
A Practical and Flexible Flow Analysis for
Higher-Order Languages

J. Michael Ashley
University of Kansas, Lawrence, Kansas
and
R. Kent Dybvig
Indiana University, Bloomington, Indiana

A flow analysis collects data-flow and control-flow information about programs. A compiler can
use this information to enable optimizations. The analysis described in this article unifies and
extends previous work on flow analyses for higher-order languages supporting assignment and
control operators. The analysis is abstract interpretation-based and is parameterized over two
polyvariance operators and a projection operator. These operators are used to regulate the speed
and accuracy of the analysis. An implementation of the analysis is incorporated into and used
in a production Scheme compiler. The analysis can process any legal Scheme program without
modification. Others have demonstrated that a 0CFA analysis can enable optimizations, but a
0CFA analysis is O(n3). An O(n) instantiation of our analysis successfully enables the optimiza-
tion of closure representations and procedure calls. Experiments with the cheaper instantiation
show that it is as effective as 0CFA for these optimizations.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimiza-
tion

General Terms: Algorithms, Design

Additional Key Words and Phrases: abstract interpretation, higher-order languages

1. INTRODUCTION

A flow analysis for a higher-order language collects data-flow and control-flow in-
formation about programs in the language. The information collected can be used
to drive program transformations such as partial evaluation [Jones et al. 1993] and
closure conversion [Steckler and Wand 1997] as well as compiler optimizations such
as type recovery [Shivers 1991] and the selection of closure representations [Shao
and Appel 1994].

In lexically-scoped, higher-order languages a procedure is a first-class value rep-
resented as a closure. A closure is a data structure that encapsulates a procedure’s
code and lexical environment. At a call site the operator is an arbitrary expression

This work was partially supported by NSF Grants CCR-9623753, CDA-9401021,
and CDA-9312614.
A preliminary version of this article was presented at the 1996 ACM Symposium
on Principles of Programming Languages.
Authors addresses: J.M. Ashley, Electrical Engineering and Computer Science De-
partment, Snow Hall 415, Lawrence, KS 66045; R.K. Dybvig, Department of Com-
puter Science, Lindley Hall 215, Bloomington, IN 47405.

2 ·
that must evaluate to a closure at run time. Since it is an arbitrary expression the
operator is generally unknown at compile time.

Flow analysis of higher-order languages is therefore fundamentally different from
the analysis of first-order languages. A flow analysis for a first-order language first
constructs a control-flow graph from the text of the program and then uses it to
compute data-flow information. A flow analysis for a higher-order language, on the
other hand, must simultaneously compute control- and data-flow information since
the operator at a call site must be determined from data-flow information.

Several abstract interpretation-based approaches have been applied to the prob-
lem of flow-analyzing higher-order languages [Ayers 1993; Harrison III 1989; Jagan-
nathan and Weeks 1995; Shivers 1991; Yi and Harrison III 1993]. Each approach
addresses one or more of the following important aspects of the problem:

—accurate treatment of mutable data structures,

—use of type tests to constrain abstract values,

—use of polyvariance to increase accuracy, and

—use of projection (widening) to accelerate convergence to a fixpoint.

This article develops a parameterized analysis that addresses all of these aspects.
It unifies and extends the prior research to synthesize a framework parameterized
over the accuracy and speed of the analysis. Compared to other frameworks, it can
describe a wider range of analyses that vary in accuracy and speed.

The analysis’ implementation is the first truly practical flow analysis for higher-
order programming languages. It is used in a production compiler for Scheme, and
the analysis can process any Scheme program without modification. Furthermore,
while most work on projection operators has been theoretical, the implementation
incorporates a practical projection operator to enforce an O(n) complexity bound
on the analysis.

The analysis is used to enable procedure call and closure representation optimiza-
tions. Since the operator of a call is generally unknown until run time, procedure
call overhead is higher than in first-order languages. The flow analysis can be used
to identify the dataflow value of each operator in the program and use that infor-
mation to generate more efficient code for calls. In some cases a call optimization
allows the environment of the enclosing procedure to be reduced. This enables
the compiler to reduce the size of or to eliminate the enclosing procedure’s clo-
sure. The optimizations work together in that call optimization may enable closure
optimization which may in turn enable more call optimization.

The optimizations justified by the flow analysis yield speedups of up to 16%
on a standard set of benchmarks. Furthermore, we compared two instantiations
of the analysis: a 0CFA [Shivers 1988] instantiation and a linear-time sub-0CFA
instantiation. Our results show that the sub-0CFA analysis is almost as good as
the 0CFA analysis for enabling these optimizations.

The rest of the paper is organized as follows. Section 2 develops the analysis by
first giving a collecting operational semantics for a normalized Scheme language.
The analysis is then given as a simple and intuitive abstraction of the collecting
semantics. Section 3 discusses the implementation of the analysis. Section 4 gives
results on the cost of two instantiations of the analysis framework and their use-

· 3

M = P | (cons M1 M2) | (car M1) | (letrec ((v P)) M2) |
(call/cc M1) | (if (pair? M1) M2 M3) | (begin (set! v M1) M2) |
(M0 . . . Mn)

P = c | v | (lambda (v1 . . . vn) M)
c ∈ Constants
v ∈ Vars

Fig. 1: The core Scheme language CS .

A = (let ((v N)) A) | (letrec ((v N)) A) | (pair? N A1 A2) |
(set! v N A) | (N0 N1 . . . Nn) | halt

N = c | v | (lambdaη (v1 . . . vn) A) | (cons v0 v1) | (car N)
c ∈ Constants

v, k ∈ Vars
η ∈ Tags

Fig. 2: The normalized Scheme language NCS .

fulness for enabling optimizations. Section 5 discusses related work, and Section 6
gives conclusions.

2. THE ANALYSIS

The analysis operates over closed programs in the core language given in Figure 1.
It is a subset of Scheme with a restricted letrec form and some representative
primitives added. While simple, the analysis developed around this core language
can be extended to all of Scheme or ML, including the general letrec form, multiple
return values, variable arity procedures, and programs with free variables.

The language could be given a semantics directly, but it is useful to work instead
with a normalized language. The normalized language is a hybrid language similar
to continuation-passing style (CPS) and A-normal form [Flanagan et al. 1993].
The grammar for this language is given in Figure 2. Terms are elements of the
grammar defined by the nonterminalA. A subexpression in head position is a simple
expression defined by the nonterminal N . The normalized language is similar to
A-normal form in that intermediate values are named and evaluation order is made
explicit. In addition, the car and cdr components of a pair are explicitly named. It
resembles continuation-passing style in that the continuations of procedure calls and
conditionals are represented as source-level procedures. The effect of introducing
continuations at these points is that joins in the control-flow graph are represented
uniformly as procedure entry. Finally, lambda expressions are tagged with elements
from a set Tags, and a halt expression is introduced into the language. Both are
used in the operational semantics given to NCS .

A term in CS is converted to an equivalent term in NCS via the translation
function C[[]].

C[[M]] = [[M]]λn.(let ((v n)) halt)

The auxiliary function [[]] is defined in Figure 3. In both definitions, all source
terms are typeset upright and metaterms are typeset italicized. The definitions are
two-level definitions [Nielson and Nielson 1992]. Since they are syntax-translation

4 ·

[[]] : M → (N → A)→ A

[[v]]κ = κv
[[c]]κ = κc

[[(cons M0 M1)]]κ = [[M0]]λn0.[[M1]]λn1.(let ((v0 n0))
(let ((v1 n1))
κ(cons v0 v1)))

[[(car M0)]]κ = [[M0]]λn0.κ(car n0)
[[(lambda (v1 . . . vm) M)]]κ = κ(lambdaη (k v1 . . . vm) [[M]]λn.(k n))
[[(begin (set! v M0) M1)]]κ = [[M0]]λn0.(set! v n0 [[M1]]κ)

[[(letrec ((v P)) M)]]κ = [[P]]λn.(letrec ((v n)) [[M]]κ)
[[(if (pair? M0) M1 M2)]]κ = [[M0]]λn0.(let ((k (lambdaη (v) κv)))

(pair? n0

[[M1]]λn1.(k n1)
[[M2]]λn2.(k n2)))

[[(call/cc M)]]κ = [[M]]λn.(let ((k0 (lambdaη0 (v) κv)))
(n k0 (lambdaη1 (k1 v) (k0 v))))

[[(M0 M1 . . . Mm)]]κ = [[M0]]λn0.
[[M1]]λn1.

[[Mn]]λnm.(n0 (lambdaη (v) κv) n1 . . . nm)

where variables and tags introduced into the output are fresh.

Fig. 3: A translation function from CS to NCS .

functions, all operators on the right-hand side are dynamic except for the metalevel
operator λ and applications of the function [[]] and variable κ. Uses of these op-
erators are always static. Explicit overlining and underlining has therefore been
omitted since the category of each operator is syntactically determined.

The function [[]] is a linear-time algorithm that is similar to an A-normalization
algorithm [Flanagan et al. 1993]. It takes as arguments an expression M and a
continuation argument κ. The continuation takes a simple expression and returns
a normalized expression, and when invoked, the continuation completes the transla-
tion. Simple expressions are reduced and passed to the continuation. The translated
arguments to cons are let-bound to fresh variables before the reconstructed ex-
pression is passed to the continuation, to preserve call-by-value semantics for cons
applications. For assignment and letrec expressions, the head expression is sim-
plied, and the continuation is processed with κ unchanged. For applications and
continuation capture, the head expressions are simplified and the expression resid-
ualized introducing an additional argument for the continuation. For conditionals
the continuation is residualized to avoid duplicating it. An example translation
from CS to NCS is given in Figure 4.

Defining a flow analysis on NCS follows the usual abstract interpretation-based
methodology [Cousot and Cousot 1977]. First a collecting operational semantics is
defined that assigns an exact meaning to programs. The flow analysis is then given
as an abstract operational semantics defined in terms of the collecting semantics.

· 5

(letrec ((copy (lambda (ls)
(if (pair? ls)

(cons (car ls) (copy (cdr ls)))
’()))))

(copy (cons 1 (cons 2 ’()))))

(letrec ((copy (lambdaη1 (k ls)
(pair? ls

(copy (lambdaη0 (v0)
(let ((v1 v0))

(let ((v2 (car ls)))
(k (cons v2 v1)))))

(cdr ls))
(k ’())))))

(let ((v3 ’()))
(let ((v4 2))

(let ((v5 (cons v4 v3)))
(let ((v6 1))

(copy (lambdaη1 (v12) (let ((v v12)) halt))
(cons v6 v5)))))))

Fig. 4: The procedure copy and its equivalent in normalized Scheme. The example
uses cdr, which is treated analogously to car. The example has been simplified to
eliminate trivial continuations.

2.1 The collecting machine

The collecting machine is an instrumented variant of a CES (code, environment,
store) machine [Felleisen 1987] that executes normalized programs. A CES machine
is a state transition machine that manipulates the code, environment, and store on
each step. The machine does not need to maintain a continuation because NCS
programs are in continuation-passing style.

The collecting machine differs from a standard machine by building a cache as it
executes a program. The machine is defined in Figure 5. The following notation is
used in its description. The term A−→◦ B denotes the set of partial functions from
A to B that have finite domains. A finite function F : A−→◦ B is extended with the
notation F [a := b] where a and b are elements of A and B respectively. The term A∗

denotes the set of tuples of length 0 or more whose elements are all members of A.
Tuples are written 〈x0, . . . , xn〉, but the commas separating elements and the angle
brackets are sometimes omitted for clarity, particularly when tuples are nested. For
example, the tuple 〈a, 〈x0, . . . , xn〉, b〉 is by convention written 〈a, x0 . . . xn, b〉. The
empty set and empty finite function are denoted by ∅.

The machine’s state consists of a term A, an environment E, a store S, and a
cache C. Environments and stores are each represented as finite functions. An
environment maps variables to locations and a store maps locations to values. A
value is either a constant, a closure, or a pair. A cache is a record of the machine’s
execution state. The cache maps an execution context to the store describing
that context. A context is determined by a program point η and an environment.

6 ·

Semantics: Let M ∈ CS , eval(M) = C if

〈C[[M]], ∅, ∅, ∅〉 →+ 〈halt, E, S,C〉

Data specifications:

T ∈ State = A× Env × Store × Cache (machine states)
E ∈ Env = Vars −→◦ Locs (environments)
S ∈ Store = Locs −→◦ Value (stores)
C ∈ Cache = Tags × Env → Store (caches)

Value = c | 〈cl Tags ,Vars∗, A,Env〉 | 〈pr Locs ,Locs〉 (values)

Transition rules:
〈(let ((v N)) A), E, S,C〉 → 〈A,E[v := l], S[l := γ(N,E, S)], C〉

where 〈l〉 = new(〈v〉, S)
〈(letrec ((v N)) A), E, S,C〉 → 〈A,E′, S[l := γ(N,E′, S)], C〉

where 〈l〉 = new(〈v〉, S)
E′ = E[v := l]

〈(set! v N A), E, S,C〉 → 〈A,E, S[E(v) := γ(N,E, S)], C〉
〈(pair? N A1 A2), E, S,C〉 → 〈(pair?(γ(N,E, S))→ A1, A2), E, S,C〉
〈(N0 N1 . . . Nn), E, S,C〉 → 〈A,E′′, S′, C[〈η, E′′〉 :=S′]〉

where 〈cl η, v1 . . . vn, A,E
′〉 = γ(N0, E, S)

〈l1, . . . , ln〉 = new(〈v1, . . . , vn〉, S)
E′′ = E′[v1 := l1, . . . , vn := ln]
S′ = S[l1 := γ(N1, E, S),

. . . ,
ln := γ(Nn, E, S)]

Converting simple expressions to values:

γ(c, E, S) = c
γ(v, E, S) = S(E(v))

γ((cons v0 v1), E, S) = 〈pr E(v0), E(v1)〉
γ((car N), E, S) = S(l0) where 〈pr l0, l1〉 = γ(N,E, S)

γ((lambdaη (v1 . . . vn) A), E, S) = 〈cl η, v1 . . . vn, A,E〉
Fig. 5: Collecting machine

· 7

The domains Vars and Tags are program dependent and thus finite, since a given
program contains only a finite number of variables and lambda expressions.

The transition rules describe a relation between machine states that describes
how the machine executes. When the machine is in a state T , execution proceeds
to the next state assuming that a transition rule matches T and that the meaning
of any auxiliary functions used to compute the subsequent state are well defined.
The machine terminates successfully when it halts in a state with the term halt.

The transition rules are straightforward. For let and letrec expressions the
right hand side is evaluated and the result bound to a fresh location allocated
using the function new . The function takes a sequence of variables and a store S.
It returns a sequence of locations that are not in the domain of S. Assignment
and conditional expressions follow their usual semantics. Both are straightforward
transitions since the right-hand side of an assignment and the test expression of a
conditional are simple expressions. An assignment updates the store with the value
of the right-hand side, and a conditional uses the test expression to select the arm
to which control should be transferred. The mechanics of the test are abstracted
by the auxiliary function pair?, which in an actual implementation would make its
determination based on whether or not its argument evaluates to a pair.

Procedure application must perform three actions: determine to where control
must be transferred, update the environment and store with bindings for the formal
parameters, and update the cache with the current execution state. The operator
is evaluated to obtain the closure to be applied. Its lexical environment is extended
with bindings for its formal parameters where again the function new is used to
allocate fresh locations. The store is updated with bindings for the fresh locations
using the argument expressions to obtain the actual parameters. Finally, the cache
is updated using the closure’s tag η, the extended environment as the execution
context, and the updated store as the description of the machine’s state at that
point. If the operator does not evaluate to a closure or an incorrect number of
arguments are received then the meaning of the application is undefined.

Simple expressions are evaluated using the auxiliary function γ, which is induc-
tively defined over the syntax of simple expressions. It takes a simple expression, an
environment, and a store as arguments. A constant term is mapped to a constant
value, a variable is dereferenced, and a lambda expression is mapped to a closure
that closes over the current environment. For a car expression, the argument is
evaluated to obtain a pair and the store dereferenced to obtain the result value.
If the argument does not evaluate to a pair then the meaning is undefined. For a
cons expression, the locations used for the new pair’s constituents are the locations
to which the argument variables are bound.

As given, the collecting machine in fact implements a flow analysis. After the
machine terminates successfully, a postprocessor can use the cache to determine
control- and data-flow graphs for the program. Unfortunately, the collecting ma-
chine does not terminate for all programs since nonterminating programs lead to an
infinite number of execution states. From the collecting machine, however, it is pos-
sible to derive an abstract machine that implements a computable but approximate
flow analysis.

8 ·
2.2 The abstract machine

The abstract machine, defined in Figure 6, is a computable abstraction of the
collecting machine. It is obtained by collapsing the cache into a finite function.
Since for a given program the sets Tags and Vars are finite, the cache is infinite
only when a variable becomes bound to an infinite number of locations during
program execution. Thus if the set of locations to which a variable may become
bound is restricted to be finite, the cache is guaranteed to be a finite function. Even
for terminating computations it is useful to restrict the set of locations in order to
keep the cache manageable in a practical implementation.

The set of locations is restricted using the following strategy. For each variable
v in a program, take Lv to be the set of locations to which v may become bound
as the collecting machine executes. The set Lv is divided into a finite number of
partitions, and a location is associated with each partition. As an example, take l
to be the location identifying one partition of locations {l0, . . .}. As the abstract
machine executes, it will construct stores that map l to a value that approximates
all of the values to which l0, . . . would be bound in stores constructed by the col-
lecting machine. When the abstract machine terminates, the cache will thus be a
finite approximation of the cache that would have been computed by the collecting
machine.

A value in the abstract machine must approximate a set of values computed by
the collecting machine. It is referred to as an abstract value to distinguish it from
concrete values manipulated by the collecting machine. An abstract value is a set
of concrete values, but the set is always finite, because both the set of environments
and the set of locations are finite in the abstract machine.

The consequences of using caches that are finite functions and abstract values that
are sets of concrete values is reflected in the specification of the abstract machine
given in Figure 6. In the specification, P(A) denotes the powerset of A.

A state in the abstract machine consists of a term, an environment, a store, a
cache, and a pending set. The pending set records partial computations that remain
to be completed by the machine. As in the collecting machine, an environment
maps variables to locations and a cache maps a tag and environment to a store.
The store is defined differently, however, in that a store maps a location to a set
of values. Also, the domain Ŝtore is lifted so that caches are total functions. For
a given program the domain of stores forms a complete partial order (Ŝtore⊥,v).
The operator v is defined to be ⊥ v S and, for all stores S0 and S1,

S0 v S1 ⇔ dom(S0) ⊆ dom(S1) ∧ ∀l ∈ dom(S0).S0(l) ⊆ S1(l)

Several auxiliary functions are used in the machine’s definition. The function
n̂ew plays the same role as new but is restricted as described above to a finite
codomain. This guarantees that the set of locations to which a variable is bound
is finite. The abstract environment is passed as an additional argument so that
variations on the analysis may select locations using the current analysis context.
The function Θ used in the definition of apply is an operator used to control the
speed of the analysis. The machine implements a 0CFA analysis if Locs = Vars,
n̂ew simply returns its first argument, and Θ is the identity function.

Given a term A in an initial state, the machine terminates when there is no
transition out of the current state. It terminates successfully when it ends in a

· 9

Semantics: Let M ∈ CS , êval(M) = Ĉ if

〈C[[M]], ∅, ∅, Ĉ0, ∅〉 →+ 〈halt, Ê, Ŝ, Ĉ, ∅〉
where Ĉ0(η, Ê) = ⊥ for all η ∈ Tags and Ê ∈ Ênv

Data specifications:

T̂ ∈ Ŝtate = A× Ênv × Ŝtore × Ĉache × ̂Pending (machine states)
Ê ∈ Ênv = Vars −→◦ Locs (environments)
Ŝ ∈ Ŝtore = Locs −→◦ P(Value) (stores)
Ĉ ∈ Ĉache = Tags × Ênv → Ŝtore⊥ (caches)
P̂ ⊆ ̂Pending = A× Ênv × Ŝtore (pending sets)

Transition rules:
〈(let ((v N)) A), Ê, Ŝ, Ĉ, P̂ 〉 → 〈A, Ê[v := l], Ŝ[l := γ̂(N, Ê, Ŝ)], Ĉ, P̂ 〉

where 〈l〉 = n̂ew(〈v〉, Ê, Ŝ)
〈(letrec ((v N)) A), Ê, Ŝ, Ĉ, P̂ 〉 → 〈A, Ê′, Ŝ[l := γ̂(N, Ê′, Ŝ)], Ĉ, P̂ 〉

where 〈l〉 = n̂ew(〈v〉, Ê, Ŝ)
Ê′ = Ê[v := l]

〈(set! v N A), Ê, Ŝ, Ĉ, P̂ 〉 → 〈A, Ê, Ŝ[Ê(v) := γ̂(N, Ê, Ŝ)], Ĉ, P̂ 〉
〈halt, Ê, Ŝ, Ĉ, P̂ 〉 → 〈A, Ê′, Ŝ′, Ĉ, P̂ − {〈A, Ê′, Ŝ′〉}〉

where 〈A, Ê′, Ŝ′〉 ∈ P̂
〈(pair? N A1 A2), Ê, Ŝ, Ĉ, P̂ 〉 → 〈halt, Ê, Ŝ, Ĉ, P̂ ′〉

where P̂ ′ = (pair?(γ̂(N, Ê, Ŝ))→ {〈A1, Ê, Ŝ〉}, ∅) ∪
(nonpair?(γ̂(N, Ê, Ŝ))→ {〈A2, Ê, Ŝ〉}, ∅)

〈(N0 N1 . . . Nn), Ê, Ŝ, Ĉ, P̂ 〉 → 〈halt, Ê, Ŝ, Ĉ′, P̂ ′〉
where {x0, . . . , xm} = γ̂(N0, Ê, Ŝ)

f = apply(Ê, Ŝ,N1 . . . Nn)
〈Ĉ′, P̂ ′〉 = (f(x0) ◦ . . . ◦ f(xm))〈Ĉ, P̂ 〉

Converting simple expressions to values:

γ̂(c, Ê, Ŝ) = {c}
γ̂(v, Ê, Ŝ) = Ŝ(Ê(v))

γ̂((cons v0 v1), Ê, Ŝ) = {〈pr Ê(v0), Ê(v1)〉}
γ̂((car N), Ê, Ŝ) = Ŝ(l0) ∪ . . . ∪ Ŝ(ln)

where {l0, . . . , ln} = {l0 | 〈pr l0, l1〉 ∈ γ̂(N, Ê, Ŝ)}
γ̂((lambdaη (v1 . . . vn) A), Ê, Ŝ) = {〈cl η, v1 . . . vn, A, Ê〉}

Applying a closure in an abstract context:

apply : (Ênv × Ŝtore ×N∗)→ Value → (Ĉache × ̂Pending)→ (Ĉache × ̂Pending)

apply(Ê, Ŝ,N1 . . . Nn)(〈cl η, v1 . . . vn, A, Ê
′〉)〈Ĉ, P̂ 〉 = 〈Ĉ[〈η, Ê′′〉 := Ŝ′′], P̂ ∪ P̂ ′〉

where 〈l1, . . . , ln〉 = n̂ew(〈v1, . . . , vn〉, Ê, Ŝ)
Ê′′ = Ê′[v1 := l1, . . . , vn := ln]
Ŝ′′ = Θ(Ĉ(η, Ê′′) t Ŝ[l1 := γ̂(N1, Ê, Ŝ), . . . , ln := γ̂(Nn, Ê, Ŝ)])
P̂ ′ = (Ĉ(η, Ê′′) = Ŝ′′)→ ∅, {〈A, Ê′′, Ŝ′〉}

Fig. 6: Abstract machine

10 ·
state with the term halt and an empty pending set. As the machine executes, it
builds a progressively more general cache until it is a safe approximation of the
cache computed by the collecting machine. As with the collecting machine, the
cache computed by the abstract machine represents the output.

The evaluation function γ̂ builds an abstract value from a simple expression. For
expressions that evaluate to a single concrete value, that value is injected into a
set to form an abstract value. The argument of a car expression evaluates to an
abstract value that may contains multiple pairs. Its value is therefore the union of
the car of each pair in the set, and its value is unspecified if there are nonpairs in
the abstract value of the argument.

The execution rules of the abstract machine are similar to those of the collecting
machine but must also take into account that a value is now a set. The rules
for let and letrec are essentially identical to their counterparts in the collecting
machine. For an assignment, the store is updated with the abstract value of the
right-hand side. There is no need to union the new value with the old value at the
assigned location as the least upper bound operation at the next program point will
merge the old value with the new value in the continuation. For a halt expression,
the next pending computation in P is retrieved and the machine restarted. For
a conditional, the test evaluates to an abstract value containing several concrete
values. Some may be pairs and some may not be. The function pair? adds the true
arm to the pending set if the test value contains a pair. Likewise, nonpair? does
the same for the else arm if the test value contains something other than a pair.

The application rule must anticipate the operator evaluating to a set of closures.
The auxiliary function apply is a curried function used to apply each closure to its
arguments. The environment, store, and arguments are constant for each closure
application. They are combined by apply to obtain a function f . The function f
when applied to a closure returns a new function that maps a cache and pending
set to a new cache and pending set. The new function is applied to each closure and
the results are composed to build a transformer that takes a cache and pending set
and returns a new cache and pending set. If a nonclosure is applied the machine’s
behavior is unspecified.

When apply has received all of its arguments it updates the cache with a new
store S′ and perhaps adds an element to the pending set. The store S′ is obtained
in three steps. First, the incoming store is extended with bindings for the formal
parameters and projected using the operator Θ. The least upper bound of the result
and the program point’s old store is then taken. The pending set is updated if the
new store S′ is different from the old store recorded by the cache, and the added
tuple 〈A,E′′, S′〉 indicates that the abstract machine must eventually evaluate the
term A in environment E′′ and store S′.

2.3 Regulating accuracy and speed

The functions n̂ew and Θ regulate the speed and accuracy of the analysis. The
function n̂ew primarily regulates accuracy by splitting environments. Environments
are split by defining n̂ew such that different locations are associated with variables
based on the analysis context. The projection operator Θ is used mainly to increase
the speed. By defining Θ so that for all Ŝ ∈ Ŝtore, Ŝ v Θ(Ŝ) the convergence to a
stable cache is accelerated.

· 11

While n̂ew tends to regulate accuracy and Θ tends to regulate speed, the two
functions each have an impact on both accuracy and speed. Using n̂ew to create
a 1CFA analysis, for instance, yields a more accurate analysis that is O(2n) in the
size of the input program. Using Θ to accelerate the analysis usually results in a
solution that is not the least solution, affecting the accuracy of the analysis.

As an example of the machine’s output, consider the normalized Scheme program
in Figure 4 and assume a 0CFA analysis in which Θ is the identity function and n̂ew
projects its first argument. Once the machine terminates the cache will associate a
store with each program point. A portion of the store on entry to copy would be

ls = {〈pr v6, v5〉, 〈pr v4, v3〉, ()}
v6 = {1}
v5 = {〈pr v4, v3〉}
v4 = {2}
v3 = {()}

In particular, the arguments bound to ls have been collapsed into one set.
A 1CFA analysis can be implemented by modifying n̂ew so that it allocates

locations based on the shape of the environment at each call site. Suppose the call
site in the body of the let binding for copy is labeled a and the call site in the
definition of copy is labeled b. The store on the initial call to copy would bind ls
as follows.

lsa = {〈pr v6, v5〉}
v6 = {1}
v5 = {〈pr v4, v3〉}
v4 = {2}
v3 = {()}

The store on all recursive calls to copy would bind ls as follows.

lsb = {〈pr v4, v3〉, ()}
v4 = {2}
v3 = {()}

For this program the abstract machine creates two cache entries for the program
point corresponding to entry into copy. A compiler might use the more refined
information to inline the procedure copy at the initial call site and then perform
constant folding and copy propagation based on the exact information available at
the initial call site.

The specification in Figure 6 supplies little information to the two functions. A
practical implementation will often provide more, and we give two examples to
illustrate. In each case, the abstract machine must be modified to transmit the
additional information. The first example shows how n̂ew may be extended to
improve the accuracy of the analysis. The second example shows how Θ may be
implemented improve the speed of the analysis. The two examples depend on the
following subsets of the domain Value.

Pairs = 〈cl Tags,Vars∗, A,Env〉
Closures = 〈pr Locs,Locs〉

12 ·
2.3.1 Splitting on argument types. Our splitting strategy is similar to the split-

ting strategy used by Schism [Consel 1993]. In Schism, the environment is split
based on the binding times of a procedure’s arguments. Our splitting strategy
simply splits based on the types. The domain of locations is Vars × Types where
Types = {const , pair , closure}. The definition of n̂ew must also be modified to ac-
cept the values to be bound to the locations. A definition of n̂ew that implements
the splitting strategy is

n̂ew(〈v1, . . . , vn〉, 〈x1, . . . , xn〉, Ê, Ŝ) = 〈v1, type(x1)〉 . . . 〈vn, type(xn)〉

where type(x) =

 const if x ∩Constants 6= ∅
pair if x ∩ Pairs 6= ∅
closure if x ∩Closures 6= ∅

It is not possible for values to be mixed, e.g., constants in a value associated with
a location typed as a pair, since the primitive operations generate singleton sets,
and the apply function in conjunction with the redefined n̂ew function maintains
the partitioning as analysis proceeds.

2.3.2 Collapsing pairs. As defined, the analysis maintains an abstract pair for
each occurence of cons evaluated in each analysis context. The operations on pairs
do not take advantage of this separation, however. The separation would be used
only in a polyvariant analysis in which n̂ew made splitting decisions based on the
separation. If this is not the case, the efficiency of the analysis could be improved
by folding pairs.

The following defines a projection operator Θ that implements this strategy. It
takes an additional argument: the locations just added to the store by the apply
function. The abstract value associated with each location is collapsed by folding
the abstract values of the components of all the pairs in the abstract value. A rep-
resentative pair is selected to represent the folded pairs and the others are removed
from the abstract value.

Θ(l1 . . . ln, Ŝ) = refine(l1, refine(. . . , refine(ln, Ŝ)))

refine(l, Ŝ) =
{
Ŝ if Pairs ∩ Ŝ(l) = ∅
collapse(l, Ŝ) otherwise

collapse(l, Ŝ) = Ŝ[l := (Ŝ(l)− Pairs) ∪ {〈pr l1, l2〉},
l1 :=

⋃
{Ŝ(l1) | 〈pr l1, l2〉 ∈ Ŝ(l)},

l2 :=
⋃
{Ŝ(l2) | 〈pr l1, l2〉 ∈ Ŝ(l)}]

for some 〈pr l1, l2〉 ∈ Ŝ(l)

2.4 Correctness

The abstract machine is correct if it terminates for all programs and, upon termi-
nation, its cache is a safe approximation of the collecting machine’s cache.

The machine runs until the pending set is empty, so the machine terminates if a

· 13

finite number of program points are added to the pending set. Since n̂ew produces
a finite number of locations, the stores manipulated by the machine are each finite
and together form a finite complete partial order under v. Since the store at a
program point is updated monotonically, only a finite number of programs points
can be added to the pending set. Hence, the machine always terminates.

The safety of the analysis may be established by reasoning about corresponding
execution traces of the abstract and collecting machines. A proof would proceed
by arguing that the collecting machine’s cache at each execution step is safely
approximated by the cache in the abstract machine when the abstract machine
terminates. This may be shown by induction on the number of steps in the collecting
machine’s execution trace. A complete proof may be found in a related technical
report [Ashley and Dybvig 1998].

3. IMPLEMENTATION

We have incorporated the analysis into the Chez Scheme [Dybvig 1994] compiler
and used it to justify certain program optimizations. The compiler processes ANSI
Scheme and directly supports multiple return values [Ashley and Dybvig 1994] and
a variable arity procedure interface [Dybvig and Hieb 1990].

As defined in Section 2, the analysis can process only closed programs, i.e., pro-
grams with no free variables other than recognized primitives. This is unacceptable
for a realistic implementation, since this restriction implies that program parts can-
not be analyzed in isolation. The actual implementation of the analysis therefore
handles free variable references by introducing a unique abstract value {unknown}
to denote the value of a free variable reference.

When unknown is used as a closure in an application, the arguments of the
application escape. The consequences of the escape depends on the escaped value.
If the value is a procedure, the analysis must assume that the procedure is applied to
arguments that have the abstract value {unknown}. For data structures, the values
bound to all accessible locations also escape, and furthermore, the analysis must
conservatively assume that in the continuation of the call all of the structure’s
mutable locations have the abstract value {unknown}. Finally, unknown values
must be assumed to be both pairs and nonpairs in the handling of conditionals.

The abstract machine’s behavior when operators are applied to illegal values is
unspecified, but the implementation must make a commitment. There are two
choices. If at run-time the type error would result in a reentrant continuation
the implementation must assume the expression could evaluate to any value, i.e.,
{unknown}. If it is not reentrant, the implementation may assume the abstract
value of the expression is the empty set. In our implementation, error continuations
are not reentrant and the latter strategy is used.

The formal specification of the analysis does not explicitly use type tests to con-
strain abstract values but this is done in the implementation. This is accomplished
by rebinding the tested variable to a new location in each arm of the conditional
and filling the locations with the constrained values of the variable [Heintze 1994].
When control leaves the lexical context of the conditional, the variable reverts to
its former binding.

While the operational specification of the analysis may be seen as an interpreter,
the implementation stages the interpreter so that code is compiled to closures and

14 ·
the closures then executed. The implementation accepts the Chez Scheme com-
piler’s intermediate representation as input and dynamically generates closures that
are executed to obtain the solution.

Closures are generated dynamically since it would be impractical to generate
them in a single preprocessing step. Closure generation is dependent on the ab-
stract context in which an expression is analyzed. In a polyvariant analysis the
number of potential contexts can be quite large, even exponential in the size of the
program, but during analysis only a small fraction of the contexts may actually be
encountered. Hence, it is more practical to generate closures lazily.

The analysis as specified in Section 2 is sensitive to where assignments occur in
the control flow of a program. In other words, the abstract value of a variable
at a control point prior to an assignment may be completely different from the
value at the control point following the assignment. This is more precise than an
analysis that is control-flow insensitive to when assignments occur. In a control-flow
insensitive analysis, the most approximate value of a variable is used at all points
in the control-flow graph. Set-based analysis [Heintze 1994] is an example of a flow-
insensitive analysis. A flow-sensitive analysis may be beneficial in languages that
use assignment more frequently, e.g., object-oriented languages. Scheme, however,
does not encourage assignment, and assignments occur relatively infrequently.

Both flow-sensitive and flow-insensitive versions of the analysis framework are
implemented. The flow-insensitive version is straightforward to implement effi-
ciently and does not differ much from the constraint solver for a set-based anal-
ysis [Flanagan and Felleisen 1995; Heintze 1994]. The flow-sensitive version can
also be implemented efficiently by using a global store for immutable locations and
incrementally extending stores where updates occur. A combination of caching and
lazily computing least upper bounds then yields a fast implementation.

The two implementations have comparable performance, and for the benchmarks
reported the information collected was essentially identical for purposes of enabling
optimizations. The flow-insensitive implementation, however, is significantly less
complex than the flow-sensitive version. We therefore use the flow-insensitive ver-
sion in the compiler.

4. EVALUATION

Instantiations of the analysis framework can be used to enable compiler optimiza-
tions. Procedure inlining, for example, has been justified by 0CFA and polynomial-
1CFA instantiations [Ashley 1997]. We also use two instantiations to enable a set of
call optimizations described below. One instantiation is 0CFA, but a 0CFA analysis
is O(n3). This upper bound prevents its unconditional use in a production com-
piler. In order to balance compile-time speed with the quality of generated code, it
is important to know if a faster but less accurate analysis is still useful for enabling
optimizations.

To determine this, the framework is also instantiated to obtain an analysis that is
faster but less accurate than 0CFA. This is accomplished by retaining the same n̂ew
function used in the 0CFA instantiation but using a nontrivial projection operator
Θ. The projection operator tracks the number of times the cache has been updated
at each program point. If the number exceeds a threshold n at some point, the
cache at that point is updated with a store projected from the new store. The

· 15

projected store is similar to the new store except that the values responsible for
the update are considered escaping and unknown is substituted in their place. If
the threshold is n, this projection operator limits the analysis to a worst case of
n + 1 passes over the program. Setting n = ∞ results in a 0CFA analysis for any
program input to the analysis.

As an example consider the following program with n = 1.

(let ((f (lambda (x) x)))
(f 2)
(f #t))

During analysis the cache describing the store on entry to the procedure f will be
updated twice. On the first update the location bound to x will have the abstract
value {2}. On the second update it will be {2, unknown} since the threshold will
be exceeded and the value causing the update, i.e., the boolean #t, will be replaced
with unknown.

Limiting the number of passes over a program yields a class of analyses we call
sub-0CFA. Therefore setting n to some natural number yields an approximation
of 0CFA. For any given program, however, there exists an analysis in the sub-
0CFA class that is identical to 0CFA since the analysis always terminates in a
finite number of iterations. While any analysis with a finite threshold is a sub-
0CFA analysis, letting n = 1 yields an inexpensive analysis we call sub-0CFA in
our evaluation.

In exchange for a linear-time analysis, the projection operator may force some
program points to be generalized. The precision lost in the generalization is con-
tained by the analysis in two ways. First, when a program point is generalized,
the information that is already known at that point is not discarded. Only new
information is replaced with the abstract value {unknown}. Second, only unstable
program points are generalized. For example, suppose n = 5 and the following
program is analyzed.

((lambda (f g) (f 1) (g 2))
(lambda (x) . . .)
(lambda (y) . . .))

Also assume that the code for f stabilizes in three iterations and the code for
g stabilizes in ten iterations. The flow analysis will be forced to generalize the
information about g, but it will not have to generalize the information about f
since the control- and data-flow for f does not depend on g.

Procedure representation and procedure call are more complex in Scheme than
in first-order, statically-typed languages. Because procedures are first-class, the
evaluation of a lambda expression yields a closure consisting of the procedure’s
code and the environment in which the expression was evaluated. In addition, the
operator at a call site is generally unknown so performing a procedure call is more
elaborate than usual. It involves steps that include

(1) evaluating the operator into a reserved closure pointer (cp) register,
(2) performing a type-check to ensure the operator is a procedure,
(3) retrieving the code pointer from the operator’s closure,
(4) jumping to the code referenced by the code pointer, and

16 ·
(5) ensuring that the correct number of arguments have been passed.

The compiler uses the results of the analysis to optimize procedure calls and avoid
run-time closure construction. Procedure calls can be optimized in several ways.
The type check can be eliminated if the operator will always evaluate to a procedure.
The code pointer in the closure does not need to be referenced if the operator
always evaluates to procedures built from the same lambda expression. Instead,
the compiler can emit a direct jump to the applied procedure’s code, bypassing the
argument-count check on the callee’s side. A direct call to a procedure that does not
access its free variables can be further optimized by not loading the procedure into
the cp register. This last optimization also implies that the expression evaluated
to yield the procedure can be considered useless code and eliminated if it cannot
cause a side effect.

Closure construction can be avoided if the closure has no free variables that will
be referenced. Since the compiler is incremental and code is dynamically linked, a
closure with no referenced free variables can be constructed once at compile time
and linked into the generated code stream. The closure can be eliminated entirely if
it satisfies the additional property that its code pointer is never needed. As implied
by the above optimization, the code pointer is unneeded if all calls to the procedure
are direct calls.

In the example below, both calls to f are recognized as direct calls.

(letrec ((f (lambda (x) (f x))))
(car (f 0)))

No closure need be constructed, the argument count and type checks can be avoided,
the cp register does not need to be loaded, and all control transfers are direct jumps
to the destination.

The following example computes factorial of 5 in continuation-passing style.

(letrec ((f (lambda (x k)
(if (= x 0)

(k 1)
(f (− x 1) (lambda (v) (k (∗ x v))))))))

(f 5 (lambda (x) x)))

Again, the procedure bound to f has no free variables, so it can be eliminated and
calls to it are direct calls. Applications of the continuation can also be optimized
by eliminating the type checks and argument count checks.

The final example below illustrates two more optimizations.

(let ((f (lambda (x) ((car x) 5))))
(f (cons (lambda (a) a) ’())))

First, the lambda expression (lambda (a) a) has no free variables and its value
can therefore be constructed at compile time. The value of (car x) is a procedure
constructed from a known lambda expression, so the call is a direct call, the cp
register does not need to be loaded, the type and argument count checks can be
avoided, and the jump is a direct jump. In addition, since the expression (car x)
cannot cause a side effect, the evaluation of this expression can be omitted at run
time.

· 17

Benchmark lines Description

texer 3,000 A Scheme pretty-printer with TEX output
similix 7,000 Self-application of the Similix [Bondorf 1993] partial evaluator
ddd 15,000 A hardware derivation system [Bose 1991] deriving a Scheme

machine [Burger 1994]
conform 450 A program that manipulates lattices and partial orders
dynamic 2,200 A dynamic type inferencer applied to itself
earley 650 Earley’s algorithm for generating parsers for context-free grammars
em-fun 490 EM clustering algorithm in functional style
em-imp 460 EM clustering algorithm in imperative style
graphs 500 A program that counts the number of directed graphs with

particular properties
interpret 1000 A Scheme interpreter evaluating the takl [Gabriel 1985] benchmark
lattice 200 A program that enumerates the lattice of maps between two lattices
matrix 550 A program that tests whether a matrix is maximal among all

matrices obtained by reordering rows and columns
maze 800 A hexagonal maze generator
nbody 850 A program that computes gravitational forces using the

Greengard multipole algorithm
splay 950 A program that builds splay trees

Table I. Benchmarks

The Chez Scheme compiler was modified to use the flow analysis to enable these
optimizations. How well the analysis enables the optimizations was measured by
running a series of benchmarks with the sub-0CFA and 0CFA analyses. The bench-
marks are described in Table I. All were run without modification. The first three
benchmarks consist of numerous top-level definitions that are separately analyzed
and compiled. The remaining benchmarks are self-contained and are therefore
block-analyzed and compiled.

Table II shows how long each benchmark takes to run with optimizations disabled,
how much time it takes the sub-0CFA and 0CFA analyses to process the benchmark,
and the speedups obtained with the optimizations enabled. All times are in seconds
and are collected on an Intel 80686 with a 256K level 2 cache running Linux kernel
2.0.18. The data indicates that there is usually not much difference in analysis
time between sub-0CFA and 0CFA. On the other hand, for some benchmarks 0CFA
takes significantly longer, and for other benchmarks 0CFA is actually faster. 0CFA
is sometimes faster because of a small constant overhead associated with the sub-
0CFA projection operator and the handling of an increased number of unknown
values. The run-time speedups obtained by the optimizations are in the range of
immeasurable to 16%. Furthermore, there is no significant difference between the
sub-0CFA and 0CFA analyses in terms of how much optimization they can enable.
Speedups for the first three benchmarks were relatively poor, but the fact that they
were subject to separate compilation explains the results.

The effects of the two analyses are also measured quantitatively. We instrumented
the compiler to collect compile-time information about calls generated and run-time
information about calls executed. Likewise, compile-time and run-time information
about closure construction is collected. This data is given in Tables III and IV. For
each benchmark, data is given first for the sub-0CFA analysis and then the 0CFA

18 ·
unoptimized analysis time run-time speedup

benchmark run time n = 1 n =∞ n = 0 n =∞
texer 1.18 0.37 0.39 6% 5%

similix 10.73 1.36 1.25 1% 1%
ddd 15.76 0.38 0.46 0% 0%

conform 0.22 0.05 0.05 9% 9%
dynamic 0.25 0.36 0.34 0% 0%

earley 0.08 0.06 0.07 12% 12%
em-fun 46.72 0.08 0.08 5% 5%
em-imp 27.09 0.08 0.08 5% 5%
graphs 65.86 0.04 0.04 6% 7%

interpret 1.10 0.55 3.12 0% 0%
lattice 40.36 0.03 0.04 9% 9%
matrix 38.81 0.06 0.08 7% 7%

maze 8.12 0.06 0.06 9% 9%
nbody 34.30 0.21 0.20 16% 16%
splay 0.27 0.06 0.06 14% 14%

Table II. The table measures for each benchmark its running time with optimizations disabled,
the compile-time costs of the analyses, and the run-time performance increase after each analysis
is used to drive optimizations. Times are given in seconds.

analysis. The static data gives information about operations generated by the
compiler. The dynamic data gives information about operations executed at run
time. The analyses affect neither the number of call operations for which code is
generated nor the number of operations actually performed. Rather, they affect
only how the operations were optimized. The distribution of the optimizations are
given in the bar graphs.

The data on procedure calls is divided into four categories.

noload calls where the jump was a direct branch to the destination
and the cp register did not need to be loaded

direct calls where the jump was a direct branch and the cp reg-
ister was loaded with the called procedure

nocheck calls where the jump had to go through the code pointer
but the type check could be omitted

unoptimized calls that could not be optimized

The distribution graphs showing this data are interesting in two ways. First, the
cheaper sub-0CFA analysis identifies the same noload and direct call sites as the
0CFA analysis, and these calls usually account for most of the dynamic calls in a
program. Second, the 0CFA analysis improves on the sub-0CFA analysis precisely
by identifying those sites where the operator is definitely one of a set of procedures.
In the benchmark suite, the programs lattice, graphs, nbody, and splay all bene-
fit from the extra precision of 0CFA, but the observable difference in run-times is
insignificant. In general, a program that makes extensive use of higher-order pro-
cedures, e.g., a program in continuation-passing style, will benefit from the extra
precision of the 0CFA analysis.

The data on closures falls into three categories:

· 19

benchmark static distribution dynamic distribution

texer 466 2777456

similix 1687 4225614

ddd 704 6079631

conform 93 501388

dynamic 488 107775

earley 141 161848

em-fun 193 107266406

em-imp 158 26854673

graphs 68 275780888

interpret 313 11512969

lattice 69 230780907

matrix 130 91030295

maze 60 20171566

nbody 189 87574493

splay 106 924001

noload direct nocheck unoptimized

Table III. Static and dynamic distribution of optimized procedure calls. The data for sub-0CFA
is given above the data for 0CFA.

20 ·

benchmark static distribution dynamic distrubution

texer 177 324890

similix 1206 574768

ddd 963 445518

conform 69 193774

dynamic 164 3466

earley 72 51756

em-fun 120 42800099

em-imp 93 11526013

graphs 37 113065514

interpret 156 193

lattice 39 22852456

matrix 62 26500919

maze 26 2158582

nbody 95 21263311

splay 59 444003

eliminated static unoptimized

Table IV. Static and dynamic distribution of optimized closure construction. The data for sub-
0CFA is given above the data for 0CFA.

· 21

eliminate closures that could be entirely eliminated from the pro-
gram

static closures that could be constructed once at compile time
and linked into the compiled code

unoptimized closures that could not be optimized and had to be con-
structed at run time.

In the dynamic distribution graphs, the areas marked as eliminated or static rep-
resent the proportion of the closures that would have been constructed at run time
had they not been eliminated or constructed at compile time.

With closure optimization the differences between the compile-time and run-time
distributions is significant. A significant fraction of the lambda expressions in the
benchmarks could be optimized, but those lambda expressions were not repeatedly
evaluated during execution. The lambda expressions that were optimized were
typically procedures defined in outer lexical contours and then applied repeatedly.
The benchmark nbody is the exception, where closure elimination reduced closure
allocation significantly at run time. The primary benefit of closure optimization is
not the savings in allocation costs, however. Rather, closure optimization enables
the compiler to turn direct calls into noload calls.

5. RELATED WORK

Basing the analysis on a collecting semantics for the language is similar to the
approach taken by Young [Young 1987]. In his approach, a denotational collecting
semantics is defined that collects information about the value of an expression.
The static analysis is then expressed as an abstraction of the collecting semantics.
Our semantics differs in that both the collecting and abstract semantics are defined
operationally.

Shivers [Shivers 1991] and Harrison [Harrison III 1989] describe flow analyses
for Scheme that are based on abstract interpretation. They differ primarily in the
details of the source language and the range of accuracy they can express. Our
analysis draws from the advantages of each approach. Like Shivers’ analysis, we
use CPS to make control transfers explicit. Like Harrison’s analysis, however, code
is kept in direct-style within a basic block and let bindings are used to order
operations. Our analysis extends their analyses by expressing a wider range of
polyvariance and using projection to accelerate convergence to a fixpoint. Also,
their analyses were prototypes, while our analysis is completely implemented and
running in a production compiler.

Jagannathan and Weeks [Jagannathan and Weeks 1995] describe a polyvariant
analysis for higher-order languages that also accommodates side effects and first-
class continuations. Their analysis is parameterized over a polyvariance operator,
but it is not parameterized over a projection operator. Also, their characterization
of program state is different from ours. In our analysis, the program state is an
environment and store that is extended at each program point. In their analysis,
the program state is an environment mapping variables to locations in a global
store. With respect to polyvariance, our n̂ew operator splits program points in the
same way their analysis does by splitting the environment.

Serrano and Feeley [Serrano and Feeley 1996] describe a static analysis for storage
use applications that also handles escaping values. Their treatment is the same

22 ·
as ours. Escaping closures are applied to unknown arguments, and the mutable
locations of data structures are given an unknown value. Our treatment of escaping
values is handled implicitly in the implementation while their formal specification
includes the treatment of escaping values.

Boucher and Feeley [Boucher and Feeley 1996] introduce the notion of abstract
compilation as a technique for accelerating static analyses. Like our staging of the
abstract machine, their approach is also inspired by partial evaluation and involves
eliminating the interpretive component of the analysis. Their analysis is 0CFA
while our framework can express a range of accuracy. Since their analysis is 0CFA,
compilation can proceed in a preprocessing step before the compiled analysis is
executed. Since our analysis may be polyvariant, however, we interleave compilation
and execution so that compilation occurs on demand.

Some monovariant flow analyses are specified declaratively [Heintze 1994; Pals-
berg and Schwartzbach 1995]. The analyses are implemented by deriving a set of
constraints from an input program and then solving those constraints. The ad-
vantage of the approach is that it maintains a clean separation between constraint
generation and constraint satisfaction. This separation is impractical in a poly-
variant analysis, however, where the number of potential abstract contexts can be
quite large relative to the number of abstract contexts actually encountered during
analysis. Our analysis is a hybrid solution where the specification is operational,
but the implementation dynamically compiles code for abstract contexts as they
are encountered and executes the generated closures on demand. Furthermore, the
behavior of the generated closures is similar to the behavior of a constraint solver.

Other researchers have observed that projection operators can be used in practice
to reduce the number of iterations needed to stabilize. Yi and Harrison [Yi and
Harrison III 1993] describe a framework for the automatic generation of abstract
interpreters. This framework incorporates a notion of projection that is similar to
ours. The difference is that they apply projections to values, and we apply them to
the entire computation state. Furthermore, they always project a value to the top
of the value lattice, while we permit the operator to project a value to any other
value above it in the lattice. Cousot and Cousot [Cousot and Cousot 1977] and
Bourdoncle [Bourdoncle 1992; 1993] use widening operators in a theoretical context
as a means of building computable analyses over lattices with infinite height and
accelerating analyses over lattices with finite height. A widening operator ∇ is a
substitute for the least upper bound operator. The constraint is that given two
points x and y, x t y v x∇y. Both of these approaches demonstrate the potential
to accelerate the analysis without losing too much information. Our work realizes
this potential by exhibiting a practical projection operator that still enables useful
optimizations.

6. CONCLUSIONS

Compilers must balance compilation speed and the speed of generated code. Soft-
ware developers want a fast compiler for the development cycle but want the com-
piler to generate the best code possible when development is finished. There are
two common solutions to the problem. One is to use two compilers: a fast compiler
during development and a highly-optimizing “batch mode” compiler when develop-
ment is complete. The other is to use a single compiler but selectively turn on and

· 23

off optimizations. The disadvantage of the first solution is that two compilers must
be written and maintained. The disadvantage of the second is that it is harder to
verify the compiler’s correctness since it is difficult to test all optimization switch
permutations.

The flexibility of our analysis suggests the alternative strategy of always doing
the flow analysis necessary for optimizations. During development, however, the
flow analysis is run with a coarse projection operator. As a result, the analyzer
is fast, but the compiler sometimes does not have enough information to perform
optimizations. When the development cycle has ended, the coarse projection op-
erator is replaced with the identity operator, allowing the analysis to collect more
precise information and perform stronger optimizations.

This strategy is attractive despite the fact that 0CFA and sub-0CFA have similar
costs on many of the reported benchmarks. In an interactive setting it is essential
to provide guarantees about compile times, and some classes of programs, e.g.,
programs in continuation-passing style, are expensive to analyze with 0CFA. A more
subtle problem with 0CFA is that small changes to the program may significantly
increase or decrease analysis times. This fluctuation can be frustrating to the
programmer. Sub-0CFA guarantees a complexity bound for all programs submitted
to the analyzer and avoids these problems.

The efficient implementation of the flow analysis requires that the interpreter
be staged into compilation and execution steps. The compilation and execution
stages are similar to the constraint-generation and constraint-solution phases of a
constraint-based analysis. Despite the similarity in implementation, it is unclear
how to specify a polyvariant flow analysis declaratively as a constraint-based anal-
ysis. Constraint-based analyses reported in the literature are monovariant and
assume that constraint generation occurs as a preprocessing step before constraint
satisfaction. Our implementation interleaves constraint generation and satisfaction
to avoid generating constraints that might erode the accuracy of the best solution.
Reflecting this operational aspect of the analysis in a declarative specification of
the analysis is an open problem.

Neither the specification nor implementation of the analysis framework is opti-
mized specifically for polyvariant instantiations of the analysis. Ashley and Con-
sel [Ashley and Consel 1994] describe optimizations for polyvariant analyses that
could be applied to our implementation. The optimizations involve eliminating
program points that become useless as the analysis works towards a solution.

Adding a module system to the language would improve the accuracy of the
analysis. Currently, the analyzer assumes no information about external references.
While correct, this is not very satisfactory. With a module system, the analyzer
could save the abstract values of exported bindings for later use during the analysis
of an importing module. The analysis of the importing module could then infer
more accurate information.

7. ACKNOWLEDGEMENTS

Marc Feeley, Suresh Jagannathan, and Andrew Wright provided some of the bench-
marks we used in our experiments. Mitch Wand’s and the anonymous referees’
comments helped improve the presentation significantly.

24 ·
REFERENCES

Ashley, J. M. 1997. The effectiveness of flow analysis for inlining. In Proceedings of the 1997
ACM SIGPLAN International Conference on Functional Programming. ACM, 99–111.

Ashley, J. M. and Consel, C. 1994. Fixpoint computation for polyvariant static analyses of
higher-order applicative programs. ACM Transactions on Programming Languages and Sys-
tems 16, 5, 1431–1448.

Ashley, J. M. and Dybvig, R. K. 1994. An efficient implementation of multiple return values in
Scheme. In Proceedings of the 1994 ACM Conference on LISP and Functional Programming.
ACM, 140–149.

Ashley, J. M. and Dybvig, R. K. 1998. A practical and flexible flow analysis for higher-order
languages (extended version). Tech. Rep. DL-1998-02, University of Kansas Design Laboratory.
May.

Ayers, A. E. 1993. Abstract analysis and optimization of Scheme. Ph.D. thesis, MIT.

Bondorf, A. 1993. Similix Manual, System Version 5.0. DIKU, University of Copenhagen,
Denmark.

Bose, B. 1991. DDD—A transformation system for Digital Design Derivation. Tech. Rep. 331,
Indiana University, Computer Science Department. May.

Boucher, D. and Feeley, M. 1996. Abstract compilation: A new implementation paradigm for
static analysis. In Proceedings of the 1996 International Conference on Compiler Construction.
ACM.

Bourdoncle, F. 1992. Abstract interpretation by dynamic partitioning. Journal of Functional
Programming 2, 4 (Oct.), 407–436.

Bourdoncle, F. 1993. Efficient chaotic iteration strategies with widening. In Proceedings of the
International Conference on Formal Methods in Programming and their Applications. Lecture
Notes in Computer Science, vol. 735. Springer-Verlag, 128–141.

Burger, R. G. 1994. The Scheme machine. Tech. Rep. 413, Indiana University, Computer Science
Department. Aug.

Consel, C. 1993. Polyvariant binding-time analysis for higher-order, applicative languages. In
Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program Manipu-
lation, PEPM ’93. ACM, 66–77.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth ACM Symposium on Principles of Programming Languages. ACM, 238–252.

Dybvig, R. K. 1994. Chez Scheme System Manual, Rev. 2.4. Cadence Research Systems, Bloom-
ington, Indiana.

Dybvig, R. K. and Hieb, R. 1990. A new approach to procedures with variable arity. Lisp and
Symbolic Computation 3, 3 (Sept.), 229–244.

Felleisen, M. 1987. The calculi of lambda-v-cs-conversion: a syntactic theory of control and
state in imperative higher-order programming languages. Ph.D. thesis, Indiana University,
Bloomington, Indiana.

Flanagan, C. and Felleisen, M. 1995. Set-based analysis for full Scheme and its use in soft-
typing. Tech. Rep. 253, Rice University. Oct.

Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. 1993. The essence of compiling
with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation. ACM, 237–247.

Gabriel, R. P. 1985. Performance and Evaluation of LISP Systems. MIT Press series in computer
systems. MIT Press.

Harrison III, W. L. 1989. The interprocedural analysis and automatic parallelization of Scheme
programs. Lisp and Symbolic Computation 2, 3/4, 179–396.

Heintze, N. 1994. Set-based analysis of ML programs. In Proceedings of the 1994 ACM Confer-
ence on LISP and Functional Programming. ACM, 306–317.

· 25

Jagannathan, S. and Weeks, S. 1995. A unified treatment of flow analysis in higher-order lan-
guages. In Proceedings of the 22nd Annual ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languages. ACM, 393–407.

Jones, N. D., Gomard, C. K., and Sestoft, P. 1993. Partial Evaluation and Automatic Program
Generation. Prentice-Hall.

Nielson, F. and Nielson, H. R. 1992. Two-Level Functional Languages. Cambridge Tracts in
Theoretical Computer Science, vol. 34. Cambridge University Press.

Palsberg, J. and Schwartzbach, M. I. 1995. Safety analysis versus type inference. Information
and Computation 118, 1, 128–141.

Serrano, M. and Feeley, M. 1996. Storage use analysis and its applications. In Proceedings of
the 1996 ACM SIGPLAN International Conference on Functional Programming. ACM, 50–61.

Shao, Z. and Appel, A. W. 1994. Space-efficient closure representations. In Proceedings of the
1994 ACM Conference on LISP and Functional Programming. ACM, 130–161.

Shivers, O. 1988. Control flow analysis in Scheme. In Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation. ACM, 164–174.

Shivers, O. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie Mellon
University. CMU-CS-91-145.

Steckler, P. A. and Wand, M. 1997. Lightweight closure conversion. ACM Transactions on
Programming Languages and Systems 19, 1, 48–86.

Yi, K. and Harrison III, W. L. 1993. Automatic generation and management of interprocedural
program analyses. In Proceedings of the 20th Annual ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages. ACM, 246–259.

Young, J. H. 1987. The theory and practice: Semantic program analysis for higher-order func-
tional programming languages. Ph.D. thesis, Yale University.

