain shared struc-
ture across compilation units. The complexity and overhead
of doing so could be fairly high, considering that each piece
of a complex constant, including each pair in the backbone
of a list constant, would require its own unique identifier.

A better long-term solution is to change the language to relax
the pointer-equivalence requirement for constants to give
the implementation more latitude, as it is already given for
procedures. In our experience, programmers rarely count on
pointer-equivalence of constants, and a programmer always
has the option of explicitly allocating a (mutable) object
for which maintenance of pointer-equivalence is inherently
required.

Acknowledgments

Different parts of Keep’s effort on this work were partially
supported by the DARPA programs APAC and CRASH.
Comments from the reviewers lead to several improvements
in the presentation.

References
[1] The Glasgow Haskell Compiler. URL http://www.

haskell.org/ghc/.

[2] The Caml Language. URL http://caml.inria.fr/.

[3] M. Blume and A. W. Appel. Lambda-splitting: a higher-
order approach to cross-module optimizations. In Proceed-
ings of the second ACM SIGPLAN international conference
on Functional programming, ICFP ’97, pages 112–124, New
York, NY, USA, 1997. ACM. ISBN 0-89791-918-1. . URL
http://doi.acm.org/10.1145/258948.258960.

[4] D. Boucher. GOld: a link-time optimizer for Scheme. In
Proceedings of the 2000 Workshop on Scheme and Functional
Programming, Scheme ’00, 2000.

[5] E. Cavazos. Dharmalab git repository, . URL
http://github.com/dharmatech/dharmalab/tree/

master/indexable-sequence/.

[6] E. Cavazos. MPL git repository, . URL http://github.

com/dharmatech/mpl.

[7] W. D. Clinger. Description of benchmarks, 2008. URL http:

//www.larcenists.org/benchmarksAboutR6.html.

[8] J. S. Cohen. Computer Algebra and Symbolic Computation:
Elementary Algorithms. A. K. Peters, Ltd., Natick, MA, USA,
2002. ISBN 1568811586.

[9] J. S. Cohen. Computer Algebra and Symbolic Computation:
Mathematical Methods. A. K. Peters, Ltd., Natick, MA, USA,
2002. ISBN 1568811594.

[10] R. K. Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2009.

[11] R. K. Dybvig. The Scheme Programming Language. MIT
Press, fourth edition, 2009.

[12] D. Eddington. Xitomatl bazaar repository. URL
https://code.launchpad.net/~derick-eddington/

scheme-libraries/xitomatl.

[13] W. W. Ho, W.-C. Chang, and L. H. Leung. Optimizing the
performance of dynamically-linked programs. In Proceed-
ings of the USENIX 1995 Technical Conference Proceedings,
TCON’95, pages 19–19, Berkeley, CA, USA, 1995. USENIX
Association. URL http://dl.acm.org/citation.cfm?

id=1267411.1267430.

[14] A. W. Keep and R. K. Dybvig. Enabling cross-library op-
timization and compile-time error checking in the presence
of procedural macros. In Proceedings of the 2010 Workshop
on Scheme and Functional Programming, Scheme ’10, pages
66–76, 2010.

[15] A. W. Keep and R. K. Dybvig. A sufficiently smart compiler
for procedural records. In Proceedings of the 2012 Workshop
on Scheme and Functional Programming, Scheme ’12, 2012.

[16] A. W. Keep, A. Hearn, and R. K. Dybvig. Optimizing closures
in O(0) time. In Proceedings of the 2012 Workshop on Scheme
and Functional Programming, Scheme ’12, 2012.

[17] C. Lattner and V. Adve. LLVM: a compilation framework for
lifelong program analysis & transformation. In Proceedings
of the International Symposium on Code Generation and Op-
timization, CGO ’04, page 75, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2102-9.

[18] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml System release 4.00: Documenation
and User’s Guide. July 2012. URL http://caml.inria.

fr/pub/docs/manual-ocaml.

[19] Z. Shao. Typed cross-module compilation. In Proceedings of
the third ACM SIGPLAN international conference on Func-
tional programming, ICFP ’98, pages 141–152, New York,
NY, USA, 1998. ACM. ISBN 1-58113-024-4. . URL
http://doi.acm.org/10.1145/289423.289436.

[20] M. Sperber, R. K. Dybvig, M. Flatt, A. Van Straaten, R. Find-
ler, and J. Matthews. Revised6 report on the algorithmic
language Scheme. Journal of Functional Programming, 19
(Supplement S1):1–301, 2009. . URL http://www.r6rs.

org/.

[21] The GHC Team. The Glorious Glasgow Haskell Compilation
System User’s Guide, version 6.12.1. URL http://www.

haskell.org/ghc/docs/latest/html/users_guide/.

[22] The GNU Project. Link-Time Optimization in GCC: Require-
ments and high-level design, November 2005.

[23] The SML/NJ Fellowship. Standard ML of New Jersey. URL
http://www.smlnj.org/.

[24] O. Waddell and R. K. Dybig. Fast and effective procedure
inlining. In SAS ’97: Proceedings of the 4th International
Symposium on Static Analysis, pages 35–52, London, UK,
1997. Springer-Verlag. ISBN 3-540-63468-1.

