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Introduction

Computer graphics has proven to be a very attractive
tool for investigating low-dimensional algebraic manifolds
and gaining intuition about their properties [9]. In princi-
ple, a computer image of any manifold described by al-
gebraic equations can be produced by numerically solv-
ing the equations [2] to generate a fixed tessellation, or
by using equivalent ray-tracing techniques [5]. However,
for high-performance inferactive manipulation of a mani-
fold, it is much simpler and more practical to have a para-
metric representation instead of an implicit equation that
must be solved numerically; a significant additional fea-
ture of many parametric representations is that they em-
body symmetry information that can be used to further
enhance the visualization process. Numerical solutions
typically do not naturally emphasize natural structures of
manifolds, are poorly behaved near singularities and self-
intersections, and are more difficult to explore using other
visualization tools such as submanifold selection, coordi-
nate transformations, and deformations.

Therefore, in order to use mathematical visualization
systems such as Mathematica [12], Maple [3], or Mac-
syma [11], or high-performance interactive systems such
as Geomview [15] or MeshView [13], one would much
prefer an explicit parametric representation of a manifold’s
geometry.

Driven by this motivation, we found an extremely use-
ful construction for parametric models of large families

of complex curves, that is, 2-manifolds representing the
solutions of single equations in two complex variables or,
equivalently, corresponding pairs of equations in four real
variables. Our construction is ideally suited for interactive
computer graphics systems; in addition, the resulting vi-
sualizations naturally exhibit subtle properties of the com-
plex curves. This construction was first described in [7],
where it was applied to the task of generating a computer
animation [8] showing the properties of the homogeneous
equations in CP? known as the “Fermat surfaces.”

In Table 1, we list the Mathematica code [6] used to gen-
erate the illustrations shown in Figures 2, 6 and 7, as well
as the analogous renderings in the Mathematica reference
book [16]. Stewart Dickson has utilized this basic Mathe-
matica model to realize the Fermat surfaces in the form of
three-dimensional sculptures [14]; the physical model of
the n = 3 Fermat surface shown in Figure 3 was created
by Allan Lange at Hughes Aircraft in El Segundo, Califor-
nia, from Dickson’s Mathematica specifications.

The Construction

Our construction is based upon a concept long familiar
to the computer graphics community as the superquadric
model of deformable curves and surfaces [1]. In two real
dimensions, the superquadric curves
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are interesting for shape modeling because, for continu-
ous n, they interpolate between diamonds (n = 1), circles
(n = 2), and squares (n — 00); superquadrics are es-
sentially the level sets of L, norms. Explicit parametric



representations of these curves are obtained by exploiting
the identity
cos? @ +sin?0 = 1

and setting

z, = sign(cos®)|cosf>™

Ty = sign(sinf)|sinf>™ .

We plot the resulting 2D curves in Figure 1 for various
values of n. Similar techniques can be used in three or
more dimensions to produce interpolations between (hy-
per)spheres and (hyper)cubes as well.

The homogeneous complexification of Eq. (1) for in-
teger n leads to the Fermat surfaces, which are defined
as solutions of the homogeneous equations in CP? of the
form

(21)" + ()" = (20)" @)

The hypothesis known as “Fermat’s Last Theorem” re-
duces to the statement that the inhomogeneous form of
this equation (z9p = 1) has no real rational points for in-
teger n > 2 and Re(z1) > 0, Re(z2) > 0.

The desired construction is derived by extending the su-
perquadric method to the complex domain. We first recall
that Eq. (2) can be represented locally in each of the three
regular C? coordinate patches of CP?: zy # 0, 2 # 0,
and z # 0. For the purposes of computer graphics, we fo-
cus our attention on the case zg # 0, take local inhomoge-
neous coordinates z;/zg, and thus may locally set zp = 1
for all practical purposes. Equation (2) then becomes

(z1)" + (22)" = 1. ©)

If we define the complex extensions of the sine and cosine,

w(0,6) = (exp(é +i0) + exp(—¢ — i6))

2
us(0,6) = 5 (exp(€ +i0) — exp(~¢ — i)
where
(u1)?+ (u2)? = 1, )

we can verify that Eq. (3) is identically satisfied if we set

Z1(07£7k1) = 8(k17n)u1(07£)2/n (5)
Z2(07£7k2) 8(k27n)u2(07£)2/n7 (6)

where the phase factor
s(k,n) = exp(2mik/n) (7)

is an nth root of unity for integers 0 < k < (n — 1). We
are not aware of any previous exploitation of this method
for visualizing such surfaces.

Properties

The phase factors in z; and z9 have n? combinations

of values labeled by (ki, k2), and therefore Eq. (3) de-
scribes n? distinct quadrilateral patches in C? given by
(Zl(e,f,kl), z2(0,§,k2)) for 0 < 0 < 7['/2 and |£| <
¢max - Surfaces such as those shown in Figure 2 are found
by piecing together the patches. Because the patches are
related to one another by simple symmetry transforma-
tions, they have an intrinsic value for the viewer that nu-
merical solutions would in general not be able to provide;
in our own interactive MeshView system and in the Mathe-
matica sample provided in Table 1, we exploit this fact by
choosing color codes that are keyed to the pair (k1, ko),
and thus automatically show the complex phase of any
patch relative to the basis patch.

The characteristics of the surfaces can be understood in
a number of ways. First, we note classical arguments de-
termining the global topological invariants of these sur-
faces; then, we examine the way the patchwork quilt of n?
segments fits together in the local coordinate system.

Euler Characteristic and Compactification Transform.
The genus g of the surface follows from the Riemann-
Hurwitz genus formula (see, e.g., [4]):
n—1)(n—2
g = b )2( ) ®)
(The standard proof of this formula involves a topological
picture quite different from the one we have presented.)
The total Euler characteristic of the surface is then

x=2-29 = 3n-—n2 ©)

Thus we see that the n = 2 surface is a sphere (¢ = 0),
n = Jisatorus (¢ = 1), n = 4 is a 3-hole torus (g = 3),
and so on.



Several transformations can be used to reexpress the
surfaces so that they are finite in certain projections, and
thus in principle allow one to deform them and examine
the genus experimentally. One of the nicest of these is the
transform

(2220, 2021, 2122)
217 + |22]? + |20|?)1/2

(2:17 22, ZO) - (

which actually is an inversion mapping in inhomogeneous
coordinates, swapping the singularities at zg = 0 for those
at z; = 0 and zo = 0. Another is the (non-isomorphic)
Riemann-sphere transform mapping C? to an S* with ra-
dius 7; we define X = (Re(z1),Im(z1),Re(z2),Im(z2))
and take

TS ArREa)
o IR/
@+ RP/(4r))

to be the coordinates on an S* embedded in R® described

by |G|? + (uo — 7)? = r2.

Patch Geometry. For a given integer n, as |{| — oo,
the asymptotic surface boundaries consist of n circles ap-
proaching different points on the complex line zp = 0 at
projective infinity. When £ = 0, we see that at § = 0
we have z; = s(ki,n), z2 = 0, while at § = 7/2,
z1 = 0, z9 = s(kg,n). Figure 4 shows the appearance
of a single patch for fixed (k1, k2). The 2n surface points
with z; = 0 or 29 = 0 are the fixed points of the cyclic
group of complex phase transformations z] = exp(i¢1)z1,
or z, = exp(i¢2)z2. n additional such points occur where
the asymptotic circles intersect the complex line zg = 0
at projective infinity, giving the expected total of 3n fixed
points of the cyclic group of phase transformations.

In general, n patches meet in a highly hyperbolic pie-
chart arrangement at each end of the ¢ = 0 axis. In Figure
5, we examine the n = 3 Fermat surface (which is the
only flat example) and show how the 9 patches labeled by
(k1, k) are related to one another; the small shaded cir-
cles labeled by p|g] correspond to fixed points of the com-
plex phase transformations, where one variable vanishes,
zp = 0, and the other is of the form z = exp(2wig/n) =
exp(2miq/3); the large shaded hexagons are the analogous

3 points where the boundary circles intersect the projective
line at infinity, where 2y = 0. The toroidal topology can be
seen directly be joining the centers of the four dark-shaded
hexagons.

Extensions to Related Equations

Once the generalization of the superquadric construc-
tion to produce solutions of the complex Fermat equation
was understood, we realized that several other classes of
polynomial equations could be parameterized using anal-
ogous techniques.

Torus-Knot-Like Boundaries. When we take two dif-
ferent powers of the complex variables,

(z)"™ +(22)" =1, (10)

we can parameterize the (now inhomogeneous) surface us-
ing

zZ1 = s(kl,nl)(ul)Z/”l (11)
v = s(ka,no)(uz)?™, 12)
for 0 < 0 < 7/2 and [£| < £max. These functions give

n1 X ng different phase-related patches that cover the finite
portion of the surface.

This is a surface with boundary that at large distances is
asymptotic to the solutions of the torus knot variety,

(z1)"™ +(22)" =0 (13)

(i.e., imagine scaling by a large denominator as {émax be-
comes large), except with the boundary given by the inter-
section with

|21|™ + |22|™* = |u1|? + |ug|? = cosh2¢max  (14)
instead of the traditional unit 3-sphere. Some examples

are shown in Figure 6.

Product Polynomials. Another extension to product
polynomials is straightforward. Consider the homoge-
neous equation

(20)™ (22)"* = (20)™ (15)



and its inhomogeneous form

(Zl)nl (22)n2 = 1 . (16)
If we take
21 = (u1 + ’iUQ)I/nl
= s(k1,ny1)exp[(i0 + &) /n4] 17)
z9 = (’LL1 — ’iUQ)l/n2

= s(—kz,n2) exp[—(i0 +&)/ns],  (18)

then we get a single-valued parameterization that covers
the entire surface using m; X mo patches (note that —ko
seems to be a more natural convention). We choose the
variable ranges 0 < 0 < 27 and |{| < €max to get the
required patch ranges. This is slightly peculiar because
the basic patch here is essentially four times the size of the
basic patch for the Fermat surfaces; these surfaces may be
easier to see if different colors or markings are used for
subsets of the basic 0 < # < 27 range.

And So On... Superquadric models have been applied
to all sorts of variations of the equation of the circle
z? + y? = 1 that we have used as the basis for the 2-
manifolds shown here. For example, one can easily choose
polar coordinates on a higher-dimensional sphere such as
z? + 9% + 22 = 1 with

x = cosfsing
= sinfsin¢
Z = cos¢

and make a complex substitution cosf — wuq(6,¢),
sinf — wuy(0,&), cosp — vi(h, x), singd — va(eh, x),
where uy + dus = exp(xif £ &) and vy + vy =
exp(+i¢ =+ x), to get a basis for a local C® coordinate sys-
tem, (z — 21,y — 22,2 — 23), in CP3; applying tech-
niques analogous to those we used for surfaces (includ-
ing using differing exponents for u; and v;) yields various
families of 4-manifolds. There are obviously an enormous
number of variants; unfortunately, our ability to do mean-
ingful graphics degrades rapidly with increasing manifold
dimension!

Remarks

Complex algebraic equations are interesting objects for
study using computer graphics techniques. The Fermat
surfaces in fact correspond topologically to Riemann sur-
faces for n-th roots in the complex plane with appropriate
branch cuts; graphically exploring the explicit deformation
between the algebraic form and the traditional branching
structure of the corresponding Riemann surfaces is another
fascinating exercise that we have no space to elaborate on
here (see, e.g., [10]). The family of parametric construc-
tions we have presented easily allows the interactive exam-
ination of the surfaces and their global topology, as well as
exhibiting the complex phase relations and fixed points on
the surfaces through the use of phase-related color codes
on the patches.
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The parametric functions:
cCos[theta_,xi ] := .5(E"(xi + I theta) + E"(- xi - I theta))
cSin[theta_,xi_] := (-.5 I)(E"(x1 + I theta) - E"(- x1 - I theta))
zl[theta_,xi_,n_,k_ ] E” (k*2*Pi*I/n) *cCos[theta,xi] " (2.0/n)
z2[theta_,xi_,n_,k_] E"(k*2*Pi*I/n) *cSin[theta,xi] " (2.0/n)

pzl[theta_,xi_,n_,k_] := E7(( xi + I theta)/n)*E"( k*2*Pi*I/n)
pz2[theta_,xi_,n_,k_] := E7((- x1 - I theta)/n)*E" (-k*2*Pi*I/n)
Polygon Construction: See Mathematica:Packages:Graphics:ParametricPlot3D.m.
MakePolygons[vl_List] :=
Block[{l = vl, 11 = Map[RotateLeft, v1], mesh},
mesh = {1, 11, RotateLeft[11l], RotateLeft[1l]};
mesh = Map[Drop[#, -1]&, mesh, {1}1;
mesh = Map[Dropl[#, -11&, mesh, {2}];
Polygon /@ Transpose[ Map[Flatten([#, 1]1&, mesh] ]]
Construct and display Fermat Surface:
nl = 3; n2 = 3; xiSteps=17; xiMax = 1; thetaSteps=17; angle = Pi/4;
cosA = Coslangle]; sinA = Sin[angle];
Do[ Do[ patch33[kl+1,k2+1] =
MakePolygons [Table|
Block[{zlVal = N[zl[theta,xi,nl,k1]],
z2Val = N[z2[theta,xi,n2,k2]1},

{Re[zlVall, Re[z2Val], cosA*Im[zlVal] + sinA*Im[z2Val]}],
{xi,-xiMax,xiMax, (2*xiMax) / (xiSteps - 1)},
{theta,0,Pi/2, (Pi/2)/ (thetaSteps - 1)}11,

{k1,0,n1-13}1,
{k2,0,n2-1}1;
Power surface: Replace zi — pzi and Pi/2 — 2 Pi.
Place actual drawing on screen, color code the patches.
bs0 = 0.8; bsl = 0.2; 1t = 0.9;
surface33=
Show [
Graphics3D]|
Table[[Block[{bs = If[And[kl==0 , k2==0],bs0,bsll]},
{RGBColor[bs+1lt*kl/ (nl-1),bs+1t*k2/(n2-1),bs],
patch33[kl+1,k2+1]}]
{k1, 0, nl1-1}, {k2, 0, n2-13}],
Lighting->False, Axes->None, Boxed -> False, BoxRatios->{1,1,1},
ViewPoint->{2.9, 1.0, 1.4} 1]

Table 1: Mathematica expressions for the explicit parameterization and plotting of the solutions to Egs. (3), (10), and
(15). Massive amounts of memory are required to render the surfaces with nontrivial parameter ranges xiSteps and
thetaSteps. xiSteps must be odd to guarantee that the surface will pass through the fixed points at (6,¢) = (0,0)
and (0,¢) = (7/2,0) and avoid anomalies in the surface representation.
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Figure 2: (a) One view of the surface obtained by projecting Eq. (3) for n = 2 from 4D to 3D. (b) The n. = 3 surface.
(c) The n = 4 surface. (d) The n = 6 surface.



Figure 3: A mathematically accurate 3D plastic model of the surface Eq. (3) for n = 3 projected from 4D to 3D.
This stereo pair may be viewed cross-eyed to produce a 3D image.
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Figure 4: The shape of a single patch out of the n? parametric patches making up the Fermat surface of degree n.
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Figure 5: The relationships and relative phases of the 9 patches of the n = 3 (genus one) toroidal Fermat surface
labeled by (k1, k2). The six small circles labeled by p[g] are points where z, = 0 and the other variable takes the
value z = exp(27ig/3); the shaded hexagons correspond to the three analogous points at projective infinity. The

toroidal structure of this surface is obvious if one joins the centers of the four copies of the dark-shaded hexagon
labeled 0[2].
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Figure 6: Generalizations of the construction to include torus-knot-like boundaries of the finite complex surfaces.
The (2, 3) and the (3, 5) surfaces described by Eq. (10) are shown here.
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Figure 7: Products of polynomials generating two-manifolds in C2. The surfaces with powers (1, 1), (1,2), (2,2),

and (2, 3) given by Eq. (15) are shown.
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